MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnginvrcl Structured version   Visualization version   GIF version

Theorem drnginvrcl 19245
Description: Closure of the multiplicative inverse in a division ring. (reccl 11108 analog.) (Contributed by NM, 19-Apr-2014.)
Hypotheses
Ref Expression
invrcl.b 𝐵 = (Base‘𝑅)
invrcl.z 0 = (0g𝑅)
invrcl.i 𝐼 = (invr𝑅)
Assertion
Ref Expression
drnginvrcl ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (𝐼𝑋) ∈ 𝐵)

Proof of Theorem drnginvrcl
StepHypRef Expression
1 invrcl.b . . . 4 𝐵 = (Base‘𝑅)
2 eqid 2778 . . . 4 (Unit‘𝑅) = (Unit‘𝑅)
3 invrcl.z . . . 4 0 = (0g𝑅)
41, 2, 3drngunit 19233 . . 3 (𝑅 ∈ DivRing → (𝑋 ∈ (Unit‘𝑅) ↔ (𝑋𝐵𝑋0 )))
5 drngring 19235 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
6 invrcl.i . . . . . 6 𝐼 = (invr𝑅)
72, 6, 1ringinvcl 19152 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (𝐼𝑋) ∈ 𝐵)
87ex 405 . . . 4 (𝑅 ∈ Ring → (𝑋 ∈ (Unit‘𝑅) → (𝐼𝑋) ∈ 𝐵))
95, 8syl 17 . . 3 (𝑅 ∈ DivRing → (𝑋 ∈ (Unit‘𝑅) → (𝐼𝑋) ∈ 𝐵))
104, 9sylbird 252 . 2 (𝑅 ∈ DivRing → ((𝑋𝐵𝑋0 ) → (𝐼𝑋) ∈ 𝐵))
11103impib 1096 1 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (𝐼𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2967  cfv 6190  Basecbs 16342  0gc0g 16572  Ringcrg 19023  Unitcui 19115  invrcinvr 19147  DivRingcdr 19228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-tpos 7697  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-2 11506  df-3 11507  df-ndx 16345  df-slot 16346  df-base 16348  df-sets 16349  df-ress 16350  df-plusg 16437  df-mulr 16438  df-0g 16574  df-mgm 17713  df-sgrp 17755  df-mnd 17766  df-grp 17897  df-minusg 17898  df-mgp 18966  df-ur 18978  df-ring 19025  df-oppr 19099  df-dvdsr 19117  df-unit 19118  df-invr 19148  df-drng 19230
This theorem is referenced by:  drngmul0or  19249  sdrgacs  19305  cntzsdrg  19306  abvrec  19332  abvdiv  19333  lvecvs0or  19605  lssvs0or  19607  lvecinv  19610  lspsnvs  19611  lspfixed  19625  lspexch  19626  lspsolv  19640  drngnidl  19726  matunitlindflem1  34329  lfl1  35651  eqlkr3  35682  lkrlsp  35683  tendoinvcl  37685  dochkr1  38059  dochkr1OLDN  38060  lcfl7lem  38080  lclkrlem2m  38100  lclkrlem2o  38102  lclkrlem2p  38103  lcfrlem1  38123  lcfrlem2  38124  lcfrlem3  38125  lcfrlem29  38152  lcfrlem31  38154  lcfrlem33  38156  mapdpglem17N  38269  mapdpglem18  38270  mapdpglem19  38271  mapdpglem21  38273  mapdpglem22  38274  hdmapip1  38497  hgmapvvlem1  38504  hgmapvvlem2  38505  hgmapvvlem3  38506  prjspersym  38664
  Copyright terms: Public domain W3C validator