MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatsubcl Structured version   Visualization version   GIF version

Theorem dmatsubcl 22000
Description: The difference of two diagonal matrices is a diagonal matrix. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatid.a 𝐴 = (𝑁 Mat 𝑅)
dmatid.b 𝐵 = (Base‘𝐴)
dmatid.0 0 = (0g𝑅)
dmatid.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatsubcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(-g𝐴)𝑌) ∈ 𝐷)

Proof of Theorem dmatsubcl
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
21matgrp 21932 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
32adantr 482 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝐴 ∈ Grp)
4 dmatid.b . . . . . 6 𝐵 = (Base‘𝐴)
5 dmatid.0 . . . . . 6 0 = (0g𝑅)
6 dmatid.d . . . . . 6 𝐷 = (𝑁 DMat 𝑅)
71, 4, 5, 6dmatmat 21996 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷𝑋𝐵))
87imp 408 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋𝐷) → 𝑋𝐵)
98adantrr 716 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋𝐵)
101, 4, 5, 6dmatmat 21996 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝐷𝑌𝐵))
1110imp 408 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐷) → 𝑌𝐵)
1211adantrl 715 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌𝐵)
13 eqid 2733 . . . 4 (-g𝐴) = (-g𝐴)
144, 13grpsubcl 18903 . . 3 ((𝐴 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋(-g𝐴)𝑌) ∈ 𝐵)
153, 9, 12, 14syl3anc 1372 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(-g𝐴)𝑌) ∈ 𝐵)
16 simpr 486 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
1716adantr 482 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑅 ∈ Ring)
1817adantr 482 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
197, 10anim12d 610 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑋𝐷𝑌𝐷) → (𝑋𝐵𝑌𝐵)))
2019imp 408 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋𝐵𝑌𝐵))
2120adantr 482 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑋𝐵𝑌𝐵))
22 simpr 486 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑁𝑗𝑁))
23 eqid 2733 . . . . . . . 8 (-g𝑅) = (-g𝑅)
241, 4, 13, 23matsubgcell 21936 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = ((𝑖𝑋𝑗)(-g𝑅)(𝑖𝑌𝑗)))
2518, 21, 22, 24syl3anc 1372 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = ((𝑖𝑋𝑗)(-g𝑅)(𝑖𝑌𝑗)))
2625adantr 482 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = ((𝑖𝑋𝑗)(-g𝑅)(𝑖𝑌𝑗)))
27 simpll 766 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑁 ∈ Fin)
28 simprl 770 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋𝐷)
2927, 17, 283jca 1129 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
3029adantr 482 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
3130adantr 482 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
32 simplrl 776 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → 𝑖𝑁)
33 simplrr 777 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → 𝑗𝑁)
34 simpr 486 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → 𝑖𝑗)
351, 4, 5, 6dmatelnd 21998 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷) ∧ (𝑖𝑁𝑗𝑁𝑖𝑗)) → (𝑖𝑋𝑗) = 0 )
3631, 32, 33, 34, 35syl13anc 1373 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑖𝑋𝑗) = 0 )
37 simprr 772 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌𝐷)
3827, 17, 373jca 1129 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
3938adantr 482 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
4039adantr 482 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
411, 4, 5, 6dmatelnd 21998 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷) ∧ (𝑖𝑁𝑗𝑁𝑖𝑗)) → (𝑖𝑌𝑗) = 0 )
4240, 32, 33, 34, 41syl13anc 1373 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑖𝑌𝑗) = 0 )
4336, 42oveq12d 7427 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → ((𝑖𝑋𝑗)(-g𝑅)(𝑖𝑌𝑗)) = ( 0 (-g𝑅) 0 ))
44 ringgrp 20061 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
45 eqid 2733 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
4645, 5ring0cl 20084 . . . . . . . . 9 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
4744, 46jca 513 . . . . . . . 8 (𝑅 ∈ Ring → (𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)))
4847adantl 483 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)))
4945, 5, 23grpsubid 18907 . . . . . . 7 ((𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)) → ( 0 (-g𝑅) 0 ) = 0 )
5048, 49syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ( 0 (-g𝑅) 0 ) = 0 )
5150ad3antrrr 729 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → ( 0 (-g𝑅) 0 ) = 0 )
5226, 43, 513eqtrd 2777 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = 0 )
5352ex 414 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑗 → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = 0 ))
5453ralrimivva 3201 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = 0 ))
551, 4, 5, 6dmatel 21995 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑋(-g𝐴)𝑌) ∈ 𝐷 ↔ ((𝑋(-g𝐴)𝑌) ∈ 𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = 0 ))))
5655adantr 482 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → ((𝑋(-g𝐴)𝑌) ∈ 𝐷 ↔ ((𝑋(-g𝐴)𝑌) ∈ 𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = 0 ))))
5715, 54, 56mpbir2and 712 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(-g𝐴)𝑌) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062  cfv 6544  (class class class)co 7409  Fincfn 8939  Basecbs 17144  0gc0g 17385  Grpcgrp 18819  -gcsg 18821  Ringcrg 20056   Mat cmat 21907   DMat cdmat 21990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-ot 4638  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-sup 9437  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-fz 13485  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-hom 17221  df-cco 17222  df-0g 17387  df-prds 17393  df-pws 17395  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-minusg 18823  df-sbg 18824  df-subg 19003  df-mgp 19988  df-ur 20005  df-ring 20058  df-subrg 20317  df-lmod 20473  df-lss 20543  df-sra 20785  df-rgmod 20786  df-dsmm 21287  df-frlm 21302  df-mat 21908  df-dmat 21992
This theorem is referenced by:  dmatsgrp  22001
  Copyright terms: Public domain W3C validator