Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdrginvcl Structured version   Visualization version   GIF version

Theorem sdrginvcl 33249
Description: A sub-division-ring is closed under the ring inverse operation. (Contributed by Thierry Arnoux, 15-Jan-2025.)
Hypotheses
Ref Expression
sdrginvcl.i 𝐼 = (invr𝑅)
sdrginvcl.0 0 = (0g𝑅)
Assertion
Ref Expression
sdrginvcl ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → (𝐼𝑋) ∈ 𝐴)

Proof of Theorem sdrginvcl
StepHypRef Expression
1 issdrg 20691 . . . . . 6 (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
21biimpi 216 . . . . 5 (𝐴 ∈ (SubDRing‘𝑅) → (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
323ad2ant1 1133 . . . 4 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
43simp3d 1144 . . 3 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → (𝑅s 𝐴) ∈ DivRing)
5 simp2 1137 . . . 4 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → 𝑋𝐴)
63simp2d 1143 . . . . 5 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → 𝐴 ∈ (SubRing‘𝑅))
7 eqid 2729 . . . . . 6 (𝑅s 𝐴) = (𝑅s 𝐴)
87subrgbas 20484 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘(𝑅s 𝐴)))
96, 8syl 17 . . . 4 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → 𝐴 = (Base‘(𝑅s 𝐴)))
105, 9eleqtrd 2830 . . 3 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → 𝑋 ∈ (Base‘(𝑅s 𝐴)))
11 simp3 1138 . . . 4 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → 𝑋0 )
12 sdrginvcl.0 . . . . . 6 0 = (0g𝑅)
137, 12subrg0 20482 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g‘(𝑅s 𝐴)))
146, 13syl 17 . . . 4 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → 0 = (0g‘(𝑅s 𝐴)))
1511, 14neeqtrd 2994 . . 3 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → 𝑋 ≠ (0g‘(𝑅s 𝐴)))
16 eqid 2729 . . . 4 (Base‘(𝑅s 𝐴)) = (Base‘(𝑅s 𝐴))
17 eqid 2729 . . . 4 (0g‘(𝑅s 𝐴)) = (0g‘(𝑅s 𝐴))
18 eqid 2729 . . . 4 (invr‘(𝑅s 𝐴)) = (invr‘(𝑅s 𝐴))
1916, 17, 18drnginvrcl 20656 . . 3 (((𝑅s 𝐴) ∈ DivRing ∧ 𝑋 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑋 ≠ (0g‘(𝑅s 𝐴))) → ((invr‘(𝑅s 𝐴))‘𝑋) ∈ (Base‘(𝑅s 𝐴)))
204, 10, 15, 19syl3anc 1373 . 2 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → ((invr‘(𝑅s 𝐴))‘𝑋) ∈ (Base‘(𝑅s 𝐴)))
21 eqid 2729 . . . . . 6 (Unit‘(𝑅s 𝐴)) = (Unit‘(𝑅s 𝐴))
2216, 21, 17drngunit 20637 . . . . 5 ((𝑅s 𝐴) ∈ DivRing → (𝑋 ∈ (Unit‘(𝑅s 𝐴)) ↔ (𝑋 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑋 ≠ (0g‘(𝑅s 𝐴)))))
2322biimpar 477 . . . 4 (((𝑅s 𝐴) ∈ DivRing ∧ (𝑋 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑋 ≠ (0g‘(𝑅s 𝐴)))) → 𝑋 ∈ (Unit‘(𝑅s 𝐴)))
244, 10, 15, 23syl12anc 836 . . 3 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → 𝑋 ∈ (Unit‘(𝑅s 𝐴)))
25 sdrginvcl.i . . . 4 𝐼 = (invr𝑅)
267, 25, 21, 18subrginv 20491 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ (Unit‘(𝑅s 𝐴))) → (𝐼𝑋) = ((invr‘(𝑅s 𝐴))‘𝑋))
276, 24, 26syl2anc 584 . 2 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → (𝐼𝑋) = ((invr‘(𝑅s 𝐴))‘𝑋))
2820, 27, 93eltr4d 2843 1 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → (𝐼𝑋) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cfv 6486  (class class class)co 7353  Basecbs 17138  s cress 17159  0gc0g 17361  Unitcui 20258  invrcinvr 20290  SubRingcsubrg 20472  DivRingcdr 20632  SubDRingcsdrg 20689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-subg 19020  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-subrg 20473  df-drng 20634  df-sdrg 20690
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator