MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatmul Structured version   Visualization version   GIF version

Theorem dmatmul 22405
Description: The product of two diagonal matrices. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatid.a 𝐴 = (𝑁 Mat 𝑅)
dmatid.b 𝐵 = (Base‘𝐴)
dmatid.0 0 = (0g𝑅)
dmatid.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatmul (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(.r𝐴)𝑌) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 )))
Distinct variable groups:   𝑥,𝐷,𝑦   𝑥,𝑁,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem dmatmul
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dmatid.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2730 . . . . . 6 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
31, 2matmulr 22346 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
43adantr 480 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
54eqcomd 2736 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (.r𝐴) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
65oveqd 7358 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(.r𝐴)𝑌) = (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌))
7 eqid 2730 . . 3 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2730 . . 3 (.r𝑅) = (.r𝑅)
9 simplr 768 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑅 ∈ Ring)
10 simpll 766 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑁 ∈ Fin)
11 dmatid.b . . . . . . 7 𝐵 = (Base‘𝐴)
12 dmatid.0 . . . . . . 7 0 = (0g𝑅)
13 dmatid.d . . . . . . 7 𝐷 = (𝑁 DMat 𝑅)
141, 11, 12, 13dmatmat 22402 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷𝑋𝐵))
1514imp 406 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋𝐷) → 𝑋𝐵)
161, 7, 11matbas2i 22330 . . . . 5 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
1715, 16syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋𝐷) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
1817adantrr 717 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
191, 11, 12, 13dmatmat 22402 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝐷𝑌𝐵))
2019imp 406 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐷) → 𝑌𝐵)
211, 7, 11matbas2i 22330 . . . . 5 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
2220, 21syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐷) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
2322adantrl 716 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
242, 7, 8, 9, 10, 10, 10, 18, 23mamuval 22301 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))))))
25 eqid 2730 . . . . . . 7 (+g𝑅) = (+g𝑅)
26 ringcmn 20193 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
2726ad2antlr 727 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑅 ∈ CMnd)
28273ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑅 ∈ CMnd)
2928adantl 481 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → 𝑅 ∈ CMnd)
30103ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑁 ∈ Fin)
3130adantl 481 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → 𝑁 ∈ Fin)
32 eqid 2730 . . . . . . . 8 (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))) = (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))
33 ovexd 7376 . . . . . . . 8 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) ∈ V)
34 fvexd 6832 . . . . . . . 8 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (0g𝑅) ∈ V)
3532, 31, 33, 34fsuppmptdm 9255 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))) finSupp (0g𝑅))
3693ad2ant1 1133 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑅 ∈ Ring)
3736ad2antlr 727 . . . . . . . 8 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
38 simp2 1137 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑥𝑁)
3938ad2antlr 727 . . . . . . . . 9 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑥𝑁)
40 simpr 484 . . . . . . . . 9 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑘𝑁)
41 eqid 2730 . . . . . . . . . . . . . 14 (Base‘𝐴) = (Base‘𝐴)
421, 41, 12, 13dmatmat 22402 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷𝑋 ∈ (Base‘𝐴)))
4342imp 406 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋𝐷) → 𝑋 ∈ (Base‘𝐴))
4443adantrr 717 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋 ∈ (Base‘𝐴))
45443ad2ant1 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑋 ∈ (Base‘𝐴))
4645ad2antlr 727 . . . . . . . . 9 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑋 ∈ (Base‘𝐴))
471, 7matecl 22333 . . . . . . . . 9 ((𝑥𝑁𝑘𝑁𝑋 ∈ (Base‘𝐴)) → (𝑥𝑋𝑘) ∈ (Base‘𝑅))
4839, 40, 46, 47syl3anc 1373 . . . . . . . 8 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑥𝑋𝑘) ∈ (Base‘𝑅))
49 simplr3 1218 . . . . . . . . 9 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑦𝑁)
501, 41, 12, 13dmatmat 22402 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝐷𝑌 ∈ (Base‘𝐴)))
5150imp 406 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐷) → 𝑌 ∈ (Base‘𝐴))
5251adantrl 716 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌 ∈ (Base‘𝐴))
53523ad2ant1 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑌 ∈ (Base‘𝐴))
5453ad2antlr 727 . . . . . . . . 9 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑌 ∈ (Base‘𝐴))
551, 7matecl 22333 . . . . . . . . 9 ((𝑘𝑁𝑦𝑁𝑌 ∈ (Base‘𝐴)) → (𝑘𝑌𝑦) ∈ (Base‘𝑅))
5640, 49, 54, 55syl3anc 1373 . . . . . . . 8 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑘𝑌𝑦) ∈ (Base‘𝑅))
577, 8ringcl 20161 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥𝑋𝑘) ∈ (Base‘𝑅) ∧ (𝑘𝑌𝑦) ∈ (Base‘𝑅)) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) ∈ (Base‘𝑅))
5837, 48, 56, 57syl3anc 1373 . . . . . . 7 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) ∈ (Base‘𝑅))
5938adantl 481 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
60 simp3 1138 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑦𝑁)
6115adantrr 717 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋𝐵)
6261, 11eleqtrdi 2839 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋 ∈ (Base‘𝐴))
63623ad2ant1 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑋 ∈ (Base‘𝐴))
641, 7matecl 22333 . . . . . . . . . 10 ((𝑥𝑁𝑦𝑁𝑋 ∈ (Base‘𝐴)) → (𝑥𝑋𝑦) ∈ (Base‘𝑅))
6538, 60, 63, 64syl3anc 1373 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑋𝑦) ∈ (Base‘𝑅))
6650a1d 25 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷 → (𝑌𝐷𝑌 ∈ (Base‘𝐴))))
6766imp32 418 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌 ∈ (Base‘𝐴))
68673ad2ant1 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑌 ∈ (Base‘𝐴))
691, 7matecl 22333 . . . . . . . . . 10 ((𝑥𝑁𝑦𝑁𝑌 ∈ (Base‘𝐴)) → (𝑥𝑌𝑦) ∈ (Base‘𝑅))
7038, 60, 68, 69syl3anc 1373 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑌𝑦) ∈ (Base‘𝑅))
717, 8ringcl 20161 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝑋𝑦) ∈ (Base‘𝑅) ∧ (𝑥𝑌𝑦) ∈ (Base‘𝑅)) → ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅))
7236, 65, 70, 71syl3anc 1373 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅))
7372adantl 481 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅))
74 eqtr 2750 . . . . . . . . . . 11 ((𝑘 = 𝑥𝑥 = 𝑦) → 𝑘 = 𝑦)
7574ancoms 458 . . . . . . . . . 10 ((𝑥 = 𝑦𝑘 = 𝑥) → 𝑘 = 𝑦)
7675oveq2d 7357 . . . . . . . . 9 ((𝑥 = 𝑦𝑘 = 𝑥) → (𝑥𝑋𝑘) = (𝑥𝑋𝑦))
7776adantlr 715 . . . . . . . 8 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 = 𝑥) → (𝑥𝑋𝑘) = (𝑥𝑋𝑦))
78 oveq1 7348 . . . . . . . . 9 (𝑘 = 𝑥 → (𝑘𝑌𝑦) = (𝑥𝑌𝑦))
7978adantl 481 . . . . . . . 8 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 = 𝑥) → (𝑘𝑌𝑦) = (𝑥𝑌𝑦))
8077, 79oveq12d 7359 . . . . . . 7 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 = 𝑥) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)))
817, 25, 29, 31, 35, 58, 59, 73, 80gsumdifsnd 19866 . . . . . 6 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = ((𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))))(+g𝑅)((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦))))
82 simprl 770 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋𝐷)
8310, 9, 823jca 1128 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
84833ad2ant1 1133 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
8584ad2antlr 727 . . . . . . . . . . . . 13 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
8638ad2antlr 727 . . . . . . . . . . . . 13 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑥𝑁)
87 eldifi 4079 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑁 ∖ {𝑥}) → 𝑘𝑁)
8887adantl 481 . . . . . . . . . . . . 13 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑘𝑁)
89 eldifsni 4740 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑁 ∖ {𝑥}) → 𝑘𝑥)
9089necomd 2981 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑁 ∖ {𝑥}) → 𝑥𝑘)
9190adantl 481 . . . . . . . . . . . . 13 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑥𝑘)
921, 11, 12, 13dmatelnd 22404 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷) ∧ (𝑥𝑁𝑘𝑁𝑥𝑘)) → (𝑥𝑋𝑘) = 0 )
9385, 86, 88, 91, 92syl13anc 1374 . . . . . . . . . . . 12 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → (𝑥𝑋𝑘) = 0 )
9493oveq1d 7356 . . . . . . . . . . 11 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = ( 0 (.r𝑅)(𝑘𝑌𝑦)))
9536ad2antlr 727 . . . . . . . . . . . 12 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑅 ∈ Ring)
96 simplr3 1218 . . . . . . . . . . . . 13 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑦𝑁)
9753ad2antlr 727 . . . . . . . . . . . . 13 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑌 ∈ (Base‘𝐴))
9888, 96, 97, 55syl3anc 1373 . . . . . . . . . . . 12 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → (𝑘𝑌𝑦) ∈ (Base‘𝑅))
997, 8, 12ringlz 20204 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑘𝑌𝑦) ∈ (Base‘𝑅)) → ( 0 (.r𝑅)(𝑘𝑌𝑦)) = 0 )
10095, 98, 99syl2anc 584 . . . . . . . . . . 11 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → ( 0 (.r𝑅)(𝑘𝑌𝑦)) = 0 )
10194, 100eqtrd 2765 . . . . . . . . . 10 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = 0 )
102101mpteq2dva 5182 . . . . . . . . 9 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))) = (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ 0 ))
103102oveq2d 7357 . . . . . . . 8 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = (𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ 0 )))
104 diffi 9079 . . . . . . . . . . . . 13 (𝑁 ∈ Fin → (𝑁 ∖ {𝑥}) ∈ Fin)
105 ringmnd 20154 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
106104, 105anim12ci 614 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Mnd ∧ (𝑁 ∖ {𝑥}) ∈ Fin))
107106adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑅 ∈ Mnd ∧ (𝑁 ∖ {𝑥}) ∈ Fin))
1081073ad2ant1 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑅 ∈ Mnd ∧ (𝑁 ∖ {𝑥}) ∈ Fin))
109108adantl 481 . . . . . . . . 9 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 ∈ Mnd ∧ (𝑁 ∖ {𝑥}) ∈ Fin))
11012gsumz 18736 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ (𝑁 ∖ {𝑥}) ∈ Fin) → (𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ 0 )) = 0 )
111109, 110syl 17 . . . . . . . 8 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ 0 )) = 0 )
112103, 111eqtrd 2765 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = 0 )
113112oveq1d 7356 . . . . . 6 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → ((𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))))(+g𝑅)((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦))) = ( 0 (+g𝑅)((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦))))
114105ad2antlr 727 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑅 ∈ Mnd)
1151143ad2ant1 1133 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑅 ∈ Mnd)
11638, 60, 53, 69syl3anc 1373 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑌𝑦) ∈ (Base‘𝑅))
11736, 65, 116, 71syl3anc 1373 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅))
118115, 117jca 511 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑅 ∈ Mnd ∧ ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅)))
119118adantl 481 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 ∈ Mnd ∧ ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅)))
1207, 25, 12mndlid 18654 . . . . . . 7 ((𝑅 ∈ Mnd ∧ ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅)) → ( 0 (+g𝑅)((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦))) = ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)))
121119, 120syl 17 . . . . . 6 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → ( 0 (+g𝑅)((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦))) = ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)))
12281, 113, 1213eqtrd 2769 . . . . 5 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)))
123 iftrue 4479 . . . . . 6 (𝑥 = 𝑦 → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ) = ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)))
124123adantr 480 . . . . 5 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ) = ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)))
125122, 124eqtr4d 2768 . . . 4 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))
126 simprr 772 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌𝐷)
12710, 9, 1263jca 1128 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
1281273ad2ant1 1133 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
129128ad2antlr 727 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
130129adantl 481 . . . . . . . . . . 11 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
131 simprr 772 . . . . . . . . . . 11 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → 𝑘𝑁)
132 simplr3 1218 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑦𝑁)
133132adantl 481 . . . . . . . . . . 11 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → 𝑦𝑁)
134 df-ne 2927 . . . . . . . . . . . . . . 15 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
135 neeq1 2988 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (𝑥𝑦𝑘𝑦))
136135biimpcd 249 . . . . . . . . . . . . . . 15 (𝑥𝑦 → (𝑥 = 𝑘𝑘𝑦))
137134, 136sylbir 235 . . . . . . . . . . . . . 14 𝑥 = 𝑦 → (𝑥 = 𝑘𝑘𝑦))
138137adantr 480 . . . . . . . . . . . . 13 ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑥 = 𝑘𝑘𝑦))
139138adantr 480 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑥 = 𝑘𝑘𝑦))
140139impcom 407 . . . . . . . . . . 11 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → 𝑘𝑦)
1411, 11, 12, 13dmatelnd 22404 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷) ∧ (𝑘𝑁𝑦𝑁𝑘𝑦)) → (𝑘𝑌𝑦) = 0 )
142130, 131, 133, 140, 141syl13anc 1374 . . . . . . . . . 10 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → (𝑘𝑌𝑦) = 0 )
143142oveq2d 7357 . . . . . . . . 9 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = ((𝑥𝑋𝑘)(.r𝑅) 0 ))
14436ad2antlr 727 . . . . . . . . . . 11 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
14538ad2antlr 727 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑥𝑁)
146 simpr 484 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑘𝑁)
14763ad2antlr 727 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑋 ∈ (Base‘𝐴))
148145, 146, 147, 47syl3anc 1373 . . . . . . . . . . 11 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑥𝑋𝑘) ∈ (Base‘𝑅))
1497, 8, 12ringrz 20205 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑥𝑋𝑘) ∈ (Base‘𝑅)) → ((𝑥𝑋𝑘)(.r𝑅) 0 ) = 0 )
150144, 148, 149syl2anc 584 . . . . . . . . . 10 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → ((𝑥𝑋𝑘)(.r𝑅) 0 ) = 0 )
151150adantl 481 . . . . . . . . 9 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → ((𝑥𝑋𝑘)(.r𝑅) 0 ) = 0 )
152143, 151eqtrd 2765 . . . . . . . 8 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = 0 )
15384ad2antlr 727 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
154153adantl 481 . . . . . . . . . . 11 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
155145adantl 481 . . . . . . . . . . 11 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → 𝑥𝑁)
156 simprr 772 . . . . . . . . . . 11 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → 𝑘𝑁)
157 neqne 2934 . . . . . . . . . . . 12 𝑥 = 𝑘𝑥𝑘)
158157adantr 480 . . . . . . . . . . 11 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → 𝑥𝑘)
159154, 155, 156, 158, 92syl13anc 1374 . . . . . . . . . 10 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → (𝑥𝑋𝑘) = 0 )
160159oveq1d 7356 . . . . . . . . 9 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = ( 0 (.r𝑅)(𝑘𝑌𝑦)))
16168ad2antlr 727 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑌 ∈ (Base‘𝐴))
162146, 132, 161, 55syl3anc 1373 . . . . . . . . . . 11 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑘𝑌𝑦) ∈ (Base‘𝑅))
163144, 162, 99syl2anc 584 . . . . . . . . . 10 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → ( 0 (.r𝑅)(𝑘𝑌𝑦)) = 0 )
164163adantl 481 . . . . . . . . 9 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → ( 0 (.r𝑅)(𝑘𝑌𝑦)) = 0 )
165160, 164eqtrd 2765 . . . . . . . 8 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = 0 )
166152, 165pm2.61ian 811 . . . . . . 7 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = 0 )
167166mpteq2dva 5182 . . . . . 6 ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))) = (𝑘𝑁0 ))
168167oveq2d 7357 . . . . 5 ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = (𝑅 Σg (𝑘𝑁0 )))
169105anim2i 617 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Mnd))
170169ancomd 461 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin))
17112gsumz 18736 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin) → (𝑅 Σg (𝑘𝑁0 )) = 0 )
172170, 171syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 Σg (𝑘𝑁0 )) = 0 )
173172adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑅 Σg (𝑘𝑁0 )) = 0 )
1741733ad2ant1 1133 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑅 Σg (𝑘𝑁0 )) = 0 )
175174adantl 481 . . . . 5 ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘𝑁0 )) = 0 )
176 iffalse 4482 . . . . . . 7 𝑥 = 𝑦 → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ) = 0 )
177176eqcomd 2736 . . . . . 6 𝑥 = 𝑦0 = if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))
178177adantr 480 . . . . 5 ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → 0 = if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))
179168, 175, 1783eqtrd 2769 . . . 4 ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))
180125, 179pm2.61ian 811 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))
181180mpoeq3dva 7418 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))))) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 )))
1826, 24, 1813eqtrd 2769 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(.r𝐴)𝑌) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  Vcvv 3434  cdif 3897  ifcif 4473  {csn 4574  cotp 4582  cmpt 5170   × cxp 5612  cfv 6477  (class class class)co 7341  cmpo 7343  m cmap 8745  Fincfn 8864  Basecbs 17112  +gcplusg 17153  .rcmulr 17154  0gc0g 17335   Σg cgsu 17336  Mndcmnd 18634  CMndccmn 19685  Ringcrg 20144   maMul cmmul 22298   Mat cmat 22315   DMat cdmat 22396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-ot 4583  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-fzo 13547  df-seq 13901  df-hash 14230  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-hom 17177  df-cco 17178  df-0g 17337  df-gsum 17338  df-prds 17343  df-pws 17345  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-grp 18841  df-minusg 18842  df-mulg 18973  df-cntz 19222  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-sra 21100  df-rgmod 21101  df-dsmm 21662  df-frlm 21677  df-mamu 22299  df-mat 22316  df-dmat 22398
This theorem is referenced by:  dmatmulcl  22408  dmatcrng  22410  scmatscmiddistr  22416  scmatcrng  22429
  Copyright terms: Public domain W3C validator