MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatmul Structured version   Visualization version   GIF version

Theorem dmatmul 21108
Description: The product of two diagonal matrices. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatid.a 𝐴 = (𝑁 Mat 𝑅)
dmatid.b 𝐵 = (Base‘𝐴)
dmatid.0 0 = (0g𝑅)
dmatid.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatmul (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(.r𝐴)𝑌) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 )))
Distinct variable groups:   𝑥,𝐷,𝑦   𝑥,𝑁,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem dmatmul
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dmatid.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2823 . . . . . 6 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
31, 2matmulr 21049 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
43adantr 483 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
54eqcomd 2829 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (.r𝐴) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
65oveqd 7175 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(.r𝐴)𝑌) = (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌))
7 eqid 2823 . . 3 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2823 . . 3 (.r𝑅) = (.r𝑅)
9 simplr 767 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑅 ∈ Ring)
10 simpll 765 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑁 ∈ Fin)
11 dmatid.b . . . . . . 7 𝐵 = (Base‘𝐴)
12 dmatid.0 . . . . . . 7 0 = (0g𝑅)
13 dmatid.d . . . . . . 7 𝐷 = (𝑁 DMat 𝑅)
141, 11, 12, 13dmatmat 21105 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷𝑋𝐵))
1514imp 409 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋𝐷) → 𝑋𝐵)
161, 7, 11matbas2i 21033 . . . . 5 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
1715, 16syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋𝐷) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
1817adantrr 715 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
191, 11, 12, 13dmatmat 21105 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝐷𝑌𝐵))
2019imp 409 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐷) → 𝑌𝐵)
211, 7, 11matbas2i 21033 . . . . 5 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
2220, 21syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐷) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
2322adantrl 714 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
242, 7, 8, 9, 10, 10, 10, 18, 23mamuval 20999 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))))))
25 eqid 2823 . . . . . . 7 (+g𝑅) = (+g𝑅)
26 ringcmn 19333 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
2726ad2antlr 725 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑅 ∈ CMnd)
28273ad2ant1 1129 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑅 ∈ CMnd)
2928adantl 484 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → 𝑅 ∈ CMnd)
30103ad2ant1 1129 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑁 ∈ Fin)
3130adantl 484 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → 𝑁 ∈ Fin)
32 eqid 2823 . . . . . . . 8 (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))) = (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))
33 ovexd 7193 . . . . . . . 8 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) ∈ V)
34 fvexd 6687 . . . . . . . 8 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (0g𝑅) ∈ V)
3532, 31, 33, 34fsuppmptdm 8846 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))) finSupp (0g𝑅))
3693ad2ant1 1129 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑅 ∈ Ring)
3736ad2antlr 725 . . . . . . . 8 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
38 simp2 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑥𝑁)
3938ad2antlr 725 . . . . . . . . 9 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑥𝑁)
40 simpr 487 . . . . . . . . 9 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑘𝑁)
41 eqid 2823 . . . . . . . . . . . . . 14 (Base‘𝐴) = (Base‘𝐴)
421, 41, 12, 13dmatmat 21105 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷𝑋 ∈ (Base‘𝐴)))
4342imp 409 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋𝐷) → 𝑋 ∈ (Base‘𝐴))
4443adantrr 715 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋 ∈ (Base‘𝐴))
45443ad2ant1 1129 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑋 ∈ (Base‘𝐴))
4645ad2antlr 725 . . . . . . . . 9 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑋 ∈ (Base‘𝐴))
471, 7matecl 21036 . . . . . . . . 9 ((𝑥𝑁𝑘𝑁𝑋 ∈ (Base‘𝐴)) → (𝑥𝑋𝑘) ∈ (Base‘𝑅))
4839, 40, 46, 47syl3anc 1367 . . . . . . . 8 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑥𝑋𝑘) ∈ (Base‘𝑅))
49 simplr3 1213 . . . . . . . . 9 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑦𝑁)
501, 41, 12, 13dmatmat 21105 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝐷𝑌 ∈ (Base‘𝐴)))
5150imp 409 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐷) → 𝑌 ∈ (Base‘𝐴))
5251adantrl 714 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌 ∈ (Base‘𝐴))
53523ad2ant1 1129 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑌 ∈ (Base‘𝐴))
5453ad2antlr 725 . . . . . . . . 9 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑌 ∈ (Base‘𝐴))
551, 7matecl 21036 . . . . . . . . 9 ((𝑘𝑁𝑦𝑁𝑌 ∈ (Base‘𝐴)) → (𝑘𝑌𝑦) ∈ (Base‘𝑅))
5640, 49, 54, 55syl3anc 1367 . . . . . . . 8 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑘𝑌𝑦) ∈ (Base‘𝑅))
577, 8ringcl 19313 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥𝑋𝑘) ∈ (Base‘𝑅) ∧ (𝑘𝑌𝑦) ∈ (Base‘𝑅)) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) ∈ (Base‘𝑅))
5837, 48, 56, 57syl3anc 1367 . . . . . . 7 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) ∈ (Base‘𝑅))
5938adantl 484 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
60 simp3 1134 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑦𝑁)
6115adantrr 715 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋𝐵)
6261, 11eleqtrdi 2925 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋 ∈ (Base‘𝐴))
63623ad2ant1 1129 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑋 ∈ (Base‘𝐴))
641, 7matecl 21036 . . . . . . . . . 10 ((𝑥𝑁𝑦𝑁𝑋 ∈ (Base‘𝐴)) → (𝑥𝑋𝑦) ∈ (Base‘𝑅))
6538, 60, 63, 64syl3anc 1367 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑋𝑦) ∈ (Base‘𝑅))
6650a1d 25 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷 → (𝑌𝐷𝑌 ∈ (Base‘𝐴))))
6766imp32 421 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌 ∈ (Base‘𝐴))
68673ad2ant1 1129 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑌 ∈ (Base‘𝐴))
691, 7matecl 21036 . . . . . . . . . 10 ((𝑥𝑁𝑦𝑁𝑌 ∈ (Base‘𝐴)) → (𝑥𝑌𝑦) ∈ (Base‘𝑅))
7038, 60, 68, 69syl3anc 1367 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑌𝑦) ∈ (Base‘𝑅))
717, 8ringcl 19313 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝑋𝑦) ∈ (Base‘𝑅) ∧ (𝑥𝑌𝑦) ∈ (Base‘𝑅)) → ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅))
7236, 65, 70, 71syl3anc 1367 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅))
7372adantl 484 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅))
74 eqtr 2843 . . . . . . . . . . 11 ((𝑘 = 𝑥𝑥 = 𝑦) → 𝑘 = 𝑦)
7574ancoms 461 . . . . . . . . . 10 ((𝑥 = 𝑦𝑘 = 𝑥) → 𝑘 = 𝑦)
7675oveq2d 7174 . . . . . . . . 9 ((𝑥 = 𝑦𝑘 = 𝑥) → (𝑥𝑋𝑘) = (𝑥𝑋𝑦))
7776adantlr 713 . . . . . . . 8 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 = 𝑥) → (𝑥𝑋𝑘) = (𝑥𝑋𝑦))
78 oveq1 7165 . . . . . . . . 9 (𝑘 = 𝑥 → (𝑘𝑌𝑦) = (𝑥𝑌𝑦))
7978adantl 484 . . . . . . . 8 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 = 𝑥) → (𝑘𝑌𝑦) = (𝑥𝑌𝑦))
8077, 79oveq12d 7176 . . . . . . 7 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 = 𝑥) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)))
817, 25, 29, 31, 35, 58, 59, 73, 80gsumdifsnd 19083 . . . . . 6 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = ((𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))))(+g𝑅)((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦))))
82 simprl 769 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋𝐷)
8310, 9, 823jca 1124 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
84833ad2ant1 1129 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
8584ad2antlr 725 . . . . . . . . . . . . 13 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
8638ad2antlr 725 . . . . . . . . . . . . 13 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑥𝑁)
87 eldifi 4105 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑁 ∖ {𝑥}) → 𝑘𝑁)
8887adantl 484 . . . . . . . . . . . . 13 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑘𝑁)
89 eldifsni 4724 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑁 ∖ {𝑥}) → 𝑘𝑥)
9089necomd 3073 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑁 ∖ {𝑥}) → 𝑥𝑘)
9190adantl 484 . . . . . . . . . . . . 13 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑥𝑘)
921, 11, 12, 13dmatelnd 21107 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷) ∧ (𝑥𝑁𝑘𝑁𝑥𝑘)) → (𝑥𝑋𝑘) = 0 )
9385, 86, 88, 91, 92syl13anc 1368 . . . . . . . . . . . 12 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → (𝑥𝑋𝑘) = 0 )
9493oveq1d 7173 . . . . . . . . . . 11 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = ( 0 (.r𝑅)(𝑘𝑌𝑦)))
9536ad2antlr 725 . . . . . . . . . . . 12 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑅 ∈ Ring)
96 simplr3 1213 . . . . . . . . . . . . 13 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑦𝑁)
9753ad2antlr 725 . . . . . . . . . . . . 13 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑌 ∈ (Base‘𝐴))
9888, 96, 97, 55syl3anc 1367 . . . . . . . . . . . 12 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → (𝑘𝑌𝑦) ∈ (Base‘𝑅))
997, 8, 12ringlz 19339 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑘𝑌𝑦) ∈ (Base‘𝑅)) → ( 0 (.r𝑅)(𝑘𝑌𝑦)) = 0 )
10095, 98, 99syl2anc 586 . . . . . . . . . . 11 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → ( 0 (.r𝑅)(𝑘𝑌𝑦)) = 0 )
10194, 100eqtrd 2858 . . . . . . . . . 10 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = 0 )
102101mpteq2dva 5163 . . . . . . . . 9 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))) = (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ 0 ))
103102oveq2d 7174 . . . . . . . 8 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = (𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ 0 )))
104 diffi 8752 . . . . . . . . . . . . 13 (𝑁 ∈ Fin → (𝑁 ∖ {𝑥}) ∈ Fin)
105 ringmnd 19308 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
106104, 105anim12ci 615 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Mnd ∧ (𝑁 ∖ {𝑥}) ∈ Fin))
107106adantr 483 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑅 ∈ Mnd ∧ (𝑁 ∖ {𝑥}) ∈ Fin))
1081073ad2ant1 1129 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑅 ∈ Mnd ∧ (𝑁 ∖ {𝑥}) ∈ Fin))
109108adantl 484 . . . . . . . . 9 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 ∈ Mnd ∧ (𝑁 ∖ {𝑥}) ∈ Fin))
11012gsumz 18002 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ (𝑁 ∖ {𝑥}) ∈ Fin) → (𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ 0 )) = 0 )
111109, 110syl 17 . . . . . . . 8 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ 0 )) = 0 )
112103, 111eqtrd 2858 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = 0 )
113112oveq1d 7173 . . . . . 6 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → ((𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))))(+g𝑅)((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦))) = ( 0 (+g𝑅)((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦))))
114105ad2antlr 725 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑅 ∈ Mnd)
1151143ad2ant1 1129 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑅 ∈ Mnd)
11638, 60, 53, 69syl3anc 1367 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑌𝑦) ∈ (Base‘𝑅))
11736, 65, 116, 71syl3anc 1367 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅))
118115, 117jca 514 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑅 ∈ Mnd ∧ ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅)))
119118adantl 484 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 ∈ Mnd ∧ ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅)))
1207, 25, 12mndlid 17933 . . . . . . 7 ((𝑅 ∈ Mnd ∧ ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅)) → ( 0 (+g𝑅)((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦))) = ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)))
121119, 120syl 17 . . . . . 6 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → ( 0 (+g𝑅)((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦))) = ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)))
12281, 113, 1213eqtrd 2862 . . . . 5 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)))
123 iftrue 4475 . . . . . 6 (𝑥 = 𝑦 → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ) = ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)))
124123adantr 483 . . . . 5 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ) = ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)))
125122, 124eqtr4d 2861 . . . 4 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))
126 simprr 771 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌𝐷)
12710, 9, 1263jca 1124 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
1281273ad2ant1 1129 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
129128ad2antlr 725 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
130129adantl 484 . . . . . . . . . . 11 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
131 simprr 771 . . . . . . . . . . 11 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → 𝑘𝑁)
132 simplr3 1213 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑦𝑁)
133132adantl 484 . . . . . . . . . . 11 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → 𝑦𝑁)
134 df-ne 3019 . . . . . . . . . . . . . . 15 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
135 neeq1 3080 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (𝑥𝑦𝑘𝑦))
136135biimpcd 251 . . . . . . . . . . . . . . 15 (𝑥𝑦 → (𝑥 = 𝑘𝑘𝑦))
137134, 136sylbir 237 . . . . . . . . . . . . . 14 𝑥 = 𝑦 → (𝑥 = 𝑘𝑘𝑦))
138137adantr 483 . . . . . . . . . . . . 13 ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑥 = 𝑘𝑘𝑦))
139138adantr 483 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑥 = 𝑘𝑘𝑦))
140139impcom 410 . . . . . . . . . . 11 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → 𝑘𝑦)
1411, 11, 12, 13dmatelnd 21107 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷) ∧ (𝑘𝑁𝑦𝑁𝑘𝑦)) → (𝑘𝑌𝑦) = 0 )
142130, 131, 133, 140, 141syl13anc 1368 . . . . . . . . . 10 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → (𝑘𝑌𝑦) = 0 )
143142oveq2d 7174 . . . . . . . . 9 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = ((𝑥𝑋𝑘)(.r𝑅) 0 ))
14436ad2antlr 725 . . . . . . . . . . 11 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
14538ad2antlr 725 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑥𝑁)
146 simpr 487 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑘𝑁)
14763ad2antlr 725 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑋 ∈ (Base‘𝐴))
148145, 146, 147, 47syl3anc 1367 . . . . . . . . . . 11 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑥𝑋𝑘) ∈ (Base‘𝑅))
1497, 8, 12ringrz 19340 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑥𝑋𝑘) ∈ (Base‘𝑅)) → ((𝑥𝑋𝑘)(.r𝑅) 0 ) = 0 )
150144, 148, 149syl2anc 586 . . . . . . . . . 10 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → ((𝑥𝑋𝑘)(.r𝑅) 0 ) = 0 )
151150adantl 484 . . . . . . . . 9 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → ((𝑥𝑋𝑘)(.r𝑅) 0 ) = 0 )
152143, 151eqtrd 2858 . . . . . . . 8 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = 0 )
15384ad2antlr 725 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
154153adantl 484 . . . . . . . . . . 11 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
155145adantl 484 . . . . . . . . . . 11 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → 𝑥𝑁)
156 simprr 771 . . . . . . . . . . 11 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → 𝑘𝑁)
157 neqne 3026 . . . . . . . . . . . 12 𝑥 = 𝑘𝑥𝑘)
158157adantr 483 . . . . . . . . . . 11 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → 𝑥𝑘)
159154, 155, 156, 158, 92syl13anc 1368 . . . . . . . . . 10 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → (𝑥𝑋𝑘) = 0 )
160159oveq1d 7173 . . . . . . . . 9 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = ( 0 (.r𝑅)(𝑘𝑌𝑦)))
16168ad2antlr 725 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑌 ∈ (Base‘𝐴))
162146, 132, 161, 55syl3anc 1367 . . . . . . . . . . 11 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑘𝑌𝑦) ∈ (Base‘𝑅))
163144, 162, 99syl2anc 586 . . . . . . . . . 10 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → ( 0 (.r𝑅)(𝑘𝑌𝑦)) = 0 )
164163adantl 484 . . . . . . . . 9 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → ( 0 (.r𝑅)(𝑘𝑌𝑦)) = 0 )
165160, 164eqtrd 2858 . . . . . . . 8 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = 0 )
166152, 165pm2.61ian 810 . . . . . . 7 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = 0 )
167166mpteq2dva 5163 . . . . . 6 ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))) = (𝑘𝑁0 ))
168167oveq2d 7174 . . . . 5 ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = (𝑅 Σg (𝑘𝑁0 )))
169105anim2i 618 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Mnd))
170169ancomd 464 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin))
17112gsumz 18002 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin) → (𝑅 Σg (𝑘𝑁0 )) = 0 )
172170, 171syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 Σg (𝑘𝑁0 )) = 0 )
173172adantr 483 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑅 Σg (𝑘𝑁0 )) = 0 )
1741733ad2ant1 1129 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑅 Σg (𝑘𝑁0 )) = 0 )
175174adantl 484 . . . . 5 ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘𝑁0 )) = 0 )
176 iffalse 4478 . . . . . . 7 𝑥 = 𝑦 → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ) = 0 )
177176eqcomd 2829 . . . . . 6 𝑥 = 𝑦0 = if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))
178177adantr 483 . . . . 5 ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → 0 = if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))
179168, 175, 1783eqtrd 2862 . . . 4 ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))
180125, 179pm2.61ian 810 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))
181180mpoeq3dva 7233 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))))) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 )))
1826, 24, 1813eqtrd 2862 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(.r𝐴)𝑌) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  Vcvv 3496  cdif 3935  ifcif 4469  {csn 4569  cotp 4577  cmpt 5148   × cxp 5555  cfv 6357  (class class class)co 7158  cmpo 7160  m cmap 8408  Fincfn 8511  Basecbs 16485  +gcplusg 16567  .rcmulr 16568  0gc0g 16715   Σg cgsu 16716  Mndcmnd 17913  CMndccmn 18908  Ringcrg 19299   maMul cmmul 20996   Mat cmat 21018   DMat cdmat 21099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-ot 4578  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-hom 16591  df-cco 16592  df-0g 16717  df-gsum 16718  df-prds 16723  df-pws 16725  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-sra 19946  df-rgmod 19947  df-dsmm 20878  df-frlm 20893  df-mamu 20997  df-mat 21019  df-dmat 21101
This theorem is referenced by:  dmatmulcl  21111  dmatcrng  21113  scmatscmiddistr  21119  scmatcrng  21132
  Copyright terms: Public domain W3C validator