MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsssubdrg Structured version   Visualization version   GIF version

Theorem qsssubdrg 21419
Description: The rational numbers are a subset of any subfield of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
qsssubdrg ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) → ℚ ⊆ 𝑅)

Proof of Theorem qsssubdrg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 12980 . . 3 (𝑧 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦))
2 drngring 20710 . . . . . . . 8 ((ℂflds 𝑅) ∈ DivRing → (ℂflds 𝑅) ∈ Ring)
32ad2antlr 725 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (ℂflds 𝑅) ∈ Ring)
4 zsssubrg 21418 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅)
54ad2antrr 724 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → ℤ ⊆ 𝑅)
6 eqid 2726 . . . . . . . . . . 11 (ℂflds 𝑅) = (ℂflds 𝑅)
76subrgbas 20561 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘ℂfld) → 𝑅 = (Base‘(ℂflds 𝑅)))
87ad2antrr 724 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑅 = (Base‘(ℂflds 𝑅)))
95, 8sseqtrd 4019 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → ℤ ⊆ (Base‘(ℂflds 𝑅)))
10 simprl 769 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑥 ∈ ℤ)
119, 10sseldd 3979 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑥 ∈ (Base‘(ℂflds 𝑅)))
12 nnz 12625 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
1312ad2antll 727 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ∈ ℤ)
149, 13sseldd 3979 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ∈ (Base‘(ℂflds 𝑅)))
15 nnne0 12292 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
1615ad2antll 727 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ≠ 0)
17 cnfld0 21380 . . . . . . . . . . 11 0 = (0g‘ℂfld)
186, 17subrg0 20559 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘ℂfld) → 0 = (0g‘(ℂflds 𝑅)))
1918ad2antrr 724 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 0 = (0g‘(ℂflds 𝑅)))
2016, 19neeqtrd 3000 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ≠ (0g‘(ℂflds 𝑅)))
21 eqid 2726 . . . . . . . . . 10 (Base‘(ℂflds 𝑅)) = (Base‘(ℂflds 𝑅))
22 eqid 2726 . . . . . . . . . 10 (Unit‘(ℂflds 𝑅)) = (Unit‘(ℂflds 𝑅))
23 eqid 2726 . . . . . . . . . 10 (0g‘(ℂflds 𝑅)) = (0g‘(ℂflds 𝑅))
2421, 22, 23drngunit 20708 . . . . . . . . 9 ((ℂflds 𝑅) ∈ DivRing → (𝑦 ∈ (Unit‘(ℂflds 𝑅)) ↔ (𝑦 ∈ (Base‘(ℂflds 𝑅)) ∧ 𝑦 ≠ (0g‘(ℂflds 𝑅)))))
2524ad2antlr 725 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑦 ∈ (Unit‘(ℂflds 𝑅)) ↔ (𝑦 ∈ (Base‘(ℂflds 𝑅)) ∧ 𝑦 ≠ (0g‘(ℂflds 𝑅)))))
2614, 20, 25mpbir2and 711 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ∈ (Unit‘(ℂflds 𝑅)))
27 eqid 2726 . . . . . . . 8 (/r‘(ℂflds 𝑅)) = (/r‘(ℂflds 𝑅))
2821, 22, 27dvrcl 20382 . . . . . . 7 (((ℂflds 𝑅) ∈ Ring ∧ 𝑥 ∈ (Base‘(ℂflds 𝑅)) ∧ 𝑦 ∈ (Unit‘(ℂflds 𝑅))) → (𝑥(/r‘(ℂflds 𝑅))𝑦) ∈ (Base‘(ℂflds 𝑅)))
293, 11, 26, 28syl3anc 1368 . . . . . 6 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥(/r‘(ℂflds 𝑅))𝑦) ∈ (Base‘(ℂflds 𝑅)))
30 simpll 765 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑅 ∈ (SubRing‘ℂfld))
315, 10sseldd 3979 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑥𝑅)
32 cnflddiv 21388 . . . . . . . 8 / = (/r‘ℂfld)
336, 32, 22, 27subrgdv 20569 . . . . . . 7 ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥𝑅𝑦 ∈ (Unit‘(ℂflds 𝑅))) → (𝑥 / 𝑦) = (𝑥(/r‘(ℂflds 𝑅))𝑦))
3430, 31, 26, 33syl3anc 1368 . . . . . 6 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥 / 𝑦) = (𝑥(/r‘(ℂflds 𝑅))𝑦))
3529, 34, 83eltr4d 2841 . . . . 5 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥 / 𝑦) ∈ 𝑅)
36 eleq1 2814 . . . . 5 (𝑧 = (𝑥 / 𝑦) → (𝑧𝑅 ↔ (𝑥 / 𝑦) ∈ 𝑅))
3735, 36syl5ibrcom 246 . . . 4 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑧 = (𝑥 / 𝑦) → 𝑧𝑅))
3837rexlimdvva 3202 . . 3 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦) → 𝑧𝑅))
391, 38biimtrid 241 . 2 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) → (𝑧 ∈ ℚ → 𝑧𝑅))
4039ssrdv 3984 1 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) → ℚ ⊆ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  wrex 3060  wss 3946  cfv 6546  (class class class)co 7416  0cc0 11149   / cdiv 11912  cn 12258  cz 12604  cq 12978  Basecbs 17208  s cress 17237  0gc0g 17449  Ringcrg 20212  Unitcui 20333  /rcdvr 20378  SubRingcsubrg 20547  DivRingcdr 20703  fldccnfld 21339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-addf 11228
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-z 12605  df-dec 12724  df-uz 12869  df-q 12979  df-fz 13533  df-seq 14016  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-starv 17276  df-tset 17280  df-ple 17281  df-ds 17283  df-unif 17284  df-0g 17451  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-grp 18926  df-minusg 18927  df-mulg 19058  df-subg 19113  df-cmn 19776  df-abl 19777  df-mgp 20114  df-rng 20132  df-ur 20161  df-ring 20214  df-cring 20215  df-oppr 20312  df-dvdsr 20335  df-unit 20336  df-invr 20366  df-dvr 20379  df-subrg 20549  df-drng 20705  df-cnfld 21340
This theorem is referenced by:  cphqss  25204  resscdrg  25374
  Copyright terms: Public domain W3C validator