MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpnndm Structured version   Visualization version   GIF version

Theorem relexpnndm 14399
Description: The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpnndm ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)

Proof of Theorem relexpnndm
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7163 . . . . . 6 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
21dmeqd 5773 . . . . 5 (𝑛 = 1 → dom (𝑅𝑟𝑛) = dom (𝑅𝑟1))
32sseq1d 3997 . . . 4 (𝑛 = 1 → (dom (𝑅𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅𝑟1) ⊆ dom 𝑅))
43imbi2d 343 . . 3 (𝑛 = 1 → ((𝑅𝑉 → dom (𝑅𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅𝑉 → dom (𝑅𝑟1) ⊆ dom 𝑅)))
5 oveq2 7163 . . . . . 6 (𝑛 = 𝑚 → (𝑅𝑟𝑛) = (𝑅𝑟𝑚))
65dmeqd 5773 . . . . 5 (𝑛 = 𝑚 → dom (𝑅𝑟𝑛) = dom (𝑅𝑟𝑚))
76sseq1d 3997 . . . 4 (𝑛 = 𝑚 → (dom (𝑅𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅𝑟𝑚) ⊆ dom 𝑅))
87imbi2d 343 . . 3 (𝑛 = 𝑚 → ((𝑅𝑉 → dom (𝑅𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅𝑉 → dom (𝑅𝑟𝑚) ⊆ dom 𝑅)))
9 oveq2 7163 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
109dmeqd 5773 . . . . 5 (𝑛 = (𝑚 + 1) → dom (𝑅𝑟𝑛) = dom (𝑅𝑟(𝑚 + 1)))
1110sseq1d 3997 . . . 4 (𝑛 = (𝑚 + 1) → (dom (𝑅𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅))
1211imbi2d 343 . . 3 (𝑛 = (𝑚 + 1) → ((𝑅𝑉 → dom (𝑅𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅𝑉 → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅)))
13 oveq2 7163 . . . . . 6 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
1413dmeqd 5773 . . . . 5 (𝑛 = 𝑁 → dom (𝑅𝑟𝑛) = dom (𝑅𝑟𝑁))
1514sseq1d 3997 . . . 4 (𝑛 = 𝑁 → (dom (𝑅𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅𝑟𝑁) ⊆ dom 𝑅))
1615imbi2d 343 . . 3 (𝑛 = 𝑁 → ((𝑅𝑉 → dom (𝑅𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅𝑉 → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)))
17 relexp1g 14384 . . . . 5 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
1817dmeqd 5773 . . . 4 (𝑅𝑉 → dom (𝑅𝑟1) = dom 𝑅)
19 eqimss 4022 . . . 4 (dom (𝑅𝑟1) = dom 𝑅 → dom (𝑅𝑟1) ⊆ dom 𝑅)
2018, 19syl 17 . . 3 (𝑅𝑉 → dom (𝑅𝑟1) ⊆ dom 𝑅)
21 relexpsucnnr 14383 . . . . . . . . 9 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
2221ancoms 461 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
2322dmeqd 5773 . . . . . . 7 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟(𝑚 + 1)) = dom ((𝑅𝑟𝑚) ∘ 𝑅))
24 dmcoss 5841 . . . . . . 7 dom ((𝑅𝑟𝑚) ∘ 𝑅) ⊆ dom 𝑅
2523, 24eqsstrdi 4020 . . . . . 6 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅)
2625a1d 25 . . . . 5 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → (dom (𝑅𝑟𝑚) ⊆ dom 𝑅 → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅))
2726ex 415 . . . 4 (𝑚 ∈ ℕ → (𝑅𝑉 → (dom (𝑅𝑟𝑚) ⊆ dom 𝑅 → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅)))
2827a2d 29 . . 3 (𝑚 ∈ ℕ → ((𝑅𝑉 → dom (𝑅𝑟𝑚) ⊆ dom 𝑅) → (𝑅𝑉 → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅)))
294, 8, 12, 16, 20, 28nnind 11655 . 2 (𝑁 ∈ ℕ → (𝑅𝑉 → dom (𝑅𝑟𝑁) ⊆ dom 𝑅))
3029imp 409 1 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wss 3935  dom cdm 5554  ccom 5558  (class class class)co 7155  1c1 10537   + caddc 10539  cn 11637  𝑟crelexp 14378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-seq 13369  df-relexp 14379
This theorem is referenced by:  relexpdmg  14400  relexpnnrn  14403  relexpfld  14407  relexpaddg  14411  relexpaddss  40061
  Copyright terms: Public domain W3C validator