MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpnndm Structured version   Visualization version   GIF version

Theorem relexpnndm 15080
Description: The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpnndm ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)

Proof of Theorem relexpnndm
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . . 6 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
21dmeqd 5916 . . . . 5 (𝑛 = 1 → dom (𝑅𝑟𝑛) = dom (𝑅𝑟1))
32sseq1d 4015 . . . 4 (𝑛 = 1 → (dom (𝑅𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅𝑟1) ⊆ dom 𝑅))
43imbi2d 340 . . 3 (𝑛 = 1 → ((𝑅𝑉 → dom (𝑅𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅𝑉 → dom (𝑅𝑟1) ⊆ dom 𝑅)))
5 oveq2 7439 . . . . . 6 (𝑛 = 𝑚 → (𝑅𝑟𝑛) = (𝑅𝑟𝑚))
65dmeqd 5916 . . . . 5 (𝑛 = 𝑚 → dom (𝑅𝑟𝑛) = dom (𝑅𝑟𝑚))
76sseq1d 4015 . . . 4 (𝑛 = 𝑚 → (dom (𝑅𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅𝑟𝑚) ⊆ dom 𝑅))
87imbi2d 340 . . 3 (𝑛 = 𝑚 → ((𝑅𝑉 → dom (𝑅𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅𝑉 → dom (𝑅𝑟𝑚) ⊆ dom 𝑅)))
9 oveq2 7439 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
109dmeqd 5916 . . . . 5 (𝑛 = (𝑚 + 1) → dom (𝑅𝑟𝑛) = dom (𝑅𝑟(𝑚 + 1)))
1110sseq1d 4015 . . . 4 (𝑛 = (𝑚 + 1) → (dom (𝑅𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅))
1211imbi2d 340 . . 3 (𝑛 = (𝑚 + 1) → ((𝑅𝑉 → dom (𝑅𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅𝑉 → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅)))
13 oveq2 7439 . . . . . 6 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
1413dmeqd 5916 . . . . 5 (𝑛 = 𝑁 → dom (𝑅𝑟𝑛) = dom (𝑅𝑟𝑁))
1514sseq1d 4015 . . . 4 (𝑛 = 𝑁 → (dom (𝑅𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅𝑟𝑁) ⊆ dom 𝑅))
1615imbi2d 340 . . 3 (𝑛 = 𝑁 → ((𝑅𝑉 → dom (𝑅𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅𝑉 → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)))
17 relexp1g 15065 . . . . 5 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
1817dmeqd 5916 . . . 4 (𝑅𝑉 → dom (𝑅𝑟1) = dom 𝑅)
19 eqimss 4042 . . . 4 (dom (𝑅𝑟1) = dom 𝑅 → dom (𝑅𝑟1) ⊆ dom 𝑅)
2018, 19syl 17 . . 3 (𝑅𝑉 → dom (𝑅𝑟1) ⊆ dom 𝑅)
21 relexpsucnnr 15064 . . . . . . . . 9 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
2221ancoms 458 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
2322dmeqd 5916 . . . . . . 7 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟(𝑚 + 1)) = dom ((𝑅𝑟𝑚) ∘ 𝑅))
24 dmcoss 5985 . . . . . . 7 dom ((𝑅𝑟𝑚) ∘ 𝑅) ⊆ dom 𝑅
2523, 24eqsstrdi 4028 . . . . . 6 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅)
2625a1d 25 . . . . 5 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → (dom (𝑅𝑟𝑚) ⊆ dom 𝑅 → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅))
2726ex 412 . . . 4 (𝑚 ∈ ℕ → (𝑅𝑉 → (dom (𝑅𝑟𝑚) ⊆ dom 𝑅 → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅)))
2827a2d 29 . . 3 (𝑚 ∈ ℕ → ((𝑅𝑉 → dom (𝑅𝑟𝑚) ⊆ dom 𝑅) → (𝑅𝑉 → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅)))
294, 8, 12, 16, 20, 28nnind 12284 . 2 (𝑁 ∈ ℕ → (𝑅𝑉 → dom (𝑅𝑟𝑁) ⊆ dom 𝑅))
3029imp 406 1 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3951  dom cdm 5685  ccom 5689  (class class class)co 7431  1c1 11156   + caddc 11158  cn 12266  𝑟crelexp 15058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-relexp 15059
This theorem is referenced by:  relexpdmg  15081  relexpnnrn  15084  relexpfld  15088  relexpaddg  15092  relexpaddss  43731
  Copyright terms: Public domain W3C validator