Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relexpnndm | Structured version Visualization version GIF version |
Description: The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
Ref | Expression |
---|---|
relexpnndm | ⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7221 | . . . . . 6 ⊢ (𝑛 = 1 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟1)) | |
2 | 1 | dmeqd 5774 | . . . . 5 ⊢ (𝑛 = 1 → dom (𝑅↑𝑟𝑛) = dom (𝑅↑𝑟1)) |
3 | 2 | sseq1d 3932 | . . . 4 ⊢ (𝑛 = 1 → (dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅↑𝑟1) ⊆ dom 𝑅)) |
4 | 3 | imbi2d 344 | . . 3 ⊢ (𝑛 = 1 → ((𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟1) ⊆ dom 𝑅))) |
5 | oveq2 7221 | . . . . . 6 ⊢ (𝑛 = 𝑚 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟𝑚)) | |
6 | 5 | dmeqd 5774 | . . . . 5 ⊢ (𝑛 = 𝑚 → dom (𝑅↑𝑟𝑛) = dom (𝑅↑𝑟𝑚)) |
7 | 6 | sseq1d 3932 | . . . 4 ⊢ (𝑛 = 𝑚 → (dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅↑𝑟𝑚) ⊆ dom 𝑅)) |
8 | 7 | imbi2d 344 | . . 3 ⊢ (𝑛 = 𝑚 → ((𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑚) ⊆ dom 𝑅))) |
9 | oveq2 7221 | . . . . . 6 ⊢ (𝑛 = (𝑚 + 1) → (𝑅↑𝑟𝑛) = (𝑅↑𝑟(𝑚 + 1))) | |
10 | 9 | dmeqd 5774 | . . . . 5 ⊢ (𝑛 = (𝑚 + 1) → dom (𝑅↑𝑟𝑛) = dom (𝑅↑𝑟(𝑚 + 1))) |
11 | 10 | sseq1d 3932 | . . . 4 ⊢ (𝑛 = (𝑚 + 1) → (dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅)) |
12 | 11 | imbi2d 344 | . . 3 ⊢ (𝑛 = (𝑚 + 1) → ((𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅))) |
13 | oveq2 7221 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟𝑁)) | |
14 | 13 | dmeqd 5774 | . . . . 5 ⊢ (𝑛 = 𝑁 → dom (𝑅↑𝑟𝑛) = dom (𝑅↑𝑟𝑁)) |
15 | 14 | sseq1d 3932 | . . . 4 ⊢ (𝑛 = 𝑁 → (dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅)) |
16 | 15 | imbi2d 344 | . . 3 ⊢ (𝑛 = 𝑁 → ((𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅))) |
17 | relexp1g 14589 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) | |
18 | 17 | dmeqd 5774 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟1) = dom 𝑅) |
19 | eqimss 3957 | . . . 4 ⊢ (dom (𝑅↑𝑟1) = dom 𝑅 → dom (𝑅↑𝑟1) ⊆ dom 𝑅) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟1) ⊆ dom 𝑅) |
21 | relexpsucnnr 14588 | . . . . . . . . 9 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ) → (𝑅↑𝑟(𝑚 + 1)) = ((𝑅↑𝑟𝑚) ∘ 𝑅)) | |
22 | 21 | ancoms 462 | . . . . . . . 8 ⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑚 + 1)) = ((𝑅↑𝑟𝑚) ∘ 𝑅)) |
23 | 22 | dmeqd 5774 | . . . . . . 7 ⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟(𝑚 + 1)) = dom ((𝑅↑𝑟𝑚) ∘ 𝑅)) |
24 | dmcoss 5840 | . . . . . . 7 ⊢ dom ((𝑅↑𝑟𝑚) ∘ 𝑅) ⊆ dom 𝑅 | |
25 | 23, 24 | eqsstrdi 3955 | . . . . . 6 ⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅) |
26 | 25 | a1d 25 | . . . . 5 ⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → (dom (𝑅↑𝑟𝑚) ⊆ dom 𝑅 → dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅)) |
27 | 26 | ex 416 | . . . 4 ⊢ (𝑚 ∈ ℕ → (𝑅 ∈ 𝑉 → (dom (𝑅↑𝑟𝑚) ⊆ dom 𝑅 → dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅))) |
28 | 27 | a2d 29 | . . 3 ⊢ (𝑚 ∈ ℕ → ((𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑚) ⊆ dom 𝑅) → (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅))) |
29 | 4, 8, 12, 16, 20, 28 | nnind 11848 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅)) |
30 | 29 | imp 410 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 dom cdm 5551 ∘ ccom 5555 (class class class)co 7213 1c1 10730 + caddc 10732 ℕcn 11830 ↑𝑟crelexp 14582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-seq 13575 df-relexp 14583 |
This theorem is referenced by: relexpdmg 14605 relexpnnrn 14608 relexpfld 14612 relexpaddg 14616 relexpaddss 41003 |
Copyright terms: Public domain | W3C validator |