![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drnguc1p | Structured version Visualization version GIF version |
Description: Over a division ring, all nonzero polynomials are unitic. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
drnguc1p.p | ⊢ 𝑃 = (Poly1‘𝑅) |
drnguc1p.b | ⊢ 𝐵 = (Base‘𝑃) |
drnguc1p.z | ⊢ 0 = (0g‘𝑃) |
drnguc1p.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
Ref | Expression |
---|---|
drnguc1p | ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → 𝐹 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1136 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → 𝐹 ∈ 𝐵) | |
2 | simp3 1137 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → 𝐹 ≠ 0 ) | |
3 | eqid 2735 | . . . . . 6 ⊢ (coe1‘𝐹) = (coe1‘𝐹) | |
4 | drnguc1p.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
5 | drnguc1p.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
6 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | 3, 4, 5, 6 | coe1f 22229 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → (coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
8 | 7 | 3ad2ant2 1133 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
9 | drngring 20753 | . . . . 5 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
10 | eqid 2735 | . . . . . 6 ⊢ (deg1‘𝑅) = (deg1‘𝑅) | |
11 | drnguc1p.z | . . . . . 6 ⊢ 0 = (0g‘𝑃) | |
12 | 10, 5, 11, 4 | deg1nn0cl 26142 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ((deg1‘𝑅)‘𝐹) ∈ ℕ0) |
13 | 9, 12 | syl3an1 1162 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ((deg1‘𝑅)‘𝐹) ∈ ℕ0) |
14 | 8, 13 | ffvelcdmd 7105 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ((coe1‘𝐹)‘((deg1‘𝑅)‘𝐹)) ∈ (Base‘𝑅)) |
15 | eqid 2735 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
16 | 10, 5, 11, 4, 15, 3 | deg1ldg 26146 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ((coe1‘𝐹)‘((deg1‘𝑅)‘𝐹)) ≠ (0g‘𝑅)) |
17 | 9, 16 | syl3an1 1162 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ((coe1‘𝐹)‘((deg1‘𝑅)‘𝐹)) ≠ (0g‘𝑅)) |
18 | eqid 2735 | . . . . 5 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
19 | 6, 18, 15 | drngunit 20751 | . . . 4 ⊢ (𝑅 ∈ DivRing → (((coe1‘𝐹)‘((deg1‘𝑅)‘𝐹)) ∈ (Unit‘𝑅) ↔ (((coe1‘𝐹)‘((deg1‘𝑅)‘𝐹)) ∈ (Base‘𝑅) ∧ ((coe1‘𝐹)‘((deg1‘𝑅)‘𝐹)) ≠ (0g‘𝑅)))) |
20 | 19 | 3ad2ant1 1132 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (((coe1‘𝐹)‘((deg1‘𝑅)‘𝐹)) ∈ (Unit‘𝑅) ↔ (((coe1‘𝐹)‘((deg1‘𝑅)‘𝐹)) ∈ (Base‘𝑅) ∧ ((coe1‘𝐹)‘((deg1‘𝑅)‘𝐹)) ≠ (0g‘𝑅)))) |
21 | 14, 17, 20 | mpbir2and 713 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ((coe1‘𝐹)‘((deg1‘𝑅)‘𝐹)) ∈ (Unit‘𝑅)) |
22 | drnguc1p.c | . . 3 ⊢ 𝐶 = (Unic1p‘𝑅) | |
23 | 5, 4, 11, 10, 22, 18 | isuc1p 26195 | . 2 ⊢ (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘((deg1‘𝑅)‘𝐹)) ∈ (Unit‘𝑅))) |
24 | 1, 2, 21, 23 | syl3anbrc 1342 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → 𝐹 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ⟶wf 6559 ‘cfv 6563 ℕ0cn0 12524 Basecbs 17245 0gc0g 17486 Ringcrg 20251 Unitcui 20372 DivRingcdr 20746 Poly1cpl1 22194 coe1cco1 22195 deg1cdg1 26108 Unic1pcuc1p 26181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-mulg 19099 df-subg 19154 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-ur 20200 df-ring 20253 df-cring 20254 df-drng 20748 df-cnfld 21383 df-psr 21947 df-mpl 21949 df-opsr 21951 df-psr1 22197 df-ply1 22199 df-coe1 22200 df-mdeg 26109 df-deg1 26110 df-uc1p 26186 |
This theorem is referenced by: ig1peu 26229 irngnzply1lem 33705 irredminply 33722 aks6d1c5lem3 42119 |
Copyright terms: Public domain | W3C validator |