MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnginvrn0 Structured version   Visualization version   GIF version

Theorem drnginvrn0 20670
Description: The multiplicative inverse in a division ring is nonzero. (recne0 11789 analog). (Contributed by NM, 19-Apr-2014.)
Hypotheses
Ref Expression
drnginvrcl.b 𝐵 = (Base‘𝑅)
drnginvrcl.z 0 = (0g𝑅)
drnginvrcl.i 𝐼 = (invr𝑅)
Assertion
Ref Expression
drnginvrn0 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (𝐼𝑋) ≠ 0 )

Proof of Theorem drnginvrn0
StepHypRef Expression
1 drngring 20652 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 eqid 2731 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
3 drnginvrcl.i . . . . . . 7 𝐼 = (invr𝑅)
42, 3unitinvcl 20309 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (𝐼𝑋) ∈ (Unit‘𝑅))
54ex 412 . . . . 5 (𝑅 ∈ Ring → (𝑋 ∈ (Unit‘𝑅) → (𝐼𝑋) ∈ (Unit‘𝑅)))
61, 5syl 17 . . . 4 (𝑅 ∈ DivRing → (𝑋 ∈ (Unit‘𝑅) → (𝐼𝑋) ∈ (Unit‘𝑅)))
7 drnginvrcl.b . . . . 5 𝐵 = (Base‘𝑅)
8 drnginvrcl.z . . . . 5 0 = (0g𝑅)
97, 2, 8drngunit 20650 . . . 4 (𝑅 ∈ DivRing → (𝑋 ∈ (Unit‘𝑅) ↔ (𝑋𝐵𝑋0 )))
107, 2, 8drngunit 20650 . . . 4 (𝑅 ∈ DivRing → ((𝐼𝑋) ∈ (Unit‘𝑅) ↔ ((𝐼𝑋) ∈ 𝐵 ∧ (𝐼𝑋) ≠ 0 )))
116, 9, 103imtr3d 293 . . 3 (𝑅 ∈ DivRing → ((𝑋𝐵𝑋0 ) → ((𝐼𝑋) ∈ 𝐵 ∧ (𝐼𝑋) ≠ 0 )))
12113impib 1116 . 2 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → ((𝐼𝑋) ∈ 𝐵 ∧ (𝐼𝑋) ≠ 0 ))
1312simprd 495 1 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (𝐼𝑋) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cfv 6481  Basecbs 17120  0gc0g 17343  Ringcrg 20152  Unitcui 20274  invrcinvr 20306  DivRingcdr 20645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-drng 20647
This theorem is referenced by:  lspfixed  21066  extdg1id  33677  tendoinvcl  41149  dochkr1  41523  lcfrlem31  41618  mapdpglem18  41734  mapdpglem22  41738  hgmapvvlem2  41969  drnginvrn0d  42563  prjspner01  42664
  Copyright terms: Public domain W3C validator