| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sdrginvcl | Structured version Visualization version GIF version | ||
| Description: A sub-division-ring is closed under the ring inverse operation. (Contributed by Thierry Arnoux, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| sdrginvcl.i | ⊢ 𝐼 = (invr‘𝑅) |
| sdrginvcl.0 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| sdrginvcl | ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issdrg 20697 | . . . . . 6 ⊢ (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) | |
| 2 | 1 | biimpi 216 | . . . . 5 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) |
| 3 | 2 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) |
| 4 | 3 | simp3d 1144 | . . 3 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → (𝑅 ↾s 𝐴) ∈ DivRing) |
| 5 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐴) | |
| 6 | 3 | simp2d 1143 | . . . . 5 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝐴 ∈ (SubRing‘𝑅)) |
| 7 | eqid 2729 | . . . . . 6 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
| 8 | 7 | subrgbas 20490 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘(𝑅 ↾s 𝐴))) |
| 9 | 6, 8 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝐴 = (Base‘(𝑅 ↾s 𝐴))) |
| 10 | 5, 9 | eleqtrd 2830 | . . 3 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ (Base‘(𝑅 ↾s 𝐴))) |
| 11 | simp3 1138 | . . . 4 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) | |
| 12 | sdrginvcl.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 13 | 7, 12 | subrg0 20488 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g‘(𝑅 ↾s 𝐴))) |
| 14 | 6, 13 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 0 = (0g‘(𝑅 ↾s 𝐴))) |
| 15 | 11, 14 | neeqtrd 2994 | . . 3 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ (0g‘(𝑅 ↾s 𝐴))) |
| 16 | eqid 2729 | . . . 4 ⊢ (Base‘(𝑅 ↾s 𝐴)) = (Base‘(𝑅 ↾s 𝐴)) | |
| 17 | eqid 2729 | . . . 4 ⊢ (0g‘(𝑅 ↾s 𝐴)) = (0g‘(𝑅 ↾s 𝐴)) | |
| 18 | eqid 2729 | . . . 4 ⊢ (invr‘(𝑅 ↾s 𝐴)) = (invr‘(𝑅 ↾s 𝐴)) | |
| 19 | 16, 17, 18 | drnginvrcl 20662 | . . 3 ⊢ (((𝑅 ↾s 𝐴) ∈ DivRing ∧ 𝑋 ∈ (Base‘(𝑅 ↾s 𝐴)) ∧ 𝑋 ≠ (0g‘(𝑅 ↾s 𝐴))) → ((invr‘(𝑅 ↾s 𝐴))‘𝑋) ∈ (Base‘(𝑅 ↾s 𝐴))) |
| 20 | 4, 10, 15, 19 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → ((invr‘(𝑅 ↾s 𝐴))‘𝑋) ∈ (Base‘(𝑅 ↾s 𝐴))) |
| 21 | eqid 2729 | . . . . . 6 ⊢ (Unit‘(𝑅 ↾s 𝐴)) = (Unit‘(𝑅 ↾s 𝐴)) | |
| 22 | 16, 21, 17 | drngunit 20643 | . . . . 5 ⊢ ((𝑅 ↾s 𝐴) ∈ DivRing → (𝑋 ∈ (Unit‘(𝑅 ↾s 𝐴)) ↔ (𝑋 ∈ (Base‘(𝑅 ↾s 𝐴)) ∧ 𝑋 ≠ (0g‘(𝑅 ↾s 𝐴))))) |
| 23 | 22 | biimpar 477 | . . . 4 ⊢ (((𝑅 ↾s 𝐴) ∈ DivRing ∧ (𝑋 ∈ (Base‘(𝑅 ↾s 𝐴)) ∧ 𝑋 ≠ (0g‘(𝑅 ↾s 𝐴)))) → 𝑋 ∈ (Unit‘(𝑅 ↾s 𝐴))) |
| 24 | 4, 10, 15, 23 | syl12anc 836 | . . 3 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ (Unit‘(𝑅 ↾s 𝐴))) |
| 25 | sdrginvcl.i | . . . 4 ⊢ 𝐼 = (invr‘𝑅) | |
| 26 | 7, 25, 21, 18 | subrginv 20497 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ (Unit‘(𝑅 ↾s 𝐴))) → (𝐼‘𝑋) = ((invr‘(𝑅 ↾s 𝐴))‘𝑋)) |
| 27 | 6, 24, 26 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) = ((invr‘(𝑅 ↾s 𝐴))‘𝑋)) |
| 28 | 20, 27, 9 | 3eltr4d 2843 | 1 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 0gc0g 17402 Unitcui 20264 invrcinvr 20296 SubRingcsubrg 20478 DivRingcdr 20638 SubDRingcsdrg 20695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-subrg 20479 df-drng 20640 df-sdrg 20696 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |