MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatsubcl Structured version   Visualization version   GIF version

Theorem dmatsubcl 20811
Description: The difference of two diagonal matrices is a diagonal matrix. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatid.a 𝐴 = (𝑁 Mat 𝑅)
dmatid.b 𝐵 = (Base‘𝐴)
dmatid.0 0 = (0g𝑅)
dmatid.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatsubcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(-g𝐴)𝑌) ∈ 𝐷)

Proof of Theorem dmatsubcl
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
21matgrp 20743 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
32adantr 473 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝐴 ∈ Grp)
4 dmatid.b . . . . . 6 𝐵 = (Base‘𝐴)
5 dmatid.0 . . . . . 6 0 = (0g𝑅)
6 dmatid.d . . . . . 6 𝐷 = (𝑁 DMat 𝑅)
71, 4, 5, 6dmatmat 20807 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷𝑋𝐵))
87imp 398 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋𝐷) → 𝑋𝐵)
98adantrr 704 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋𝐵)
101, 4, 5, 6dmatmat 20807 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝐷𝑌𝐵))
1110imp 398 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐷) → 𝑌𝐵)
1211adantrl 703 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌𝐵)
13 eqid 2778 . . . 4 (-g𝐴) = (-g𝐴)
144, 13grpsubcl 17966 . . 3 ((𝐴 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋(-g𝐴)𝑌) ∈ 𝐵)
153, 9, 12, 14syl3anc 1351 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(-g𝐴)𝑌) ∈ 𝐵)
16 simpr 477 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
1716adantr 473 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑅 ∈ Ring)
1817adantr 473 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
197, 10anim12d 599 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑋𝐷𝑌𝐷) → (𝑋𝐵𝑌𝐵)))
2019imp 398 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋𝐵𝑌𝐵))
2120adantr 473 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑋𝐵𝑌𝐵))
22 simpr 477 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑁𝑗𝑁))
23 eqid 2778 . . . . . . . 8 (-g𝑅) = (-g𝑅)
241, 4, 13, 23matsubgcell 20747 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = ((𝑖𝑋𝑗)(-g𝑅)(𝑖𝑌𝑗)))
2518, 21, 22, 24syl3anc 1351 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = ((𝑖𝑋𝑗)(-g𝑅)(𝑖𝑌𝑗)))
2625adantr 473 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = ((𝑖𝑋𝑗)(-g𝑅)(𝑖𝑌𝑗)))
27 simpll 754 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑁 ∈ Fin)
28 simprl 758 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋𝐷)
2927, 17, 283jca 1108 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
3029adantr 473 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
3130adantr 473 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
32 simplrl 764 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → 𝑖𝑁)
33 simplrr 765 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → 𝑗𝑁)
34 simpr 477 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → 𝑖𝑗)
351, 4, 5, 6dmatelnd 20809 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷) ∧ (𝑖𝑁𝑗𝑁𝑖𝑗)) → (𝑖𝑋𝑗) = 0 )
3631, 32, 33, 34, 35syl13anc 1352 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑖𝑋𝑗) = 0 )
37 simprr 760 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌𝐷)
3827, 17, 373jca 1108 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
3938adantr 473 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
4039adantr 473 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
411, 4, 5, 6dmatelnd 20809 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷) ∧ (𝑖𝑁𝑗𝑁𝑖𝑗)) → (𝑖𝑌𝑗) = 0 )
4240, 32, 33, 34, 41syl13anc 1352 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑖𝑌𝑗) = 0 )
4336, 42oveq12d 6994 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → ((𝑖𝑋𝑗)(-g𝑅)(𝑖𝑌𝑗)) = ( 0 (-g𝑅) 0 ))
44 ringgrp 19025 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
45 eqid 2778 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
4645, 5ring0cl 19042 . . . . . . . . 9 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
4744, 46jca 504 . . . . . . . 8 (𝑅 ∈ Ring → (𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)))
4847adantl 474 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)))
4945, 5, 23grpsubid 17970 . . . . . . 7 ((𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)) → ( 0 (-g𝑅) 0 ) = 0 )
5048, 49syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ( 0 (-g𝑅) 0 ) = 0 )
5150ad3antrrr 717 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → ( 0 (-g𝑅) 0 ) = 0 )
5226, 43, 513eqtrd 2818 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = 0 )
5352ex 405 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑗 → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = 0 ))
5453ralrimivva 3141 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = 0 ))
551, 4, 5, 6dmatel 20806 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑋(-g𝐴)𝑌) ∈ 𝐷 ↔ ((𝑋(-g𝐴)𝑌) ∈ 𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = 0 ))))
5655adantr 473 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → ((𝑋(-g𝐴)𝑌) ∈ 𝐷 ↔ ((𝑋(-g𝐴)𝑌) ∈ 𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = 0 ))))
5715, 54, 56mpbir2and 700 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(-g𝐴)𝑌) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2967  wral 3088  cfv 6188  (class class class)co 6976  Fincfn 8306  Basecbs 16339  0gc0g 16569  Grpcgrp 17891  -gcsg 17893  Ringcrg 19020   Mat cmat 20720   DMat cdmat 20801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-ot 4450  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-of 7227  df-om 7397  df-1st 7501  df-2nd 7502  df-supp 7634  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-map 8208  df-ixp 8260  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fsupp 8629  df-sup 8701  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-z 11794  df-dec 11912  df-uz 12059  df-fz 12709  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-sets 16346  df-ress 16347  df-plusg 16434  df-mulr 16435  df-sca 16437  df-vsca 16438  df-ip 16439  df-tset 16440  df-ple 16441  df-ds 16443  df-hom 16445  df-cco 16446  df-0g 16571  df-prds 16577  df-pws 16579  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-grp 17894  df-minusg 17895  df-sbg 17896  df-subg 18060  df-mgp 18963  df-ur 18975  df-ring 19022  df-subrg 19256  df-lmod 19358  df-lss 19426  df-sra 19666  df-rgmod 19667  df-dsmm 20578  df-frlm 20593  df-mat 20721  df-dmat 20803
This theorem is referenced by:  dmatsgrp  20812
  Copyright terms: Public domain W3C validator