![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drnginvrl | Structured version Visualization version GIF version |
Description: Property of the multiplicative inverse in a division ring. (recid2 11106 analog.) (Contributed by NM, 19-Apr-2014.) |
Ref | Expression |
---|---|
drnginvrl.b | ⊢ 𝐵 = (Base‘𝑅) |
drnginvrl.z | ⊢ 0 = (0g‘𝑅) |
drnginvrl.t | ⊢ · = (.r‘𝑅) |
drnginvrl.u | ⊢ 1 = (1r‘𝑅) |
drnginvrl.i | ⊢ 𝐼 = (invr‘𝑅) |
Ref | Expression |
---|---|
drnginvrl | ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ((𝐼‘𝑋) · 𝑋) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drnginvrl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2772 | . . . 4 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
3 | drnginvrl.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
4 | 1, 2, 3 | drngunit 19220 | . . 3 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ (Unit‘𝑅) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ))) |
5 | drngring 19222 | . . . 4 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
6 | drnginvrl.i | . . . . . 6 ⊢ 𝐼 = (invr‘𝑅) | |
7 | drnginvrl.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
8 | drnginvrl.u | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
9 | 2, 6, 7, 8 | unitlinv 19140 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → ((𝐼‘𝑋) · 𝑋) = 1 ) |
10 | 9 | ex 405 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑋 ∈ (Unit‘𝑅) → ((𝐼‘𝑋) · 𝑋) = 1 )) |
11 | 5, 10 | syl 17 | . . 3 ⊢ (𝑅 ∈ DivRing → (𝑋 ∈ (Unit‘𝑅) → ((𝐼‘𝑋) · 𝑋) = 1 )) |
12 | 4, 11 | sylbird 252 | . 2 ⊢ (𝑅 ∈ DivRing → ((𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ((𝐼‘𝑋) · 𝑋) = 1 )) |
13 | 12 | 3impib 1096 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ((𝐼‘𝑋) · 𝑋) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 ≠ wne 2961 ‘cfv 6182 (class class class)co 6970 Basecbs 16329 .rcmulr 16412 0gc0g 16559 1rcur 18964 Ringcrg 19010 Unitcui 19102 invrcinvr 19134 DivRingcdr 19215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-tpos 7688 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-2 11496 df-3 11497 df-ndx 16332 df-slot 16333 df-base 16335 df-sets 16336 df-ress 16337 df-plusg 16424 df-mulr 16425 df-0g 16561 df-mgm 17700 df-sgrp 17742 df-mnd 17753 df-grp 17884 df-minusg 17885 df-mgp 18953 df-ur 18965 df-ring 19012 df-oppr 19086 df-dvdsr 19104 df-unit 19105 df-invr 19135 df-drng 19217 |
This theorem is referenced by: drngmul0or 19236 lvecvs0or 19592 lssvs0or 19594 lvecinv 19597 lspsnvs 19598 lspfixed 19612 lspsolv 19627 drngnidl 19713 matunitlindflem1 34277 lfl1 35599 eqlkr3 35630 lkrlsp 35631 tendolinv 37634 dochkr1 38007 dochkr1OLDN 38008 lclkrlem2m 38048 hdmapip1 38445 hgmapvvlem2 38453 |
Copyright terms: Public domain | W3C validator |