MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpnndm Structured version   Visualization version   GIF version

Theorem relexpnndm 14983
Description: The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpnndm ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)

Proof of Theorem relexpnndm
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7377 . . . . . 6 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
21dmeqd 5859 . . . . 5 (𝑛 = 1 → dom (𝑅𝑟𝑛) = dom (𝑅𝑟1))
32sseq1d 3975 . . . 4 (𝑛 = 1 → (dom (𝑅𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅𝑟1) ⊆ dom 𝑅))
43imbi2d 340 . . 3 (𝑛 = 1 → ((𝑅𝑉 → dom (𝑅𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅𝑉 → dom (𝑅𝑟1) ⊆ dom 𝑅)))
5 oveq2 7377 . . . . . 6 (𝑛 = 𝑚 → (𝑅𝑟𝑛) = (𝑅𝑟𝑚))
65dmeqd 5859 . . . . 5 (𝑛 = 𝑚 → dom (𝑅𝑟𝑛) = dom (𝑅𝑟𝑚))
76sseq1d 3975 . . . 4 (𝑛 = 𝑚 → (dom (𝑅𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅𝑟𝑚) ⊆ dom 𝑅))
87imbi2d 340 . . 3 (𝑛 = 𝑚 → ((𝑅𝑉 → dom (𝑅𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅𝑉 → dom (𝑅𝑟𝑚) ⊆ dom 𝑅)))
9 oveq2 7377 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
109dmeqd 5859 . . . . 5 (𝑛 = (𝑚 + 1) → dom (𝑅𝑟𝑛) = dom (𝑅𝑟(𝑚 + 1)))
1110sseq1d 3975 . . . 4 (𝑛 = (𝑚 + 1) → (dom (𝑅𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅))
1211imbi2d 340 . . 3 (𝑛 = (𝑚 + 1) → ((𝑅𝑉 → dom (𝑅𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅𝑉 → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅)))
13 oveq2 7377 . . . . . 6 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
1413dmeqd 5859 . . . . 5 (𝑛 = 𝑁 → dom (𝑅𝑟𝑛) = dom (𝑅𝑟𝑁))
1514sseq1d 3975 . . . 4 (𝑛 = 𝑁 → (dom (𝑅𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅𝑟𝑁) ⊆ dom 𝑅))
1615imbi2d 340 . . 3 (𝑛 = 𝑁 → ((𝑅𝑉 → dom (𝑅𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅𝑉 → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)))
17 relexp1g 14968 . . . . 5 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
1817dmeqd 5859 . . . 4 (𝑅𝑉 → dom (𝑅𝑟1) = dom 𝑅)
19 eqimss 4002 . . . 4 (dom (𝑅𝑟1) = dom 𝑅 → dom (𝑅𝑟1) ⊆ dom 𝑅)
2018, 19syl 17 . . 3 (𝑅𝑉 → dom (𝑅𝑟1) ⊆ dom 𝑅)
21 relexpsucnnr 14967 . . . . . . . . 9 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
2221ancoms 458 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
2322dmeqd 5859 . . . . . . 7 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟(𝑚 + 1)) = dom ((𝑅𝑟𝑚) ∘ 𝑅))
24 dmcoss 5927 . . . . . . 7 dom ((𝑅𝑟𝑚) ∘ 𝑅) ⊆ dom 𝑅
2523, 24eqsstrdi 3988 . . . . . 6 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅)
2625a1d 25 . . . . 5 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → (dom (𝑅𝑟𝑚) ⊆ dom 𝑅 → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅))
2726ex 412 . . . 4 (𝑚 ∈ ℕ → (𝑅𝑉 → (dom (𝑅𝑟𝑚) ⊆ dom 𝑅 → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅)))
2827a2d 29 . . 3 (𝑚 ∈ ℕ → ((𝑅𝑉 → dom (𝑅𝑟𝑚) ⊆ dom 𝑅) → (𝑅𝑉 → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅)))
294, 8, 12, 16, 20, 28nnind 12180 . 2 (𝑁 ∈ ℕ → (𝑅𝑉 → dom (𝑅𝑟𝑁) ⊆ dom 𝑅))
3029imp 406 1 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3911  dom cdm 5631  ccom 5635  (class class class)co 7369  1c1 11045   + caddc 11047  cn 12162  𝑟crelexp 14961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-seq 13943  df-relexp 14962
This theorem is referenced by:  relexpdmg  14984  relexpnnrn  14987  relexpfld  14991  relexpaddg  14995  relexpaddss  43700
  Copyright terms: Public domain W3C validator