MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnginvrcl Structured version   Visualization version   GIF version

Theorem drnginvrcl 20769
Description: Closure of the multiplicative inverse in a division ring. (reccl 11926 analog). (Contributed by NM, 19-Apr-2014.)
Hypotheses
Ref Expression
invrcl.b 𝐵 = (Base‘𝑅)
invrcl.z 0 = (0g𝑅)
invrcl.i 𝐼 = (invr𝑅)
Assertion
Ref Expression
drnginvrcl ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (𝐼𝑋) ∈ 𝐵)

Proof of Theorem drnginvrcl
StepHypRef Expression
1 invrcl.b . . . 4 𝐵 = (Base‘𝑅)
2 eqid 2734 . . . 4 (Unit‘𝑅) = (Unit‘𝑅)
3 invrcl.z . . . 4 0 = (0g𝑅)
41, 2, 3drngunit 20750 . . 3 (𝑅 ∈ DivRing → (𝑋 ∈ (Unit‘𝑅) ↔ (𝑋𝐵𝑋0 )))
5 drngring 20752 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
6 invrcl.i . . . . . 6 𝐼 = (invr𝑅)
72, 6, 1ringinvcl 20408 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (𝐼𝑋) ∈ 𝐵)
87ex 412 . . . 4 (𝑅 ∈ Ring → (𝑋 ∈ (Unit‘𝑅) → (𝐼𝑋) ∈ 𝐵))
95, 8syl 17 . . 3 (𝑅 ∈ DivRing → (𝑋 ∈ (Unit‘𝑅) → (𝐼𝑋) ∈ 𝐵))
104, 9sylbird 260 . 2 (𝑅 ∈ DivRing → ((𝑋𝐵𝑋0 ) → (𝐼𝑋) ∈ 𝐵))
11103impib 1115 1 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (𝐼𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  cfv 6562  Basecbs 17244  0gc0g 17485  Ringcrg 20250  Unitcui 20371  invrcinvr 20403  DivRingcdr 20745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-drng 20747
This theorem is referenced by:  drnginvrcld  20771  drngmul0orOLD  20777  sdrgacs  20818  cntzsdrg  20819  abvrec  20845  abvdiv  20846  lvecvs0or  21127  lssvs0or  21129  lvecinv  21132  lspsnvs  21133  lspfixed  21147  lspexch  21148  lspsolv  21162  drngnidl  21270  sdrginvcl  33281  matunitlindflem1  37602  lfl1  39051  eqlkr3  39082  lkrlsp  39083  tendoinvcl  41086  dochkr1  41460  dochkr1OLDN  41461  lcfl7lem  41481  lclkrlem2m  41501  lclkrlem2o  41503  lclkrlem2p  41504  lcfrlem1  41524  lcfrlem2  41525  lcfrlem3  41526  lcfrlem29  41553  lcfrlem31  41555  lcfrlem33  41557  mapdpglem17N  41670  mapdpglem18  41671  mapdpglem19  41672  mapdpglem21  41674  mapdpglem22  41675  hdmapip1  41898  hgmapvvlem1  41905  hgmapvvlem2  41906  hgmapvvlem3  41907  prjspersym  42593  prjspnfv01  42610  prjspner01  42611
  Copyright terms: Public domain W3C validator