Step | Hyp | Ref
| Expression |
1 | | issdrg 20548 |
. . . . . 6
β’ (π΄ β (SubDRingβπ
) β (π
β DivRing β§ π΄ β (SubRingβπ
) β§ (π
βΎs π΄) β DivRing)) |
2 | 1 | biimpi 215 |
. . . . 5
β’ (π΄ β (SubDRingβπ
) β (π
β DivRing β§ π΄ β (SubRingβπ
) β§ (π
βΎs π΄) β DivRing)) |
3 | 2 | 3ad2ant1 1132 |
. . . 4
β’ ((π΄ β (SubDRingβπ
) β§ π β π΄ β§ π β 0 ) β (π
β DivRing β§ π΄ β (SubRingβπ
) β§ (π
βΎs π΄) β DivRing)) |
4 | 3 | simp3d 1143 |
. . 3
β’ ((π΄ β (SubDRingβπ
) β§ π β π΄ β§ π β 0 ) β (π
βΎs π΄) β
DivRing) |
5 | | simp2 1136 |
. . . 4
β’ ((π΄ β (SubDRingβπ
) β§ π β π΄ β§ π β 0 ) β π β π΄) |
6 | 3 | simp2d 1142 |
. . . . 5
β’ ((π΄ β (SubDRingβπ
) β§ π β π΄ β§ π β 0 ) β π΄ β (SubRingβπ
)) |
7 | | eqid 2731 |
. . . . . 6
β’ (π
βΎs π΄) = (π
βΎs π΄) |
8 | 7 | subrgbas 20472 |
. . . . 5
β’ (π΄ β (SubRingβπ
) β π΄ = (Baseβ(π
βΎs π΄))) |
9 | 6, 8 | syl 17 |
. . . 4
β’ ((π΄ β (SubDRingβπ
) β§ π β π΄ β§ π β 0 ) β π΄ = (Baseβ(π
βΎs π΄))) |
10 | 5, 9 | eleqtrd 2834 |
. . 3
β’ ((π΄ β (SubDRingβπ
) β§ π β π΄ β§ π β 0 ) β π β (Baseβ(π
βΎs π΄))) |
11 | | simp3 1137 |
. . . 4
β’ ((π΄ β (SubDRingβπ
) β§ π β π΄ β§ π β 0 ) β π β 0 ) |
12 | | sdrginvcl.0 |
. . . . . 6
β’ 0 =
(0gβπ
) |
13 | 7, 12 | subrg0 20470 |
. . . . 5
β’ (π΄ β (SubRingβπ
) β 0 =
(0gβ(π
βΎs π΄))) |
14 | 6, 13 | syl 17 |
. . . 4
β’ ((π΄ β (SubDRingβπ
) β§ π β π΄ β§ π β 0 ) β 0 =
(0gβ(π
βΎs π΄))) |
15 | 11, 14 | neeqtrd 3009 |
. . 3
β’ ((π΄ β (SubDRingβπ
) β§ π β π΄ β§ π β 0 ) β π β (0gβ(π
βΎs π΄))) |
16 | | eqid 2731 |
. . . 4
β’
(Baseβ(π
βΎs π΄)) =
(Baseβ(π
βΎs π΄)) |
17 | | eqid 2731 |
. . . 4
β’
(0gβ(π
βΎs π΄)) = (0gβ(π
βΎs π΄)) |
18 | | eqid 2731 |
. . . 4
β’
(invrβ(π
βΎs π΄)) = (invrβ(π
βΎs π΄)) |
19 | 16, 17, 18 | drnginvrcl 20523 |
. . 3
β’ (((π
βΎs π΄) β DivRing β§ π β (Baseβ(π
βΎs π΄)) β§ π β (0gβ(π
βΎs π΄))) β
((invrβ(π
βΎs π΄))βπ) β (Baseβ(π
βΎs π΄))) |
20 | 4, 10, 15, 19 | syl3anc 1370 |
. 2
β’ ((π΄ β (SubDRingβπ
) β§ π β π΄ β§ π β 0 ) β
((invrβ(π
βΎs π΄))βπ) β (Baseβ(π
βΎs π΄))) |
21 | | eqid 2731 |
. . . . . 6
β’
(Unitβ(π
βΎs π΄)) =
(Unitβ(π
βΎs π΄)) |
22 | 16, 21, 17 | drngunit 20506 |
. . . . 5
β’ ((π
βΎs π΄) β DivRing β (π β (Unitβ(π
βΎs π΄)) β (π β (Baseβ(π
βΎs π΄)) β§ π β (0gβ(π
βΎs π΄))))) |
23 | 22 | biimpar 477 |
. . . 4
β’ (((π
βΎs π΄) β DivRing β§ (π β (Baseβ(π
βΎs π΄)) β§ π β (0gβ(π
βΎs π΄)))) β π β (Unitβ(π
βΎs π΄))) |
24 | 4, 10, 15, 23 | syl12anc 834 |
. . 3
β’ ((π΄ β (SubDRingβπ
) β§ π β π΄ β§ π β 0 ) β π β (Unitβ(π
βΎs π΄))) |
25 | | sdrginvcl.i |
. . . 4
β’ πΌ = (invrβπ
) |
26 | 7, 25, 21, 18 | subrginv 20479 |
. . 3
β’ ((π΄ β (SubRingβπ
) β§ π β (Unitβ(π
βΎs π΄))) β (πΌβπ) = ((invrβ(π
βΎs π΄))βπ)) |
27 | 6, 24, 26 | syl2anc 583 |
. 2
β’ ((π΄ β (SubDRingβπ
) β§ π β π΄ β§ π β 0 ) β (πΌβπ) = ((invrβ(π
βΎs π΄))βπ)) |
28 | 20, 27, 9 | 3eltr4d 2847 |
1
β’ ((π΄ β (SubDRingβπ
) β§ π β π΄ β§ π β 0 ) β (πΌβπ) β π΄) |