MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnguc1p Structured version   Visualization version   GIF version

Theorem drnguc1p 25240
Description: Over a division ring, all nonzero polynomials are unitic. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
drnguc1p.p 𝑃 = (Poly1𝑅)
drnguc1p.b 𝐵 = (Base‘𝑃)
drnguc1p.z 0 = (0g𝑃)
drnguc1p.c 𝐶 = (Unic1p𝑅)
Assertion
Ref Expression
drnguc1p ((𝑅 ∈ DivRing ∧ 𝐹𝐵𝐹0 ) → 𝐹𝐶)

Proof of Theorem drnguc1p
StepHypRef Expression
1 simp2 1135 . 2 ((𝑅 ∈ DivRing ∧ 𝐹𝐵𝐹0 ) → 𝐹𝐵)
2 simp3 1136 . 2 ((𝑅 ∈ DivRing ∧ 𝐹𝐵𝐹0 ) → 𝐹0 )
3 eqid 2738 . . . . . 6 (coe1𝐹) = (coe1𝐹)
4 drnguc1p.b . . . . . 6 𝐵 = (Base‘𝑃)
5 drnguc1p.p . . . . . 6 𝑃 = (Poly1𝑅)
6 eqid 2738 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
73, 4, 5, 6coe1f 21292 . . . . 5 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
873ad2ant2 1132 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐹𝐵𝐹0 ) → (coe1𝐹):ℕ0⟶(Base‘𝑅))
9 drngring 19913 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
10 eqid 2738 . . . . . 6 ( deg1𝑅) = ( deg1𝑅)
11 drnguc1p.z . . . . . 6 0 = (0g𝑃)
1210, 5, 11, 4deg1nn0cl 25158 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (( deg1𝑅)‘𝐹) ∈ ℕ0)
139, 12syl3an1 1161 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐹𝐵𝐹0 ) → (( deg1𝑅)‘𝐹) ∈ ℕ0)
148, 13ffvelrnd 6944 . . 3 ((𝑅 ∈ DivRing ∧ 𝐹𝐵𝐹0 ) → ((coe1𝐹)‘(( deg1𝑅)‘𝐹)) ∈ (Base‘𝑅))
15 eqid 2738 . . . . 5 (0g𝑅) = (0g𝑅)
1610, 5, 11, 4, 15, 3deg1ldg 25162 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → ((coe1𝐹)‘(( deg1𝑅)‘𝐹)) ≠ (0g𝑅))
179, 16syl3an1 1161 . . 3 ((𝑅 ∈ DivRing ∧ 𝐹𝐵𝐹0 ) → ((coe1𝐹)‘(( deg1𝑅)‘𝐹)) ≠ (0g𝑅))
18 eqid 2738 . . . . 5 (Unit‘𝑅) = (Unit‘𝑅)
196, 18, 15drngunit 19911 . . . 4 (𝑅 ∈ DivRing → (((coe1𝐹)‘(( deg1𝑅)‘𝐹)) ∈ (Unit‘𝑅) ↔ (((coe1𝐹)‘(( deg1𝑅)‘𝐹)) ∈ (Base‘𝑅) ∧ ((coe1𝐹)‘(( deg1𝑅)‘𝐹)) ≠ (0g𝑅))))
20193ad2ant1 1131 . . 3 ((𝑅 ∈ DivRing ∧ 𝐹𝐵𝐹0 ) → (((coe1𝐹)‘(( deg1𝑅)‘𝐹)) ∈ (Unit‘𝑅) ↔ (((coe1𝐹)‘(( deg1𝑅)‘𝐹)) ∈ (Base‘𝑅) ∧ ((coe1𝐹)‘(( deg1𝑅)‘𝐹)) ≠ (0g𝑅))))
2114, 17, 20mpbir2and 709 . 2 ((𝑅 ∈ DivRing ∧ 𝐹𝐵𝐹0 ) → ((coe1𝐹)‘(( deg1𝑅)‘𝐹)) ∈ (Unit‘𝑅))
22 drnguc1p.c . . 3 𝐶 = (Unic1p𝑅)
235, 4, 11, 10, 22, 18isuc1p 25210 . 2 (𝐹𝐶 ↔ (𝐹𝐵𝐹0 ∧ ((coe1𝐹)‘(( deg1𝑅)‘𝐹)) ∈ (Unit‘𝑅)))
241, 2, 21, 23syl3anbrc 1341 1 ((𝑅 ∈ DivRing ∧ 𝐹𝐵𝐹0 ) → 𝐹𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wf 6414  cfv 6418  0cn0 12163  Basecbs 16840  0gc0g 17067  Ringcrg 19698  Unitcui 19796  DivRingcdr 19906  Poly1cpl1 21258  coe1cco1 21259   deg1 cdg1 25121  Unic1pcuc1p 25196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-mulg 18616  df-subg 18667  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-drng 19908  df-cnfld 20511  df-psr 21022  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-ply1 21263  df-coe1 21264  df-mdeg 25122  df-deg1 25123  df-uc1p 25201
This theorem is referenced by:  ig1peu  25241
  Copyright terms: Public domain W3C validator