Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdrginvcl Structured version   Visualization version   GIF version

Theorem sdrginvcl 33267
Description: A sub-division-ring is closed under the ring inverse operation. (Contributed by Thierry Arnoux, 15-Jan-2025.)
Hypotheses
Ref Expression
sdrginvcl.i 𝐼 = (invr𝑅)
sdrginvcl.0 0 = (0g𝑅)
Assertion
Ref Expression
sdrginvcl ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → (𝐼𝑋) ∈ 𝐴)

Proof of Theorem sdrginvcl
StepHypRef Expression
1 issdrg 20811 . . . . . 6 (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
21biimpi 216 . . . . 5 (𝐴 ∈ (SubDRing‘𝑅) → (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
323ad2ant1 1133 . . . 4 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
43simp3d 1144 . . 3 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → (𝑅s 𝐴) ∈ DivRing)
5 simp2 1137 . . . 4 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → 𝑋𝐴)
63simp2d 1143 . . . . 5 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → 𝐴 ∈ (SubRing‘𝑅))
7 eqid 2740 . . . . . 6 (𝑅s 𝐴) = (𝑅s 𝐴)
87subrgbas 20609 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘(𝑅s 𝐴)))
96, 8syl 17 . . . 4 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → 𝐴 = (Base‘(𝑅s 𝐴)))
105, 9eleqtrd 2846 . . 3 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → 𝑋 ∈ (Base‘(𝑅s 𝐴)))
11 simp3 1138 . . . 4 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → 𝑋0 )
12 sdrginvcl.0 . . . . . 6 0 = (0g𝑅)
137, 12subrg0 20607 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g‘(𝑅s 𝐴)))
146, 13syl 17 . . . 4 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → 0 = (0g‘(𝑅s 𝐴)))
1511, 14neeqtrd 3016 . . 3 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → 𝑋 ≠ (0g‘(𝑅s 𝐴)))
16 eqid 2740 . . . 4 (Base‘(𝑅s 𝐴)) = (Base‘(𝑅s 𝐴))
17 eqid 2740 . . . 4 (0g‘(𝑅s 𝐴)) = (0g‘(𝑅s 𝐴))
18 eqid 2740 . . . 4 (invr‘(𝑅s 𝐴)) = (invr‘(𝑅s 𝐴))
1916, 17, 18drnginvrcl 20775 . . 3 (((𝑅s 𝐴) ∈ DivRing ∧ 𝑋 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑋 ≠ (0g‘(𝑅s 𝐴))) → ((invr‘(𝑅s 𝐴))‘𝑋) ∈ (Base‘(𝑅s 𝐴)))
204, 10, 15, 19syl3anc 1371 . 2 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → ((invr‘(𝑅s 𝐴))‘𝑋) ∈ (Base‘(𝑅s 𝐴)))
21 eqid 2740 . . . . . 6 (Unit‘(𝑅s 𝐴)) = (Unit‘(𝑅s 𝐴))
2216, 21, 17drngunit 20756 . . . . 5 ((𝑅s 𝐴) ∈ DivRing → (𝑋 ∈ (Unit‘(𝑅s 𝐴)) ↔ (𝑋 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑋 ≠ (0g‘(𝑅s 𝐴)))))
2322biimpar 477 . . . 4 (((𝑅s 𝐴) ∈ DivRing ∧ (𝑋 ∈ (Base‘(𝑅s 𝐴)) ∧ 𝑋 ≠ (0g‘(𝑅s 𝐴)))) → 𝑋 ∈ (Unit‘(𝑅s 𝐴)))
244, 10, 15, 23syl12anc 836 . . 3 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → 𝑋 ∈ (Unit‘(𝑅s 𝐴)))
25 sdrginvcl.i . . . 4 𝐼 = (invr𝑅)
267, 25, 21, 18subrginv 20616 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ (Unit‘(𝑅s 𝐴))) → (𝐼𝑋) = ((invr‘(𝑅s 𝐴))‘𝑋))
276, 24, 26syl2anc 583 . 2 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → (𝐼𝑋) = ((invr‘(𝑅s 𝐴))‘𝑋))
2820, 27, 93eltr4d 2859 1 ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝑋𝐴𝑋0 ) → (𝐼𝑋) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  0gc0g 17499  Unitcui 20381  invrcinvr 20413  SubRingcsubrg 20595  DivRingcdr 20751  SubDRingcsdrg 20809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-subrg 20597  df-drng 20753  df-sdrg 20810
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator