![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drnginvrr | Structured version Visualization version GIF version |
Description: Property of the multiplicative inverse in a division ring. (recid 11891 analog). (Contributed by NM, 19-Apr-2014.) |
Ref | Expression |
---|---|
drnginvrl.b | β’ π΅ = (Baseβπ ) |
drnginvrl.z | β’ 0 = (0gβπ ) |
drnginvrl.t | β’ Β· = (.rβπ ) |
drnginvrl.u | β’ 1 = (1rβπ ) |
drnginvrl.i | β’ πΌ = (invrβπ ) |
Ref | Expression |
---|---|
drnginvrr | β’ ((π β DivRing β§ π β π΅ β§ π β 0 ) β (π Β· (πΌβπ)) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drnginvrl.b | . . . 4 β’ π΅ = (Baseβπ ) | |
2 | eqid 2731 | . . . 4 β’ (Unitβπ ) = (Unitβπ ) | |
3 | drnginvrl.z | . . . 4 β’ 0 = (0gβπ ) | |
4 | 1, 2, 3 | drngunit 20506 | . . 3 β’ (π β DivRing β (π β (Unitβπ ) β (π β π΅ β§ π β 0 ))) |
5 | drngring 20508 | . . . 4 β’ (π β DivRing β π β Ring) | |
6 | drnginvrl.i | . . . . . 6 β’ πΌ = (invrβπ ) | |
7 | drnginvrl.t | . . . . . 6 β’ Β· = (.rβπ ) | |
8 | drnginvrl.u | . . . . . 6 β’ 1 = (1rβπ ) | |
9 | 2, 6, 7, 8 | unitrinv 20286 | . . . . 5 β’ ((π β Ring β§ π β (Unitβπ )) β (π Β· (πΌβπ)) = 1 ) |
10 | 9 | ex 412 | . . . 4 β’ (π β Ring β (π β (Unitβπ ) β (π Β· (πΌβπ)) = 1 )) |
11 | 5, 10 | syl 17 | . . 3 β’ (π β DivRing β (π β (Unitβπ ) β (π Β· (πΌβπ)) = 1 )) |
12 | 4, 11 | sylbird 260 | . 2 β’ (π β DivRing β ((π β π΅ β§ π β 0 ) β (π Β· (πΌβπ)) = 1 )) |
13 | 12 | 3impib 1115 | 1 β’ ((π β DivRing β§ π β π΅ β§ π β 0 ) β (π Β· (πΌβπ)) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wne 2939 βcfv 6543 (class class class)co 7412 Basecbs 17149 .rcmulr 17203 0gc0g 17390 1rcur 20076 Ringcrg 20128 Unitcui 20247 invrcinvr 20279 DivRingcdr 20501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-drng 20503 |
This theorem is referenced by: drnginvrrd 20529 abvrec 20588 lvecinv 20872 tendorinv 40281 lcfl7lem 40674 lcfrlem1 40717 mapdpglem21 40867 hgmapvvlem1 41098 |
Copyright terms: Public domain | W3C validator |