| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drnginvrcl | Structured version Visualization version GIF version | ||
| Description: Closure of the multiplicative inverse in a division ring. (reccl 11820 analog). (Contributed by NM, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| drnginvrcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| drnginvrcl.z | ⊢ 0 = (0g‘𝑅) |
| drnginvrcl.i | ⊢ 𝐼 = (invr‘𝑅) |
| Ref | Expression |
|---|---|
| drnginvrcl | ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drnginvrcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 3 | drnginvrcl.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 4 | 1, 2, 3 | drngunit 20654 | . . 3 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ (Unit‘𝑅) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
| 5 | drngring 20656 | . . . 4 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 6 | drnginvrcl.i | . . . . . 6 ⊢ 𝐼 = (invr‘𝑅) | |
| 7 | 2, 6, 1 | ringinvcl 20312 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (𝐼‘𝑋) ∈ 𝐵) |
| 8 | 7 | ex 412 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑋 ∈ (Unit‘𝑅) → (𝐼‘𝑋) ∈ 𝐵)) |
| 9 | 5, 8 | syl 17 | . . 3 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ (Unit‘𝑅) → (𝐼‘𝑋) ∈ 𝐵)) |
| 10 | 4, 9 | sylbird 260 | . 2 ⊢ (𝑅 ∈ DivRing → ((𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ∈ 𝐵)) |
| 11 | 10 | 3impib 1116 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6499 Basecbs 17155 0gc0g 17378 Ringcrg 20153 Unitcui 20275 invrcinvr 20307 DivRingcdr 20649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-grp 18850 df-minusg 18851 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-drng 20651 |
| This theorem is referenced by: drnginvrcld 20675 drngmul0orOLD 20681 sdrgacs 20721 cntzsdrg 20722 abvrec 20748 abvdiv 20749 lvecvs0or 21050 lssvs0or 21052 lvecinv 21055 lspsnvs 21056 lspfixed 21070 lspexch 21071 lspsolv 21085 drngnidl 21185 sdrginvcl 33266 matunitlindflem1 37603 lfl1 39056 eqlkr3 39087 lkrlsp 39088 tendoinvcl 41091 dochkr1 41465 dochkr1OLDN 41466 lcfl7lem 41486 lclkrlem2m 41506 lclkrlem2o 41508 lclkrlem2p 41509 lcfrlem1 41529 lcfrlem2 41530 lcfrlem3 41531 lcfrlem29 41558 lcfrlem31 41560 lcfrlem33 41562 mapdpglem17N 41675 mapdpglem18 41676 mapdpglem19 41677 mapdpglem21 41679 mapdpglem22 41680 hdmapip1 41903 hgmapvvlem1 41910 hgmapvvlem2 41911 hgmapvvlem3 41912 prjspersym 42588 prjspnfv01 42605 prjspner01 42606 |
| Copyright terms: Public domain | W3C validator |