Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > drnguc1p | Structured version Visualization version GIF version |
Description: Over a division ring, all nonzero polynomials are unitic. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
drnguc1p.p | ⊢ 𝑃 = (Poly1‘𝑅) |
drnguc1p.b | ⊢ 𝐵 = (Base‘𝑃) |
drnguc1p.z | ⊢ 0 = (0g‘𝑃) |
drnguc1p.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
Ref | Expression |
---|---|
drnguc1p | ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → 𝐹 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1136 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → 𝐹 ∈ 𝐵) | |
2 | simp3 1137 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → 𝐹 ≠ 0 ) | |
3 | eqid 2737 | . . . . . 6 ⊢ (coe1‘𝐹) = (coe1‘𝐹) | |
4 | drnguc1p.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
5 | drnguc1p.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
6 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | 3, 4, 5, 6 | coe1f 21465 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → (coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
8 | 7 | 3ad2ant2 1133 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
9 | drngring 20077 | . . . . 5 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
10 | eqid 2737 | . . . . . 6 ⊢ ( deg1 ‘𝑅) = ( deg1 ‘𝑅) | |
11 | drnguc1p.z | . . . . . 6 ⊢ 0 = (0g‘𝑃) | |
12 | 10, 5, 11, 4 | deg1nn0cl 25336 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (( deg1 ‘𝑅)‘𝐹) ∈ ℕ0) |
13 | 9, 12 | syl3an1 1162 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (( deg1 ‘𝑅)‘𝐹) ∈ ℕ0) |
14 | 8, 13 | ffvelcdmd 7002 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ∈ (Base‘𝑅)) |
15 | eqid 2737 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
16 | 10, 5, 11, 4, 15, 3 | deg1ldg 25340 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ≠ (0g‘𝑅)) |
17 | 9, 16 | syl3an1 1162 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ≠ (0g‘𝑅)) |
18 | eqid 2737 | . . . . 5 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
19 | 6, 18, 15 | drngunit 20075 | . . . 4 ⊢ (𝑅 ∈ DivRing → (((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ∈ (Unit‘𝑅) ↔ (((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ∈ (Base‘𝑅) ∧ ((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ≠ (0g‘𝑅)))) |
20 | 19 | 3ad2ant1 1132 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ∈ (Unit‘𝑅) ↔ (((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ∈ (Base‘𝑅) ∧ ((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ≠ (0g‘𝑅)))) |
21 | 14, 17, 20 | mpbir2and 710 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ∈ (Unit‘𝑅)) |
22 | drnguc1p.c | . . 3 ⊢ 𝐶 = (Unic1p‘𝑅) | |
23 | 5, 4, 11, 10, 22, 18 | isuc1p 25388 | . 2 ⊢ (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) ∈ (Unit‘𝑅))) |
24 | 1, 2, 21, 23 | syl3anbrc 1342 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → 𝐹 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ⟶wf 6462 ‘cfv 6466 ℕ0cn0 12313 Basecbs 16989 0gc0g 17227 Ringcrg 19858 Unitcui 19956 DivRingcdr 20070 Poly1cpl1 21431 coe1cco1 21432 deg1 cdg1 25299 Unic1pcuc1p 25374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 ax-addf 11030 ax-mulf 11031 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-se 5564 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-isom 6475 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-of 7575 df-om 7760 df-1st 7878 df-2nd 7879 df-supp 8027 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-er 8548 df-map 8667 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-fsupp 9206 df-sup 9278 df-oi 9346 df-card 9775 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-2 12116 df-3 12117 df-4 12118 df-5 12119 df-6 12120 df-7 12121 df-8 12122 df-9 12123 df-n0 12314 df-z 12400 df-dec 12518 df-uz 12663 df-fz 13320 df-fzo 13463 df-seq 13802 df-hash 14125 df-struct 16925 df-sets 16942 df-slot 16960 df-ndx 16972 df-base 16990 df-ress 17019 df-plusg 17052 df-mulr 17053 df-starv 17054 df-sca 17055 df-vsca 17056 df-tset 17058 df-ple 17059 df-ds 17061 df-unif 17062 df-0g 17229 df-gsum 17230 df-mgm 18403 df-sgrp 18452 df-mnd 18463 df-submnd 18508 df-grp 18656 df-minusg 18657 df-mulg 18777 df-subg 18828 df-cntz 18999 df-cmn 19463 df-abl 19464 df-mgp 19796 df-ur 19813 df-ring 19860 df-cring 19861 df-drng 20072 df-cnfld 20681 df-psr 21195 df-mpl 21197 df-opsr 21199 df-psr1 21434 df-ply1 21436 df-coe1 21437 df-mdeg 25300 df-deg1 25301 df-uc1p 25379 |
This theorem is referenced by: ig1peu 25419 |
Copyright terms: Public domain | W3C validator |