| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drnginvrcl | Structured version Visualization version GIF version | ||
| Description: Closure of the multiplicative inverse in a division ring. (reccl 11903 analog). (Contributed by NM, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| invrcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| invrcl.z | ⊢ 0 = (0g‘𝑅) |
| invrcl.i | ⊢ 𝐼 = (invr‘𝑅) |
| Ref | Expression |
|---|---|
| drnginvrcl | ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invrcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2735 | . . . 4 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 3 | invrcl.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 4 | 1, 2, 3 | drngunit 20694 | . . 3 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ (Unit‘𝑅) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
| 5 | drngring 20696 | . . . 4 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 6 | invrcl.i | . . . . . 6 ⊢ 𝐼 = (invr‘𝑅) | |
| 7 | 2, 6, 1 | ringinvcl 20352 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (𝐼‘𝑋) ∈ 𝐵) |
| 8 | 7 | ex 412 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑋 ∈ (Unit‘𝑅) → (𝐼‘𝑋) ∈ 𝐵)) |
| 9 | 5, 8 | syl 17 | . . 3 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ (Unit‘𝑅) → (𝐼‘𝑋) ∈ 𝐵)) |
| 10 | 4, 9 | sylbird 260 | . 2 ⊢ (𝑅 ∈ DivRing → ((𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ∈ 𝐵)) |
| 11 | 10 | 3impib 1116 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ‘cfv 6531 Basecbs 17228 0gc0g 17453 Ringcrg 20193 Unitcui 20315 invrcinvr 20347 DivRingcdr 20689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-drng 20691 |
| This theorem is referenced by: drnginvrcld 20715 drngmul0orOLD 20721 sdrgacs 20761 cntzsdrg 20762 abvrec 20788 abvdiv 20789 lvecvs0or 21069 lssvs0or 21071 lvecinv 21074 lspsnvs 21075 lspfixed 21089 lspexch 21090 lspsolv 21104 drngnidl 21204 sdrginvcl 33294 matunitlindflem1 37640 lfl1 39088 eqlkr3 39119 lkrlsp 39120 tendoinvcl 41123 dochkr1 41497 dochkr1OLDN 41498 lcfl7lem 41518 lclkrlem2m 41538 lclkrlem2o 41540 lclkrlem2p 41541 lcfrlem1 41561 lcfrlem2 41562 lcfrlem3 41563 lcfrlem29 41590 lcfrlem31 41592 lcfrlem33 41594 mapdpglem17N 41707 mapdpglem18 41708 mapdpglem19 41709 mapdpglem21 41711 mapdpglem22 41712 hdmapip1 41935 hgmapvvlem1 41942 hgmapvvlem2 41943 hgmapvvlem3 41944 prjspersym 42630 prjspnfv01 42647 prjspner01 42648 |
| Copyright terms: Public domain | W3C validator |