MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpnndm Structured version   Visualization version   GIF version

Theorem relexpnndm 14680
Description: The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpnndm ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)

Proof of Theorem relexpnndm
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7263 . . . . . 6 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
21dmeqd 5803 . . . . 5 (𝑛 = 1 → dom (𝑅𝑟𝑛) = dom (𝑅𝑟1))
32sseq1d 3948 . . . 4 (𝑛 = 1 → (dom (𝑅𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅𝑟1) ⊆ dom 𝑅))
43imbi2d 340 . . 3 (𝑛 = 1 → ((𝑅𝑉 → dom (𝑅𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅𝑉 → dom (𝑅𝑟1) ⊆ dom 𝑅)))
5 oveq2 7263 . . . . . 6 (𝑛 = 𝑚 → (𝑅𝑟𝑛) = (𝑅𝑟𝑚))
65dmeqd 5803 . . . . 5 (𝑛 = 𝑚 → dom (𝑅𝑟𝑛) = dom (𝑅𝑟𝑚))
76sseq1d 3948 . . . 4 (𝑛 = 𝑚 → (dom (𝑅𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅𝑟𝑚) ⊆ dom 𝑅))
87imbi2d 340 . . 3 (𝑛 = 𝑚 → ((𝑅𝑉 → dom (𝑅𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅𝑉 → dom (𝑅𝑟𝑚) ⊆ dom 𝑅)))
9 oveq2 7263 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
109dmeqd 5803 . . . . 5 (𝑛 = (𝑚 + 1) → dom (𝑅𝑟𝑛) = dom (𝑅𝑟(𝑚 + 1)))
1110sseq1d 3948 . . . 4 (𝑛 = (𝑚 + 1) → (dom (𝑅𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅))
1211imbi2d 340 . . 3 (𝑛 = (𝑚 + 1) → ((𝑅𝑉 → dom (𝑅𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅𝑉 → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅)))
13 oveq2 7263 . . . . . 6 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
1413dmeqd 5803 . . . . 5 (𝑛 = 𝑁 → dom (𝑅𝑟𝑛) = dom (𝑅𝑟𝑁))
1514sseq1d 3948 . . . 4 (𝑛 = 𝑁 → (dom (𝑅𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅𝑟𝑁) ⊆ dom 𝑅))
1615imbi2d 340 . . 3 (𝑛 = 𝑁 → ((𝑅𝑉 → dom (𝑅𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅𝑉 → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)))
17 relexp1g 14665 . . . . 5 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
1817dmeqd 5803 . . . 4 (𝑅𝑉 → dom (𝑅𝑟1) = dom 𝑅)
19 eqimss 3973 . . . 4 (dom (𝑅𝑟1) = dom 𝑅 → dom (𝑅𝑟1) ⊆ dom 𝑅)
2018, 19syl 17 . . 3 (𝑅𝑉 → dom (𝑅𝑟1) ⊆ dom 𝑅)
21 relexpsucnnr 14664 . . . . . . . . 9 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
2221ancoms 458 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
2322dmeqd 5803 . . . . . . 7 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟(𝑚 + 1)) = dom ((𝑅𝑟𝑚) ∘ 𝑅))
24 dmcoss 5869 . . . . . . 7 dom ((𝑅𝑟𝑚) ∘ 𝑅) ⊆ dom 𝑅
2523, 24eqsstrdi 3971 . . . . . 6 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅)
2625a1d 25 . . . . 5 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → (dom (𝑅𝑟𝑚) ⊆ dom 𝑅 → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅))
2726ex 412 . . . 4 (𝑚 ∈ ℕ → (𝑅𝑉 → (dom (𝑅𝑟𝑚) ⊆ dom 𝑅 → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅)))
2827a2d 29 . . 3 (𝑚 ∈ ℕ → ((𝑅𝑉 → dom (𝑅𝑟𝑚) ⊆ dom 𝑅) → (𝑅𝑉 → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅)))
294, 8, 12, 16, 20, 28nnind 11921 . 2 (𝑁 ∈ ℕ → (𝑅𝑉 → dom (𝑅𝑟𝑁) ⊆ dom 𝑅))
3029imp 406 1 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883  dom cdm 5580  ccom 5584  (class class class)co 7255  1c1 10803   + caddc 10805  cn 11903  𝑟crelexp 14658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-relexp 14659
This theorem is referenced by:  relexpdmg  14681  relexpnnrn  14684  relexpfld  14688  relexpaddg  14692  relexpaddss  41215
  Copyright terms: Public domain W3C validator