MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatsubcl Structured version   Visualization version   GIF version

Theorem dmatsubcl 22220
Description: The difference of two diagonal matrices is a diagonal matrix. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatid.a 𝐴 = (𝑁 Mat 𝑅)
dmatid.b 𝐵 = (Base‘𝐴)
dmatid.0 0 = (0g𝑅)
dmatid.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatsubcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(-g𝐴)𝑌) ∈ 𝐷)

Proof of Theorem dmatsubcl
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
21matgrp 22152 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
32adantr 479 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝐴 ∈ Grp)
4 dmatid.b . . . . . 6 𝐵 = (Base‘𝐴)
5 dmatid.0 . . . . . 6 0 = (0g𝑅)
6 dmatid.d . . . . . 6 𝐷 = (𝑁 DMat 𝑅)
71, 4, 5, 6dmatmat 22216 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷𝑋𝐵))
87imp 405 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋𝐷) → 𝑋𝐵)
98adantrr 713 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋𝐵)
101, 4, 5, 6dmatmat 22216 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝐷𝑌𝐵))
1110imp 405 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐷) → 𝑌𝐵)
1211adantrl 712 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌𝐵)
13 eqid 2730 . . . 4 (-g𝐴) = (-g𝐴)
144, 13grpsubcl 18939 . . 3 ((𝐴 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋(-g𝐴)𝑌) ∈ 𝐵)
153, 9, 12, 14syl3anc 1369 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(-g𝐴)𝑌) ∈ 𝐵)
16 simpr 483 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
1716adantr 479 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑅 ∈ Ring)
1817adantr 479 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
197, 10anim12d 607 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑋𝐷𝑌𝐷) → (𝑋𝐵𝑌𝐵)))
2019imp 405 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋𝐵𝑌𝐵))
2120adantr 479 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑋𝐵𝑌𝐵))
22 simpr 483 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑁𝑗𝑁))
23 eqid 2730 . . . . . . . 8 (-g𝑅) = (-g𝑅)
241, 4, 13, 23matsubgcell 22156 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = ((𝑖𝑋𝑗)(-g𝑅)(𝑖𝑌𝑗)))
2518, 21, 22, 24syl3anc 1369 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = ((𝑖𝑋𝑗)(-g𝑅)(𝑖𝑌𝑗)))
2625adantr 479 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = ((𝑖𝑋𝑗)(-g𝑅)(𝑖𝑌𝑗)))
27 simpll 763 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑁 ∈ Fin)
28 simprl 767 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋𝐷)
2927, 17, 283jca 1126 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
3029adantr 479 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
3130adantr 479 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
32 simplrl 773 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → 𝑖𝑁)
33 simplrr 774 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → 𝑗𝑁)
34 simpr 483 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → 𝑖𝑗)
351, 4, 5, 6dmatelnd 22218 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷) ∧ (𝑖𝑁𝑗𝑁𝑖𝑗)) → (𝑖𝑋𝑗) = 0 )
3631, 32, 33, 34, 35syl13anc 1370 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑖𝑋𝑗) = 0 )
37 simprr 769 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌𝐷)
3827, 17, 373jca 1126 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
3938adantr 479 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
4039adantr 479 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
411, 4, 5, 6dmatelnd 22218 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷) ∧ (𝑖𝑁𝑗𝑁𝑖𝑗)) → (𝑖𝑌𝑗) = 0 )
4240, 32, 33, 34, 41syl13anc 1370 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑖𝑌𝑗) = 0 )
4336, 42oveq12d 7429 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → ((𝑖𝑋𝑗)(-g𝑅)(𝑖𝑌𝑗)) = ( 0 (-g𝑅) 0 ))
44 ringgrp 20132 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
45 eqid 2730 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
4645, 5ring0cl 20155 . . . . . . . . 9 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
4744, 46jca 510 . . . . . . . 8 (𝑅 ∈ Ring → (𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)))
4847adantl 480 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)))
4945, 5, 23grpsubid 18943 . . . . . . 7 ((𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)) → ( 0 (-g𝑅) 0 ) = 0 )
5048, 49syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ( 0 (-g𝑅) 0 ) = 0 )
5150ad3antrrr 726 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → ( 0 (-g𝑅) 0 ) = 0 )
5226, 43, 513eqtrd 2774 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = 0 )
5352ex 411 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑗 → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = 0 ))
5453ralrimivva 3198 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = 0 ))
551, 4, 5, 6dmatel 22215 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑋(-g𝐴)𝑌) ∈ 𝐷 ↔ ((𝑋(-g𝐴)𝑌) ∈ 𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = 0 ))))
5655adantr 479 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → ((𝑋(-g𝐴)𝑌) ∈ 𝐷 ↔ ((𝑋(-g𝐴)𝑌) ∈ 𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖(𝑋(-g𝐴)𝑌)𝑗) = 0 ))))
5715, 54, 56mpbir2and 709 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(-g𝐴)𝑌) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  wne 2938  wral 3059  cfv 6542  (class class class)co 7411  Fincfn 8941  Basecbs 17148  0gc0g 17389  Grpcgrp 18855  -gcsg 18857  Ringcrg 20127   Mat cmat 22127   DMat cdmat 22210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13489  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-hom 17225  df-cco 17226  df-0g 17391  df-prds 17397  df-pws 17399  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-minusg 18859  df-sbg 18860  df-subg 19039  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-subrg 20459  df-lmod 20616  df-lss 20687  df-sra 20930  df-rgmod 20931  df-dsmm 21506  df-frlm 21521  df-mat 22128  df-dmat 22212
This theorem is referenced by:  dmatsgrp  22221
  Copyright terms: Public domain W3C validator