![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relexpnndm | Structured version Visualization version GIF version |
Description: The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.) |
Ref | Expression |
---|---|
relexpnndm | ⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7402 | . . . . . 6 ⊢ (𝑛 = 1 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟1)) | |
2 | 1 | dmeqd 5898 | . . . . 5 ⊢ (𝑛 = 1 → dom (𝑅↑𝑟𝑛) = dom (𝑅↑𝑟1)) |
3 | 2 | sseq1d 4010 | . . . 4 ⊢ (𝑛 = 1 → (dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅↑𝑟1) ⊆ dom 𝑅)) |
4 | 3 | imbi2d 340 | . . 3 ⊢ (𝑛 = 1 → ((𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟1) ⊆ dom 𝑅))) |
5 | oveq2 7402 | . . . . . 6 ⊢ (𝑛 = 𝑚 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟𝑚)) | |
6 | 5 | dmeqd 5898 | . . . . 5 ⊢ (𝑛 = 𝑚 → dom (𝑅↑𝑟𝑛) = dom (𝑅↑𝑟𝑚)) |
7 | 6 | sseq1d 4010 | . . . 4 ⊢ (𝑛 = 𝑚 → (dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅↑𝑟𝑚) ⊆ dom 𝑅)) |
8 | 7 | imbi2d 340 | . . 3 ⊢ (𝑛 = 𝑚 → ((𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑚) ⊆ dom 𝑅))) |
9 | oveq2 7402 | . . . . . 6 ⊢ (𝑛 = (𝑚 + 1) → (𝑅↑𝑟𝑛) = (𝑅↑𝑟(𝑚 + 1))) | |
10 | 9 | dmeqd 5898 | . . . . 5 ⊢ (𝑛 = (𝑚 + 1) → dom (𝑅↑𝑟𝑛) = dom (𝑅↑𝑟(𝑚 + 1))) |
11 | 10 | sseq1d 4010 | . . . 4 ⊢ (𝑛 = (𝑚 + 1) → (dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅)) |
12 | 11 | imbi2d 340 | . . 3 ⊢ (𝑛 = (𝑚 + 1) → ((𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅))) |
13 | oveq2 7402 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟𝑁)) | |
14 | 13 | dmeqd 5898 | . . . . 5 ⊢ (𝑛 = 𝑁 → dom (𝑅↑𝑟𝑛) = dom (𝑅↑𝑟𝑁)) |
15 | 14 | sseq1d 4010 | . . . 4 ⊢ (𝑛 = 𝑁 → (dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅)) |
16 | 15 | imbi2d 340 | . . 3 ⊢ (𝑛 = 𝑁 → ((𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅))) |
17 | relexp1g 14957 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) | |
18 | 17 | dmeqd 5898 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟1) = dom 𝑅) |
19 | eqimss 4037 | . . . 4 ⊢ (dom (𝑅↑𝑟1) = dom 𝑅 → dom (𝑅↑𝑟1) ⊆ dom 𝑅) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟1) ⊆ dom 𝑅) |
21 | relexpsucnnr 14956 | . . . . . . . . 9 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ) → (𝑅↑𝑟(𝑚 + 1)) = ((𝑅↑𝑟𝑚) ∘ 𝑅)) | |
22 | 21 | ancoms 459 | . . . . . . . 8 ⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑚 + 1)) = ((𝑅↑𝑟𝑚) ∘ 𝑅)) |
23 | 22 | dmeqd 5898 | . . . . . . 7 ⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟(𝑚 + 1)) = dom ((𝑅↑𝑟𝑚) ∘ 𝑅)) |
24 | dmcoss 5963 | . . . . . . 7 ⊢ dom ((𝑅↑𝑟𝑚) ∘ 𝑅) ⊆ dom 𝑅 | |
25 | 23, 24 | eqsstrdi 4033 | . . . . . 6 ⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅) |
26 | 25 | a1d 25 | . . . . 5 ⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → (dom (𝑅↑𝑟𝑚) ⊆ dom 𝑅 → dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅)) |
27 | 26 | ex 413 | . . . 4 ⊢ (𝑚 ∈ ℕ → (𝑅 ∈ 𝑉 → (dom (𝑅↑𝑟𝑚) ⊆ dom 𝑅 → dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅))) |
28 | 27 | a2d 29 | . . 3 ⊢ (𝑚 ∈ ℕ → ((𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑚) ⊆ dom 𝑅) → (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟(𝑚 + 1)) ⊆ dom 𝑅))) |
29 | 4, 8, 12, 16, 20, 28 | nnind 12214 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑅 ∈ 𝑉 → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅)) |
30 | 29 | imp 407 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑁) ⊆ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3945 dom cdm 5670 ∘ ccom 5674 (class class class)co 7394 1c1 11095 + caddc 11097 ℕcn 12196 ↑𝑟crelexp 14950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5293 ax-nul 5300 ax-pow 5357 ax-pr 5421 ax-un 7709 ax-cnex 11150 ax-resscn 11151 ax-1cn 11152 ax-icn 11153 ax-addcl 11154 ax-addrcl 11155 ax-mulcl 11156 ax-mulrcl 11157 ax-mulcom 11158 ax-addass 11159 ax-mulass 11160 ax-distr 11161 ax-i2m1 11162 ax-1ne0 11163 ax-1rid 11164 ax-rnegex 11165 ax-rrecex 11166 ax-cnre 11167 ax-pre-lttri 11168 ax-pre-lttrn 11169 ax-pre-ltadd 11170 ax-pre-mulgt0 11171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7350 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7840 df-2nd 7960 df-frecs 8250 df-wrecs 8281 df-recs 8355 df-rdg 8394 df-er 8688 df-en 8925 df-dom 8926 df-sdom 8927 df-pnf 11234 df-mnf 11235 df-xr 11236 df-ltxr 11237 df-le 11238 df-sub 11430 df-neg 11431 df-nn 12197 df-n0 12457 df-z 12543 df-uz 12807 df-seq 13951 df-relexp 14951 |
This theorem is referenced by: relexpdmg 14973 relexpnnrn 14976 relexpfld 14980 relexpaddg 14984 relexpaddss 42304 |
Copyright terms: Public domain | W3C validator |