MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatsubcl Structured version   Visualization version   GIF version

Theorem dmatsubcl 22385
Description: The difference of two diagonal matrices is a diagonal matrix. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatid.a 𝐴 = (𝑁 Mat 𝑅)
dmatid.b 𝐵 = (Base‘𝐴)
dmatid.0 0 = (0g𝑅)
dmatid.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatsubcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(-g𝐴)𝑌) ∈ 𝐷)

Proof of Theorem dmatsubcl
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
21matgrp 22317 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
32adantr 480 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝐴 ∈ Grp)
4 dmatid.b . . . . . 6 𝐵 = (Base‘𝐴)
5 dmatid.0 . . . . . 6 0 = (0g𝑅)
6 dmatid.d . . . . . 6 𝐷 = (𝑁 DMat 𝑅)
71, 4, 5, 6dmatmat 22381 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷𝑋𝐵))
87imp 406 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋𝐷) → 𝑋𝐵)
98adantrr 717 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋𝐵)
101, 4, 5, 6dmatmat 22381 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝐷𝑌𝐵))
1110imp 406 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐷) → 𝑌𝐵)
1211adantrl 716 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌𝐵)
13 eqid 2729 . . . 4 (-g𝐴) = (-g𝐴)
144, 13grpsubcl 18952 . . 3 ((𝐴 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋(-g𝐴)𝑌) ∈ 𝐵)
153, 9, 12, 14syl3anc 1373 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(-g𝐴)𝑌) ∈ 𝐵)
16 simpr 484 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
1716adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑅 ∈ Ring)
1817adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
197, 10anim12d 609 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑋𝐷𝑌𝐷) → (𝑋𝐵𝑌𝐵)))
2019imp 406 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋𝐵𝑌𝐵))
2120adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑋𝐵𝑌𝐵))
22 simpr 484 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑁𝑗𝑁))
23 eqid 2729 . . . . . . . 8 (-g𝑅) = (-g𝑅)
241, 4, 13, 23matsubgcell 22321 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = ((𝑖𝑋𝑗)(-g𝑅)(𝑖𝑌𝑗)))
2518, 21, 22, 24syl3anc 1373 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = ((𝑖𝑋𝑗)(-g𝑅)(𝑖𝑌𝑗)))
2625adantr 480 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = ((𝑖𝑋𝑗)(-g𝑅)(𝑖𝑌𝑗)))
27 simpll 766 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑁 ∈ Fin)
28 simprl 770 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋𝐷)
2927, 17, 283jca 1128 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
3029adantr 480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
3130adantr 480 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
32 simplrl 776 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → 𝑖𝑁)
33 simplrr 777 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → 𝑗𝑁)
34 simpr 484 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → 𝑖𝑗)
351, 4, 5, 6dmatelnd 22383 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷) ∧ (𝑖𝑁𝑗𝑁𝑖𝑗)) → (𝑖𝑋𝑗) = 0 )
3631, 32, 33, 34, 35syl13anc 1374 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑖𝑋𝑗) = 0 )
37 simprr 772 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌𝐷)
3827, 17, 373jca 1128 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
3938adantr 480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
4039adantr 480 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
411, 4, 5, 6dmatelnd 22383 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷) ∧ (𝑖𝑁𝑗𝑁𝑖𝑗)) → (𝑖𝑌𝑗) = 0 )
4240, 32, 33, 34, 41syl13anc 1374 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑖𝑌𝑗) = 0 )
4336, 42oveq12d 7405 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → ((𝑖𝑋𝑗)(-g𝑅)(𝑖𝑌𝑗)) = ( 0 (-g𝑅) 0 ))
44 ringgrp 20147 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
45 eqid 2729 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
4645, 5ring0cl 20176 . . . . . . . . 9 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
4744, 46jca 511 . . . . . . . 8 (𝑅 ∈ Ring → (𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)))
4847adantl 481 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)))
4945, 5, 23grpsubid 18956 . . . . . . 7 ((𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)) → ( 0 (-g𝑅) 0 ) = 0 )
5048, 49syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ( 0 (-g𝑅) 0 ) = 0 )
5150ad3antrrr 730 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → ( 0 (-g𝑅) 0 ) = 0 )
5226, 43, 513eqtrd 2768 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = 0 )
5352ex 412 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑗 → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = 0 ))
5453ralrimivva 3180 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = 0 ))
551, 4, 5, 6dmatel 22380 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑋(-g𝐴)𝑌) ∈ 𝐷 ↔ ((𝑋(-g𝐴)𝑌) ∈ 𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = 0 ))))
5655adantr 480 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → ((𝑋(-g𝐴)𝑌) ∈ 𝐷 ↔ ((𝑋(-g𝐴)𝑌) ∈ 𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = 0 ))))
5715, 54, 56mpbir2and 713 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(-g𝐴)𝑌) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  cfv 6511  (class class class)co 7387  Fincfn 8918  Basecbs 17179  0gc0g 17402  Grpcgrp 18865  -gcsg 18867  Ringcrg 20142   Mat cmat 22294   DMat cdmat 22375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-subrg 20479  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-mat 22295  df-dmat 22377
This theorem is referenced by:  dmatsgrp  22386
  Copyright terms: Public domain W3C validator