| Step | Hyp | Ref
| Expression |
| 1 | | dmatid.a |
. . . . . 6
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 2 | | eqid 2735 |
. . . . . 6
⊢ (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) |
| 3 | 1, 2 | matmulr 22376 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
| 4 | 3 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
| 5 | 4 | eqcomd 2741 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (.r‘𝐴) = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)) |
| 6 | 5 | oveqd 7422 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑋(.r‘𝐴)𝑌) = (𝑋(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑌)) |
| 7 | | eqid 2735 |
. . 3
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 8 | | eqid 2735 |
. . 3
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 9 | | simplr 768 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑅 ∈ Ring) |
| 10 | | simpll 766 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑁 ∈ Fin) |
| 11 | | dmatid.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐴) |
| 12 | | dmatid.0 |
. . . . . . 7
⊢ 0 =
(0g‘𝑅) |
| 13 | | dmatid.d |
. . . . . . 7
⊢ 𝐷 = (𝑁 DMat 𝑅) |
| 14 | 1, 11, 12, 13 | dmatmat 22432 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 ∈ 𝐷 → 𝑋 ∈ 𝐵)) |
| 15 | 14 | imp 406 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋 ∈ 𝐷) → 𝑋 ∈ 𝐵) |
| 16 | 1, 7, 11 | matbas2i 22360 |
. . . . 5
⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 17 | 15, 16 | syl 17 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋 ∈ 𝐷) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 18 | 17 | adantrr 717 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 19 | 1, 11, 12, 13 | dmatmat 22432 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌 ∈ 𝐷 → 𝑌 ∈ 𝐵)) |
| 20 | 19 | imp 406 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌 ∈ 𝐷) → 𝑌 ∈ 𝐵) |
| 21 | 1, 7, 11 | matbas2i 22360 |
. . . . 5
⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 22 | 20, 21 | syl 17 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌 ∈ 𝐷) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 23 | 22 | adantrl 716 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 24 | 2, 7, 8, 9, 10, 10, 10, 18, 23 | mamuval 22331 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑋(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑌) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦)))))) |
| 25 | | eqid 2735 |
. . . . . . 7
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 26 | | ringcmn 20242 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
| 27 | 26 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑅 ∈ CMnd) |
| 28 | 27 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑅 ∈ CMnd) |
| 29 | 28 | adantl 481 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → 𝑅 ∈ CMnd) |
| 30 | 10 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 31 | 30 | adantl 481 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → 𝑁 ∈ Fin) |
| 32 | | eqid 2735 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝑁 ↦ ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦))) = (𝑘 ∈ 𝑁 ↦ ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦))) |
| 33 | | ovexd 7440 |
. . . . . . . 8
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦)) ∈ V) |
| 34 | | fvexd 6891 |
. . . . . . . 8
⊢ ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (0g‘𝑅) ∈ V) |
| 35 | 32, 31, 33, 34 | fsuppmptdm 9388 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑘 ∈ 𝑁 ↦ ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦))) finSupp (0g‘𝑅)) |
| 36 | 9 | 3ad2ant1 1133 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 37 | 36 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 38 | | simp2 1137 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑥 ∈ 𝑁) |
| 39 | 38 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑥 ∈ 𝑁) |
| 40 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑘 ∈ 𝑁) |
| 41 | | eqid 2735 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝐴) =
(Base‘𝐴) |
| 42 | 1, 41, 12, 13 | dmatmat 22432 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 ∈ 𝐷 → 𝑋 ∈ (Base‘𝐴))) |
| 43 | 42 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋 ∈ 𝐷) → 𝑋 ∈ (Base‘𝐴)) |
| 44 | 43 | adantrr 717 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑋 ∈ (Base‘𝐴)) |
| 45 | 44 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑋 ∈ (Base‘𝐴)) |
| 46 | 45 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑋 ∈ (Base‘𝐴)) |
| 47 | 1, 7 | matecl 22363 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁 ∧ 𝑋 ∈ (Base‘𝐴)) → (𝑥𝑋𝑘) ∈ (Base‘𝑅)) |
| 48 | 39, 40, 46, 47 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → (𝑥𝑋𝑘) ∈ (Base‘𝑅)) |
| 49 | | simplr3 1218 |
. . . . . . . . 9
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑦 ∈ 𝑁) |
| 50 | 1, 41, 12, 13 | dmatmat 22432 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌 ∈ 𝐷 → 𝑌 ∈ (Base‘𝐴))) |
| 51 | 50 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌 ∈ 𝐷) → 𝑌 ∈ (Base‘𝐴)) |
| 52 | 51 | adantrl 716 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑌 ∈ (Base‘𝐴)) |
| 53 | 52 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑌 ∈ (Base‘𝐴)) |
| 54 | 53 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑌 ∈ (Base‘𝐴)) |
| 55 | 1, 7 | matecl 22363 |
. . . . . . . . 9
⊢ ((𝑘 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ∧ 𝑌 ∈ (Base‘𝐴)) → (𝑘𝑌𝑦) ∈ (Base‘𝑅)) |
| 56 | 40, 49, 54, 55 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → (𝑘𝑌𝑦) ∈ (Base‘𝑅)) |
| 57 | 7, 8 | ringcl 20210 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑥𝑋𝑘) ∈ (Base‘𝑅) ∧ (𝑘𝑌𝑦) ∈ (Base‘𝑅)) → ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦)) ∈ (Base‘𝑅)) |
| 58 | 37, 48, 56, 57 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦)) ∈ (Base‘𝑅)) |
| 59 | 38 | adantl 481 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → 𝑥 ∈ 𝑁) |
| 60 | | simp3 1138 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑦 ∈ 𝑁) |
| 61 | 15 | adantrr 717 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑋 ∈ 𝐵) |
| 62 | 61, 11 | eleqtrdi 2844 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑋 ∈ (Base‘𝐴)) |
| 63 | 62 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑋 ∈ (Base‘𝐴)) |
| 64 | 1, 7 | matecl 22363 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ∧ 𝑋 ∈ (Base‘𝐴)) → (𝑥𝑋𝑦) ∈ (Base‘𝑅)) |
| 65 | 38, 60, 63, 64 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑋𝑦) ∈ (Base‘𝑅)) |
| 66 | 50 | a1d 25 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 ∈ 𝐷 → (𝑌 ∈ 𝐷 → 𝑌 ∈ (Base‘𝐴)))) |
| 67 | 66 | imp32 418 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑌 ∈ (Base‘𝐴)) |
| 68 | 67 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑌 ∈ (Base‘𝐴)) |
| 69 | 1, 7 | matecl 22363 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ∧ 𝑌 ∈ (Base‘𝐴)) → (𝑥𝑌𝑦) ∈ (Base‘𝑅)) |
| 70 | 38, 60, 68, 69 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑌𝑦) ∈ (Base‘𝑅)) |
| 71 | 7, 8 | ringcl 20210 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑥𝑋𝑦) ∈ (Base‘𝑅) ∧ (𝑥𝑌𝑦) ∈ (Base‘𝑅)) → ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅)) |
| 72 | 36, 65, 70, 71 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅)) |
| 73 | 72 | adantl 481 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅)) |
| 74 | | eqtr 2755 |
. . . . . . . . . . 11
⊢ ((𝑘 = 𝑥 ∧ 𝑥 = 𝑦) → 𝑘 = 𝑦) |
| 75 | 74 | ancoms 458 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑦 ∧ 𝑘 = 𝑥) → 𝑘 = 𝑦) |
| 76 | 75 | oveq2d 7421 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑦 ∧ 𝑘 = 𝑥) → (𝑥𝑋𝑘) = (𝑥𝑋𝑦)) |
| 77 | 76 | adantlr 715 |
. . . . . . . 8
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 = 𝑥) → (𝑥𝑋𝑘) = (𝑥𝑋𝑦)) |
| 78 | | oveq1 7412 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → (𝑘𝑌𝑦) = (𝑥𝑌𝑦)) |
| 79 | 78 | adantl 481 |
. . . . . . . 8
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 = 𝑥) → (𝑘𝑌𝑦) = (𝑥𝑌𝑦)) |
| 80 | 77, 79 | oveq12d 7423 |
. . . . . . 7
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 = 𝑥) → ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦)) = ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦))) |
| 81 | 7, 25, 29, 31, 35, 58, 59, 73, 80 | gsumdifsnd 19942 |
. . . . . 6
⊢ ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦)))) = ((𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦))))(+g‘𝑅)((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)))) |
| 82 | | simprl 770 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑋 ∈ 𝐷) |
| 83 | 10, 9, 82 | 3jca 1128 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐷)) |
| 84 | 83 | 3ad2ant1 1133 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐷)) |
| 85 | 84 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐷)) |
| 86 | 38 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑥 ∈ 𝑁) |
| 87 | | eldifi 4106 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (𝑁 ∖ {𝑥}) → 𝑘 ∈ 𝑁) |
| 88 | 87 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑘 ∈ 𝑁) |
| 89 | | eldifsni 4766 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝑁 ∖ {𝑥}) → 𝑘 ≠ 𝑥) |
| 90 | 89 | necomd 2987 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (𝑁 ∖ {𝑥}) → 𝑥 ≠ 𝑘) |
| 91 | 90 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑥 ≠ 𝑘) |
| 92 | 1, 11, 12, 13 | dmatelnd 22434 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐷) ∧ (𝑥 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁 ∧ 𝑥 ≠ 𝑘)) → (𝑥𝑋𝑘) = 0 ) |
| 93 | 85, 86, 88, 91, 92 | syl13anc 1374 |
. . . . . . . . . . . 12
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → (𝑥𝑋𝑘) = 0 ) |
| 94 | 93 | oveq1d 7420 |
. . . . . . . . . . 11
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦)) = ( 0 (.r‘𝑅)(𝑘𝑌𝑦))) |
| 95 | 36 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑅 ∈ Ring) |
| 96 | | simplr3 1218 |
. . . . . . . . . . . . 13
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑦 ∈ 𝑁) |
| 97 | 53 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑌 ∈ (Base‘𝐴)) |
| 98 | 88, 96, 97, 55 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → (𝑘𝑌𝑦) ∈ (Base‘𝑅)) |
| 99 | 7, 8, 12 | ringlz 20253 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ (𝑘𝑌𝑦) ∈ (Base‘𝑅)) → ( 0 (.r‘𝑅)(𝑘𝑌𝑦)) = 0 ) |
| 100 | 95, 98, 99 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → ( 0 (.r‘𝑅)(𝑘𝑌𝑦)) = 0 ) |
| 101 | 94, 100 | eqtrd 2770 |
. . . . . . . . . 10
⊢ (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦)) = 0 ) |
| 102 | 101 | mpteq2dva 5214 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦))) = (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ 0 )) |
| 103 | 102 | oveq2d 7421 |
. . . . . . . 8
⊢ ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦)))) = (𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ 0 ))) |
| 104 | | diffi 9189 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝑥}) ∈ Fin) |
| 105 | | ringmnd 20203 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 106 | 104, 105 | anim12ci 614 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Mnd ∧ (𝑁 ∖ {𝑥}) ∈ Fin)) |
| 107 | 106 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑅 ∈ Mnd ∧ (𝑁 ∖ {𝑥}) ∈ Fin)) |
| 108 | 107 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑅 ∈ Mnd ∧ (𝑁 ∖ {𝑥}) ∈ Fin)) |
| 109 | 108 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑅 ∈ Mnd ∧ (𝑁 ∖ {𝑥}) ∈ Fin)) |
| 110 | 12 | gsumz 18814 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Mnd ∧ (𝑁 ∖ {𝑥}) ∈ Fin) → (𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ 0 )) = 0 ) |
| 111 | 109, 110 | syl 17 |
. . . . . . . 8
⊢ ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ 0 )) = 0 ) |
| 112 | 103, 111 | eqtrd 2770 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦)))) = 0 ) |
| 113 | 112 | oveq1d 7420 |
. . . . . 6
⊢ ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → ((𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦))))(+g‘𝑅)((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦))) = ( 0 (+g‘𝑅)((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)))) |
| 114 | 105 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑅 ∈ Mnd) |
| 115 | 114 | 3ad2ant1 1133 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑅 ∈ Mnd) |
| 116 | 38, 60, 53, 69 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑌𝑦) ∈ (Base‘𝑅)) |
| 117 | 36, 65, 116, 71 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅)) |
| 118 | 115, 117 | jca 511 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑅 ∈ Mnd ∧ ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅))) |
| 119 | 118 | adantl 481 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑅 ∈ Mnd ∧ ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅))) |
| 120 | 7, 25, 12 | mndlid 18732 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅)) → ( 0 (+g‘𝑅)((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦))) = ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦))) |
| 121 | 119, 120 | syl 17 |
. . . . . 6
⊢ ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → ( 0 (+g‘𝑅)((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦))) = ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦))) |
| 122 | 81, 113, 121 | 3eqtrd 2774 |
. . . . 5
⊢ ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦)))) = ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦))) |
| 123 | | iftrue 4506 |
. . . . . 6
⊢ (𝑥 = 𝑦 → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ) = ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦))) |
| 124 | 123 | adantr 480 |
. . . . 5
⊢ ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ) = ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦))) |
| 125 | 122, 124 | eqtr4d 2773 |
. . . 4
⊢ ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦)))) = if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) |
| 126 | | simprr 772 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → 𝑌 ∈ 𝐷) |
| 127 | 10, 9, 126 | 3jca 1128 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐷)) |
| 128 | 127 | 3ad2ant1 1133 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐷)) |
| 129 | 128 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((¬
𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐷)) |
| 130 | 129 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐷)) |
| 131 | | simprr 772 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁)) → 𝑘 ∈ 𝑁) |
| 132 | | simplr3 1218 |
. . . . . . . . . . . 12
⊢ (((¬
𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑦 ∈ 𝑁) |
| 133 | 132 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁)) → 𝑦 ∈ 𝑁) |
| 134 | | df-ne 2933 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) |
| 135 | | neeq1 2994 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑘 → (𝑥 ≠ 𝑦 ↔ 𝑘 ≠ 𝑦)) |
| 136 | 135 | biimpcd 249 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ≠ 𝑦 → (𝑥 = 𝑘 → 𝑘 ≠ 𝑦)) |
| 137 | 134, 136 | sylbir 235 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑥 = 𝑦 → (𝑥 = 𝑘 → 𝑘 ≠ 𝑦)) |
| 138 | 137 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑥 = 𝑘 → 𝑘 ≠ 𝑦)) |
| 139 | 138 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((¬
𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → (𝑥 = 𝑘 → 𝑘 ≠ 𝑦)) |
| 140 | 139 | impcom 407 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁)) → 𝑘 ≠ 𝑦) |
| 141 | 1, 11, 12, 13 | dmatelnd 22434 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐷) ∧ (𝑘 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ∧ 𝑘 ≠ 𝑦)) → (𝑘𝑌𝑦) = 0 ) |
| 142 | 130, 131,
133, 140, 141 | syl13anc 1374 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁)) → (𝑘𝑌𝑦) = 0 ) |
| 143 | 142 | oveq2d 7421 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁)) → ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦)) = ((𝑥𝑋𝑘)(.r‘𝑅) 0 )) |
| 144 | 36 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((¬
𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 145 | 38 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((¬
𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑥 ∈ 𝑁) |
| 146 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((¬
𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑘 ∈ 𝑁) |
| 147 | 63 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((¬
𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑋 ∈ (Base‘𝐴)) |
| 148 | 145, 146,
147, 47 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((¬
𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → (𝑥𝑋𝑘) ∈ (Base‘𝑅)) |
| 149 | 7, 8, 12 | ringrz 20254 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ (𝑥𝑋𝑘) ∈ (Base‘𝑅)) → ((𝑥𝑋𝑘)(.r‘𝑅) 0 ) = 0 ) |
| 150 | 144, 148,
149 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((¬
𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → ((𝑥𝑋𝑘)(.r‘𝑅) 0 ) = 0 ) |
| 151 | 150 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁)) → ((𝑥𝑋𝑘)(.r‘𝑅) 0 ) = 0 ) |
| 152 | 143, 151 | eqtrd 2770 |
. . . . . . . 8
⊢ ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁)) → ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦)) = 0 ) |
| 153 | 84 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((¬
𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐷)) |
| 154 | 153 | adantl 481 |
. . . . . . . . . . 11
⊢ ((¬
𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐷)) |
| 155 | 145 | adantl 481 |
. . . . . . . . . . 11
⊢ ((¬
𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁)) → 𝑥 ∈ 𝑁) |
| 156 | | simprr 772 |
. . . . . . . . . . 11
⊢ ((¬
𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁)) → 𝑘 ∈ 𝑁) |
| 157 | | neqne 2940 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 = 𝑘 → 𝑥 ≠ 𝑘) |
| 158 | 157 | adantr 480 |
. . . . . . . . . . 11
⊢ ((¬
𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁)) → 𝑥 ≠ 𝑘) |
| 159 | 154, 155,
156, 158, 92 | syl13anc 1374 |
. . . . . . . . . 10
⊢ ((¬
𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁)) → (𝑥𝑋𝑘) = 0 ) |
| 160 | 159 | oveq1d 7420 |
. . . . . . . . 9
⊢ ((¬
𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁)) → ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦)) = ( 0 (.r‘𝑅)(𝑘𝑌𝑦))) |
| 161 | 68 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((¬
𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑌 ∈ (Base‘𝐴)) |
| 162 | 146, 132,
161, 55 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((¬
𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → (𝑘𝑌𝑦) ∈ (Base‘𝑅)) |
| 163 | 144, 162,
99 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((¬
𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → ( 0 (.r‘𝑅)(𝑘𝑌𝑦)) = 0 ) |
| 164 | 163 | adantl 481 |
. . . . . . . . 9
⊢ ((¬
𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁)) → ( 0 (.r‘𝑅)(𝑘𝑌𝑦)) = 0 ) |
| 165 | 160, 164 | eqtrd 2770 |
. . . . . . . 8
⊢ ((¬
𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁)) → ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦)) = 0 ) |
| 166 | 152, 165 | pm2.61ian 811 |
. . . . . . 7
⊢ (((¬
𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦)) = 0 ) |
| 167 | 166 | mpteq2dva 5214 |
. . . . . 6
⊢ ((¬
𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑘 ∈ 𝑁 ↦ ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦))) = (𝑘 ∈ 𝑁 ↦ 0 )) |
| 168 | 167 | oveq2d 7421 |
. . . . 5
⊢ ((¬
𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦)))) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ 0 ))) |
| 169 | 105 | anim2i 617 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Mnd)) |
| 170 | 169 | ancomd 461 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin)) |
| 171 | 12 | gsumz 18814 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin) → (𝑅 Σg
(𝑘 ∈ 𝑁 ↦ 0 )) = 0 ) |
| 172 | 170, 171 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 Σg
(𝑘 ∈ 𝑁 ↦ 0 )) = 0 ) |
| 173 | 172 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ 0 )) = 0 ) |
| 174 | 173 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ 0 )) = 0 ) |
| 175 | 174 | adantl 481 |
. . . . 5
⊢ ((¬
𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ 0 )) = 0 ) |
| 176 | | iffalse 4509 |
. . . . . . 7
⊢ (¬
𝑥 = 𝑦 → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ) = 0 ) |
| 177 | 176 | eqcomd 2741 |
. . . . . 6
⊢ (¬
𝑥 = 𝑦 → 0 = if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) |
| 178 | 177 | adantr 480 |
. . . . 5
⊢ ((¬
𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → 0 = if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) |
| 179 | 168, 175,
178 | 3eqtrd 2774 |
. . . 4
⊢ ((¬
𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦)))) = if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) |
| 180 | 125, 179 | pm2.61ian 811 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦)))) = if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 )) |
| 181 | 180 | mpoeq3dva 7484 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑥𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑦))))) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))) |
| 182 | 6, 24, 181 | 3eqtrd 2774 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) → (𝑋(.r‘𝐴)𝑌) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r‘𝑅)(𝑥𝑌𝑦)), 0 ))) |