![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drnginvrn0 | Structured version Visualization version GIF version |
Description: The multiplicative inverse in a division ring is nonzero. (recne0 11892 analog). (Contributed by NM, 19-Apr-2014.) |
Ref | Expression |
---|---|
invrcl.b | ⊢ 𝐵 = (Base‘𝑅) |
invrcl.z | ⊢ 0 = (0g‘𝑅) |
invrcl.i | ⊢ 𝐼 = (invr‘𝑅) |
Ref | Expression |
---|---|
drnginvrn0 | ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngring 20590 | . . . . 5 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
2 | eqid 2731 | . . . . . . 7 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
3 | invrcl.i | . . . . . . 7 ⊢ 𝐼 = (invr‘𝑅) | |
4 | 2, 3 | unitinvcl 20288 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (𝐼‘𝑋) ∈ (Unit‘𝑅)) |
5 | 4 | ex 412 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝑋 ∈ (Unit‘𝑅) → (𝐼‘𝑋) ∈ (Unit‘𝑅))) |
6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ (Unit‘𝑅) → (𝐼‘𝑋) ∈ (Unit‘𝑅))) |
7 | invrcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
8 | invrcl.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
9 | 7, 2, 8 | drngunit 20588 | . . . 4 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ (Unit‘𝑅) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
10 | 7, 2, 8 | drngunit 20588 | . . . 4 ⊢ (𝑅 ∈ DivRing → ((𝐼‘𝑋) ∈ (Unit‘𝑅) ↔ ((𝐼‘𝑋) ∈ 𝐵 ∧ (𝐼‘𝑋) ≠ 0 ))) |
11 | 6, 9, 10 | 3imtr3d 293 | . . 3 ⊢ (𝑅 ∈ DivRing → ((𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ((𝐼‘𝑋) ∈ 𝐵 ∧ (𝐼‘𝑋) ≠ 0 ))) |
12 | 11 | 3impib 1115 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ((𝐼‘𝑋) ∈ 𝐵 ∧ (𝐼‘𝑋) ≠ 0 )) |
13 | 12 | simprd 495 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ‘cfv 6543 Basecbs 17151 0gc0g 17392 Ringcrg 20134 Unitcui 20253 invrcinvr 20285 DivRingcdr 20583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-minusg 18865 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-drng 20585 |
This theorem is referenced by: lspfixed 20975 extdg1id 33196 tendoinvcl 40439 dochkr1 40813 lcfrlem31 40908 mapdpglem18 41024 mapdpglem22 41028 hgmapvvlem2 41259 drnginvrn0d 41563 prjspner01 41830 |
Copyright terms: Public domain | W3C validator |