MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatmul Structured version   Visualization version   GIF version

Theorem dmatmul 21883
Description: The product of two diagonal matrices. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatid.a 𝐴 = (𝑁 Mat 𝑅)
dmatid.b 𝐵 = (Base‘𝐴)
dmatid.0 0 = (0g𝑅)
dmatid.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatmul (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(.r𝐴)𝑌) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 )))
Distinct variable groups:   𝑥,𝐷,𝑦   𝑥,𝑁,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem dmatmul
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dmatid.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2731 . . . . . 6 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
31, 2matmulr 21824 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
43adantr 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
54eqcomd 2737 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (.r𝐴) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
65oveqd 7379 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(.r𝐴)𝑌) = (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌))
7 eqid 2731 . . 3 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2731 . . 3 (.r𝑅) = (.r𝑅)
9 simplr 767 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑅 ∈ Ring)
10 simpll 765 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑁 ∈ Fin)
11 dmatid.b . . . . . . 7 𝐵 = (Base‘𝐴)
12 dmatid.0 . . . . . . 7 0 = (0g𝑅)
13 dmatid.d . . . . . . 7 𝐷 = (𝑁 DMat 𝑅)
141, 11, 12, 13dmatmat 21880 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷𝑋𝐵))
1514imp 407 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋𝐷) → 𝑋𝐵)
161, 7, 11matbas2i 21808 . . . . 5 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
1715, 16syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋𝐷) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
1817adantrr 715 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
191, 11, 12, 13dmatmat 21880 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝐷𝑌𝐵))
2019imp 407 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐷) → 𝑌𝐵)
211, 7, 11matbas2i 21808 . . . . 5 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
2220, 21syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐷) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
2322adantrl 714 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
242, 7, 8, 9, 10, 10, 10, 18, 23mamuval 21772 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))))))
25 eqid 2731 . . . . . . 7 (+g𝑅) = (+g𝑅)
26 ringcmn 20017 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
2726ad2antlr 725 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑅 ∈ CMnd)
28273ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑅 ∈ CMnd)
2928adantl 482 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → 𝑅 ∈ CMnd)
30103ad2ant1 1133 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑁 ∈ Fin)
3130adantl 482 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → 𝑁 ∈ Fin)
32 eqid 2731 . . . . . . . 8 (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))) = (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))
33 ovexd 7397 . . . . . . . 8 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) ∈ V)
34 fvexd 6862 . . . . . . . 8 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (0g𝑅) ∈ V)
3532, 31, 33, 34fsuppmptdm 9325 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))) finSupp (0g𝑅))
3693ad2ant1 1133 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑅 ∈ Ring)
3736ad2antlr 725 . . . . . . . 8 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
38 simp2 1137 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑥𝑁)
3938ad2antlr 725 . . . . . . . . 9 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑥𝑁)
40 simpr 485 . . . . . . . . 9 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑘𝑁)
41 eqid 2731 . . . . . . . . . . . . . 14 (Base‘𝐴) = (Base‘𝐴)
421, 41, 12, 13dmatmat 21880 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷𝑋 ∈ (Base‘𝐴)))
4342imp 407 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑋𝐷) → 𝑋 ∈ (Base‘𝐴))
4443adantrr 715 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋 ∈ (Base‘𝐴))
45443ad2ant1 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑋 ∈ (Base‘𝐴))
4645ad2antlr 725 . . . . . . . . 9 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑋 ∈ (Base‘𝐴))
471, 7matecl 21811 . . . . . . . . 9 ((𝑥𝑁𝑘𝑁𝑋 ∈ (Base‘𝐴)) → (𝑥𝑋𝑘) ∈ (Base‘𝑅))
4839, 40, 46, 47syl3anc 1371 . . . . . . . 8 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑥𝑋𝑘) ∈ (Base‘𝑅))
49 simplr3 1217 . . . . . . . . 9 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑦𝑁)
501, 41, 12, 13dmatmat 21880 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝐷𝑌 ∈ (Base‘𝐴)))
5150imp 407 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐷) → 𝑌 ∈ (Base‘𝐴))
5251adantrl 714 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌 ∈ (Base‘𝐴))
53523ad2ant1 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑌 ∈ (Base‘𝐴))
5453ad2antlr 725 . . . . . . . . 9 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑌 ∈ (Base‘𝐴))
551, 7matecl 21811 . . . . . . . . 9 ((𝑘𝑁𝑦𝑁𝑌 ∈ (Base‘𝐴)) → (𝑘𝑌𝑦) ∈ (Base‘𝑅))
5640, 49, 54, 55syl3anc 1371 . . . . . . . 8 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑘𝑌𝑦) ∈ (Base‘𝑅))
577, 8ringcl 19995 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥𝑋𝑘) ∈ (Base‘𝑅) ∧ (𝑘𝑌𝑦) ∈ (Base‘𝑅)) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) ∈ (Base‘𝑅))
5837, 48, 56, 57syl3anc 1371 . . . . . . 7 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) ∈ (Base‘𝑅))
5938adantl 482 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
60 simp3 1138 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑦𝑁)
6115adantrr 715 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋𝐵)
6261, 11eleqtrdi 2842 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋 ∈ (Base‘𝐴))
63623ad2ant1 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑋 ∈ (Base‘𝐴))
641, 7matecl 21811 . . . . . . . . . 10 ((𝑥𝑁𝑦𝑁𝑋 ∈ (Base‘𝐴)) → (𝑥𝑋𝑦) ∈ (Base‘𝑅))
6538, 60, 63, 64syl3anc 1371 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑋𝑦) ∈ (Base‘𝑅))
6650a1d 25 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝐷 → (𝑌𝐷𝑌 ∈ (Base‘𝐴))))
6766imp32 419 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌 ∈ (Base‘𝐴))
68673ad2ant1 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑌 ∈ (Base‘𝐴))
691, 7matecl 21811 . . . . . . . . . 10 ((𝑥𝑁𝑦𝑁𝑌 ∈ (Base‘𝐴)) → (𝑥𝑌𝑦) ∈ (Base‘𝑅))
7038, 60, 68, 69syl3anc 1371 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑌𝑦) ∈ (Base‘𝑅))
717, 8ringcl 19995 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝑋𝑦) ∈ (Base‘𝑅) ∧ (𝑥𝑌𝑦) ∈ (Base‘𝑅)) → ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅))
7236, 65, 70, 71syl3anc 1371 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅))
7372adantl 482 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅))
74 eqtr 2754 . . . . . . . . . . 11 ((𝑘 = 𝑥𝑥 = 𝑦) → 𝑘 = 𝑦)
7574ancoms 459 . . . . . . . . . 10 ((𝑥 = 𝑦𝑘 = 𝑥) → 𝑘 = 𝑦)
7675oveq2d 7378 . . . . . . . . 9 ((𝑥 = 𝑦𝑘 = 𝑥) → (𝑥𝑋𝑘) = (𝑥𝑋𝑦))
7776adantlr 713 . . . . . . . 8 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 = 𝑥) → (𝑥𝑋𝑘) = (𝑥𝑋𝑦))
78 oveq1 7369 . . . . . . . . 9 (𝑘 = 𝑥 → (𝑘𝑌𝑦) = (𝑥𝑌𝑦))
7978adantl 482 . . . . . . . 8 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 = 𝑥) → (𝑘𝑌𝑦) = (𝑥𝑌𝑦))
8077, 79oveq12d 7380 . . . . . . 7 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 = 𝑥) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)))
817, 25, 29, 31, 35, 58, 59, 73, 80gsumdifsnd 19752 . . . . . 6 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = ((𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))))(+g𝑅)((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦))))
82 simprl 769 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑋𝐷)
8310, 9, 823jca 1128 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
84833ad2ant1 1133 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
8584ad2antlr 725 . . . . . . . . . . . . 13 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
8638ad2antlr 725 . . . . . . . . . . . . 13 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑥𝑁)
87 eldifi 4091 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑁 ∖ {𝑥}) → 𝑘𝑁)
8887adantl 482 . . . . . . . . . . . . 13 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑘𝑁)
89 eldifsni 4755 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑁 ∖ {𝑥}) → 𝑘𝑥)
9089necomd 2995 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑁 ∖ {𝑥}) → 𝑥𝑘)
9190adantl 482 . . . . . . . . . . . . 13 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑥𝑘)
921, 11, 12, 13dmatelnd 21882 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷) ∧ (𝑥𝑁𝑘𝑁𝑥𝑘)) → (𝑥𝑋𝑘) = 0 )
9385, 86, 88, 91, 92syl13anc 1372 . . . . . . . . . . . 12 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → (𝑥𝑋𝑘) = 0 )
9493oveq1d 7377 . . . . . . . . . . 11 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = ( 0 (.r𝑅)(𝑘𝑌𝑦)))
9536ad2antlr 725 . . . . . . . . . . . 12 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑅 ∈ Ring)
96 simplr3 1217 . . . . . . . . . . . . 13 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑦𝑁)
9753ad2antlr 725 . . . . . . . . . . . . 13 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → 𝑌 ∈ (Base‘𝐴))
9888, 96, 97, 55syl3anc 1371 . . . . . . . . . . . 12 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → (𝑘𝑌𝑦) ∈ (Base‘𝑅))
997, 8, 12ringlz 20025 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑘𝑌𝑦) ∈ (Base‘𝑅)) → ( 0 (.r𝑅)(𝑘𝑌𝑦)) = 0 )
10095, 98, 99syl2anc 584 . . . . . . . . . . 11 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → ( 0 (.r𝑅)(𝑘𝑌𝑦)) = 0 )
10194, 100eqtrd 2771 . . . . . . . . . 10 (((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘 ∈ (𝑁 ∖ {𝑥})) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = 0 )
102101mpteq2dva 5210 . . . . . . . . 9 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))) = (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ 0 ))
103102oveq2d 7378 . . . . . . . 8 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = (𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ 0 )))
104 diffi 9130 . . . . . . . . . . . . 13 (𝑁 ∈ Fin → (𝑁 ∖ {𝑥}) ∈ Fin)
105 ringmnd 19988 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
106104, 105anim12ci 614 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Mnd ∧ (𝑁 ∖ {𝑥}) ∈ Fin))
107106adantr 481 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑅 ∈ Mnd ∧ (𝑁 ∖ {𝑥}) ∈ Fin))
1081073ad2ant1 1133 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑅 ∈ Mnd ∧ (𝑁 ∖ {𝑥}) ∈ Fin))
109108adantl 482 . . . . . . . . 9 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 ∈ Mnd ∧ (𝑁 ∖ {𝑥}) ∈ Fin))
11012gsumz 18660 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ (𝑁 ∖ {𝑥}) ∈ Fin) → (𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ 0 )) = 0 )
111109, 110syl 17 . . . . . . . 8 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ 0 )) = 0 )
112103, 111eqtrd 2771 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = 0 )
113112oveq1d 7377 . . . . . 6 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → ((𝑅 Σg (𝑘 ∈ (𝑁 ∖ {𝑥}) ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))))(+g𝑅)((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦))) = ( 0 (+g𝑅)((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦))))
114105ad2antlr 725 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑅 ∈ Mnd)
1151143ad2ant1 1133 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → 𝑅 ∈ Mnd)
11638, 60, 53, 69syl3anc 1371 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑌𝑦) ∈ (Base‘𝑅))
11736, 65, 116, 71syl3anc 1371 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅))
118115, 117jca 512 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑅 ∈ Mnd ∧ ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅)))
119118adantl 482 . . . . . . 7 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 ∈ Mnd ∧ ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅)))
1207, 25, 12mndlid 18590 . . . . . . 7 ((𝑅 ∈ Mnd ∧ ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)) ∈ (Base‘𝑅)) → ( 0 (+g𝑅)((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦))) = ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)))
121119, 120syl 17 . . . . . 6 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → ( 0 (+g𝑅)((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦))) = ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)))
12281, 113, 1213eqtrd 2775 . . . . 5 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)))
123 iftrue 4497 . . . . . 6 (𝑥 = 𝑦 → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ) = ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)))
124123adantr 481 . . . . 5 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ) = ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)))
125122, 124eqtr4d 2774 . . . 4 ((𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))
126 simprr 771 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → 𝑌𝐷)
12710, 9, 1263jca 1128 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
1281273ad2ant1 1133 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
129128ad2antlr 725 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
130129adantl 482 . . . . . . . . . . 11 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷))
131 simprr 771 . . . . . . . . . . 11 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → 𝑘𝑁)
132 simplr3 1217 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑦𝑁)
133132adantl 482 . . . . . . . . . . 11 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → 𝑦𝑁)
134 df-ne 2940 . . . . . . . . . . . . . . 15 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
135 neeq1 3002 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (𝑥𝑦𝑘𝑦))
136135biimpcd 248 . . . . . . . . . . . . . . 15 (𝑥𝑦 → (𝑥 = 𝑘𝑘𝑦))
137134, 136sylbir 234 . . . . . . . . . . . . . 14 𝑥 = 𝑦 → (𝑥 = 𝑘𝑘𝑦))
138137adantr 481 . . . . . . . . . . . . 13 ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑥 = 𝑘𝑘𝑦))
139138adantr 481 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑥 = 𝑘𝑘𝑦))
140139impcom 408 . . . . . . . . . . 11 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → 𝑘𝑦)
1411, 11, 12, 13dmatelnd 21882 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑌𝐷) ∧ (𝑘𝑁𝑦𝑁𝑘𝑦)) → (𝑘𝑌𝑦) = 0 )
142130, 131, 133, 140, 141syl13anc 1372 . . . . . . . . . 10 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → (𝑘𝑌𝑦) = 0 )
143142oveq2d 7378 . . . . . . . . 9 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = ((𝑥𝑋𝑘)(.r𝑅) 0 ))
14436ad2antlr 725 . . . . . . . . . . 11 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
14538ad2antlr 725 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑥𝑁)
146 simpr 485 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑘𝑁)
14763ad2antlr 725 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑋 ∈ (Base‘𝐴))
148145, 146, 147, 47syl3anc 1371 . . . . . . . . . . 11 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑥𝑋𝑘) ∈ (Base‘𝑅))
1497, 8, 12ringrz 20026 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑥𝑋𝑘) ∈ (Base‘𝑅)) → ((𝑥𝑋𝑘)(.r𝑅) 0 ) = 0 )
150144, 148, 149syl2anc 584 . . . . . . . . . 10 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → ((𝑥𝑋𝑘)(.r𝑅) 0 ) = 0 )
151150adantl 482 . . . . . . . . 9 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → ((𝑥𝑋𝑘)(.r𝑅) 0 ) = 0 )
152143, 151eqtrd 2771 . . . . . . . 8 ((𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = 0 )
15384ad2antlr 725 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
154153adantl 482 . . . . . . . . . . 11 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋𝐷))
155145adantl 482 . . . . . . . . . . 11 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → 𝑥𝑁)
156 simprr 771 . . . . . . . . . . 11 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → 𝑘𝑁)
157 neqne 2947 . . . . . . . . . . . 12 𝑥 = 𝑘𝑥𝑘)
158157adantr 481 . . . . . . . . . . 11 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → 𝑥𝑘)
159154, 155, 156, 158, 92syl13anc 1372 . . . . . . . . . 10 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → (𝑥𝑋𝑘) = 0 )
160159oveq1d 7377 . . . . . . . . 9 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = ( 0 (.r𝑅)(𝑘𝑌𝑦)))
16168ad2antlr 725 . . . . . . . . . . . 12 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → 𝑌 ∈ (Base‘𝐴))
162146, 132, 161, 55syl3anc 1371 . . . . . . . . . . 11 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → (𝑘𝑌𝑦) ∈ (Base‘𝑅))
163144, 162, 99syl2anc 584 . . . . . . . . . 10 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → ( 0 (.r𝑅)(𝑘𝑌𝑦)) = 0 )
164163adantl 482 . . . . . . . . 9 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → ( 0 (.r𝑅)(𝑘𝑌𝑦)) = 0 )
165160, 164eqtrd 2771 . . . . . . . 8 ((¬ 𝑥 = 𝑘 ∧ ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁)) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = 0 )
166152, 165pm2.61ian 810 . . . . . . 7 (((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) ∧ 𝑘𝑁) → ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)) = 0 )
167166mpteq2dva 5210 . . . . . 6 ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))) = (𝑘𝑁0 ))
168167oveq2d 7378 . . . . 5 ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = (𝑅 Σg (𝑘𝑁0 )))
169105anim2i 617 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Mnd))
170169ancomd 462 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin))
17112gsumz 18660 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin) → (𝑅 Σg (𝑘𝑁0 )) = 0 )
172170, 171syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 Σg (𝑘𝑁0 )) = 0 )
173172adantr 481 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑅 Σg (𝑘𝑁0 )) = 0 )
1741733ad2ant1 1133 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑅 Σg (𝑘𝑁0 )) = 0 )
175174adantl 482 . . . . 5 ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘𝑁0 )) = 0 )
176 iffalse 4500 . . . . . . 7 𝑥 = 𝑦 → if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ) = 0 )
177176eqcomd 2737 . . . . . 6 𝑥 = 𝑦0 = if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))
178177adantr 481 . . . . 5 ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → 0 = if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))
179168, 175, 1783eqtrd 2775 . . . 4 ((¬ 𝑥 = 𝑦 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁)) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))
180125, 179pm2.61ian 810 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) ∧ 𝑥𝑁𝑦𝑁) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦)))) = if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 ))
181180mpoeq3dva 7439 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑥𝑋𝑘)(.r𝑅)(𝑘𝑌𝑦))))) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 )))
1826, 24, 1813eqtrd 2775 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐷𝑌𝐷)) → (𝑋(.r𝐴)𝑌) = (𝑥𝑁, 𝑦𝑁 ↦ if(𝑥 = 𝑦, ((𝑥𝑋𝑦)(.r𝑅)(𝑥𝑌𝑦)), 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  Vcvv 3446  cdif 3910  ifcif 4491  {csn 4591  cotp 4599  cmpt 5193   × cxp 5636  cfv 6501  (class class class)co 7362  cmpo 7364  m cmap 8772  Fincfn 8890  Basecbs 17094  +gcplusg 17147  .rcmulr 17148  0gc0g 17335   Σg cgsu 17336  Mndcmnd 18570  CMndccmn 19576  Ringcrg 19978   maMul cmmul 21769   Mat cmat 21791   DMat cdmat 21874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-ot 4600  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-map 8774  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-sup 9387  df-oi 9455  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12423  df-z 12509  df-dec 12628  df-uz 12773  df-fz 13435  df-fzo 13578  df-seq 13917  df-hash 14241  df-struct 17030  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-ress 17124  df-plusg 17160  df-mulr 17161  df-sca 17163  df-vsca 17164  df-ip 17165  df-tset 17166  df-ple 17167  df-ds 17169  df-hom 17171  df-cco 17172  df-0g 17337  df-gsum 17338  df-prds 17343  df-pws 17345  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-submnd 18616  df-grp 18765  df-minusg 18766  df-mulg 18887  df-cntz 19111  df-cmn 19578  df-abl 19579  df-mgp 19911  df-ur 19928  df-ring 19980  df-sra 20692  df-rgmod 20693  df-dsmm 21175  df-frlm 21190  df-mamu 21770  df-mat 21792  df-dmat 21876
This theorem is referenced by:  dmatmulcl  21886  dmatcrng  21888  scmatscmiddistr  21894  scmatcrng  21907
  Copyright terms: Public domain W3C validator