| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sdrginvcl | Structured version Visualization version GIF version | ||
| Description: A sub-division-ring is closed under the ring inverse operation. (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| sdrginvcl.i | ⊢ 𝐼 = (invr‘𝑅) |
| sdrginvcl.0 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| sdrginvcl | ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issdrg 20703 | . . . . . 6 ⊢ (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) | |
| 2 | 1 | biimpi 216 | . . . . 5 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) |
| 3 | 2 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) |
| 4 | 3 | simp3d 1144 | . . 3 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → (𝑅 ↾s 𝐴) ∈ DivRing) |
| 5 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐴) | |
| 6 | 3 | simp2d 1143 | . . . . 5 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝐴 ∈ (SubRing‘𝑅)) |
| 7 | eqid 2730 | . . . . . 6 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
| 8 | 7 | subrgbas 20496 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘(𝑅 ↾s 𝐴))) |
| 9 | 6, 8 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝐴 = (Base‘(𝑅 ↾s 𝐴))) |
| 10 | 5, 9 | eleqtrd 2831 | . . 3 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ (Base‘(𝑅 ↾s 𝐴))) |
| 11 | simp3 1138 | . . . 4 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) | |
| 12 | sdrginvcl.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 13 | 7, 12 | subrg0 20494 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g‘(𝑅 ↾s 𝐴))) |
| 14 | 6, 13 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 0 = (0g‘(𝑅 ↾s 𝐴))) |
| 15 | 11, 14 | neeqtrd 2995 | . . 3 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ (0g‘(𝑅 ↾s 𝐴))) |
| 16 | eqid 2730 | . . . 4 ⊢ (Base‘(𝑅 ↾s 𝐴)) = (Base‘(𝑅 ↾s 𝐴)) | |
| 17 | eqid 2730 | . . . 4 ⊢ (0g‘(𝑅 ↾s 𝐴)) = (0g‘(𝑅 ↾s 𝐴)) | |
| 18 | eqid 2730 | . . . 4 ⊢ (invr‘(𝑅 ↾s 𝐴)) = (invr‘(𝑅 ↾s 𝐴)) | |
| 19 | 16, 17, 18 | drnginvrcl 20668 | . . 3 ⊢ (((𝑅 ↾s 𝐴) ∈ DivRing ∧ 𝑋 ∈ (Base‘(𝑅 ↾s 𝐴)) ∧ 𝑋 ≠ (0g‘(𝑅 ↾s 𝐴))) → ((invr‘(𝑅 ↾s 𝐴))‘𝑋) ∈ (Base‘(𝑅 ↾s 𝐴))) |
| 20 | 4, 10, 15, 19 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → ((invr‘(𝑅 ↾s 𝐴))‘𝑋) ∈ (Base‘(𝑅 ↾s 𝐴))) |
| 21 | eqid 2730 | . . . . . 6 ⊢ (Unit‘(𝑅 ↾s 𝐴)) = (Unit‘(𝑅 ↾s 𝐴)) | |
| 22 | 16, 21, 17 | drngunit 20649 | . . . . 5 ⊢ ((𝑅 ↾s 𝐴) ∈ DivRing → (𝑋 ∈ (Unit‘(𝑅 ↾s 𝐴)) ↔ (𝑋 ∈ (Base‘(𝑅 ↾s 𝐴)) ∧ 𝑋 ≠ (0g‘(𝑅 ↾s 𝐴))))) |
| 23 | 22 | biimpar 477 | . . . 4 ⊢ (((𝑅 ↾s 𝐴) ∈ DivRing ∧ (𝑋 ∈ (Base‘(𝑅 ↾s 𝐴)) ∧ 𝑋 ≠ (0g‘(𝑅 ↾s 𝐴)))) → 𝑋 ∈ (Unit‘(𝑅 ↾s 𝐴))) |
| 24 | 4, 10, 15, 23 | syl12anc 836 | . . 3 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ (Unit‘(𝑅 ↾s 𝐴))) |
| 25 | sdrginvcl.i | . . . 4 ⊢ 𝐼 = (invr‘𝑅) | |
| 26 | 7, 25, 21, 18 | subrginv 20503 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ (Unit‘(𝑅 ↾s 𝐴))) → (𝐼‘𝑋) = ((invr‘(𝑅 ↾s 𝐴))‘𝑋)) |
| 27 | 6, 24, 26 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) = ((invr‘(𝑅 ↾s 𝐴))‘𝑋)) |
| 28 | 20, 27, 9 | 3eltr4d 2844 | 1 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 ↾s cress 17206 0gc0g 17408 Unitcui 20270 invrcinvr 20302 SubRingcsubrg 20484 DivRingcdr 20644 SubDRingcsdrg 20701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-subg 19061 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-subrg 20485 df-drng 20646 df-sdrg 20702 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |