![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relexpnndm | Structured version Visualization version GIF version |
Description: The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
Ref | Expression |
---|---|
relexpnndm | ⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7424 | . . . . . 6 ⊢ (𝑛 = 1 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟1)) | |
2 | 1 | dmeqd 5902 | . . . . 5 ⊢ (𝑛 = 1 → dom (𝑅↑𝑟𝑛) = dom (𝑅↑𝑟1)) |
3 | 2 | sseq1d 4004 | . . . 4 ⊢ (𝑛 = 1 → (dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅↑𝑟1) ⊆ dom 𝑅)) |
4 | 3 | imbi2d 339 | . . 3 ⊢ (𝑛 = 1 → ((𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟1) ⊆ dom 𝑅))) |
5 | oveq2 7424 | . . . . . 6 ⊢ (𝑛 = 𝑚 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟𝑚)) | |
6 | 5 | dmeqd 5902 | . . . . 5 ⊢ (𝑛 = 𝑚 → dom (𝑅↑𝑟𝑛) = dom (𝑅↑𝑟𝑚)) |
7 | 6 | sseq1d 4004 | . . . 4 ⊢ (𝑛 = 𝑚 → (dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅↑𝑟𝑚) ⊆ dom 𝑅)) |
8 | 7 | imbi2d 339 | . . 3 ⊢ (𝑛 = 𝑚 → ((𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑚) ⊆ dom 𝑅))) |
9 | oveq2 7424 | . . . . . 6 ⊢ (𝑛 = (𝑚 + 1) → (𝑅↑𝑟𝑛) = (𝑅↑𝑟(𝑚 + 1))) | |
10 | 9 | dmeqd 5902 | . . . . 5 ⊢ (𝑛 = (𝑚 + 1) → dom (𝑅↑𝑟𝑛) = dom (𝑅↑𝑟(𝑚 + 1))) |
11 | 10 | sseq1d 4004 | . . . 4 ⊢ (𝑛 = (𝑚 + 1) → (dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅)) |
12 | 11 | imbi2d 339 | . . 3 ⊢ (𝑛 = (𝑚 + 1) → ((𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅))) |
13 | oveq2 7424 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟𝑁)) | |
14 | 13 | dmeqd 5902 | . . . . 5 ⊢ (𝑛 = 𝑁 → dom (𝑅↑𝑟𝑛) = dom (𝑅↑𝑟𝑁)) |
15 | 14 | sseq1d 4004 | . . . 4 ⊢ (𝑛 = 𝑁 → (dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅)) |
16 | 15 | imbi2d 339 | . . 3 ⊢ (𝑛 = 𝑁 → ((𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅))) |
17 | relexp1g 15005 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) | |
18 | 17 | dmeqd 5902 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟1) = dom 𝑅) |
19 | eqimss 4031 | . . . 4 ⊢ (dom (𝑅↑𝑟1) = dom 𝑅 → dom (𝑅↑𝑟1) ⊆ dom 𝑅) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟1) ⊆ dom 𝑅) |
21 | relexpsucnnr 15004 | . . . . . . . . 9 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ) → (𝑅↑𝑟(𝑚 + 1)) = ((𝑅↑𝑟𝑚) ∘ 𝑅)) | |
22 | 21 | ancoms 457 | . . . . . . . 8 ⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑚 + 1)) = ((𝑅↑𝑟𝑚) ∘ 𝑅)) |
23 | 22 | dmeqd 5902 | . . . . . . 7 ⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟(𝑚 + 1)) = dom ((𝑅↑𝑟𝑚) ∘ 𝑅)) |
24 | dmcoss 5968 | . . . . . . 7 ⊢ dom ((𝑅↑𝑟𝑚) ∘ 𝑅) ⊆ dom 𝑅 | |
25 | 23, 24 | eqsstrdi 4027 | . . . . . 6 ⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅) |
26 | 25 | a1d 25 | . . . . 5 ⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → (dom (𝑅↑𝑟𝑚) ⊆ dom 𝑅 → dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅)) |
27 | 26 | ex 411 | . . . 4 ⊢ (𝑚 ∈ ℕ → (𝑅 ∈ 𝑉 → (dom (𝑅↑𝑟𝑚) ⊆ dom 𝑅 → dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅))) |
28 | 27 | a2d 29 | . . 3 ⊢ (𝑚 ∈ ℕ → ((𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑚) ⊆ dom 𝑅) → (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅))) |
29 | 4, 8, 12, 16, 20, 28 | nnind 12260 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅)) |
30 | 29 | imp 405 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3939 dom cdm 5672 ∘ ccom 5676 (class class class)co 7416 1c1 11139 + caddc 11141 ℕcn 12242 ↑𝑟crelexp 14998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-seq 13999 df-relexp 14999 |
This theorem is referenced by: relexpdmg 15021 relexpnnrn 15024 relexpfld 15028 relexpaddg 15032 relexpaddss 43213 |
Copyright terms: Public domain | W3C validator |