Step | Hyp | Ref
| Expression |
1 | | elq 12690 |
. . 3
⊢ (𝑧 ∈ ℚ ↔
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℕ
𝑧 = (𝑥 / 𝑦)) |
2 | | drngring 19998 |
. . . . . . . 8
⊢
((ℂfld ↾s 𝑅) ∈ DivRing →
(ℂfld ↾s 𝑅) ∈ Ring) |
3 | 2 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) ∧ (𝑥
∈ ℤ ∧ 𝑦
∈ ℕ)) → (ℂfld ↾s 𝑅) ∈ Ring) |
4 | | zsssubrg 20656 |
. . . . . . . . . 10
⊢ (𝑅 ∈
(SubRing‘ℂfld) → ℤ ⊆ 𝑅) |
5 | 4 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) ∧ (𝑥
∈ ℤ ∧ 𝑦
∈ ℕ)) → ℤ ⊆ 𝑅) |
6 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(ℂfld ↾s 𝑅) = (ℂfld
↾s 𝑅) |
7 | 6 | subrgbas 20033 |
. . . . . . . . . 10
⊢ (𝑅 ∈
(SubRing‘ℂfld) → 𝑅 = (Base‘(ℂfld
↾s 𝑅))) |
8 | 7 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) ∧ (𝑥
∈ ℤ ∧ 𝑦
∈ ℕ)) → 𝑅 =
(Base‘(ℂfld ↾s 𝑅))) |
9 | 5, 8 | sseqtrd 3961 |
. . . . . . . 8
⊢ (((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) ∧ (𝑥
∈ ℤ ∧ 𝑦
∈ ℕ)) → ℤ ⊆ (Base‘(ℂfld
↾s 𝑅))) |
10 | | simprl 768 |
. . . . . . . 8
⊢ (((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) ∧ (𝑥
∈ ℤ ∧ 𝑦
∈ ℕ)) → 𝑥
∈ ℤ) |
11 | 9, 10 | sseldd 3922 |
. . . . . . 7
⊢ (((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) ∧ (𝑥
∈ ℤ ∧ 𝑦
∈ ℕ)) → 𝑥
∈ (Base‘(ℂfld ↾s 𝑅))) |
12 | | nnz 12342 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℤ) |
13 | 12 | ad2antll 726 |
. . . . . . . . 9
⊢ (((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) ∧ (𝑥
∈ ℤ ∧ 𝑦
∈ ℕ)) → 𝑦
∈ ℤ) |
14 | 9, 13 | sseldd 3922 |
. . . . . . . 8
⊢ (((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) ∧ (𝑥
∈ ℤ ∧ 𝑦
∈ ℕ)) → 𝑦
∈ (Base‘(ℂfld ↾s 𝑅))) |
15 | | nnne0 12007 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → 𝑦 ≠ 0) |
16 | 15 | ad2antll 726 |
. . . . . . . . 9
⊢ (((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) ∧ (𝑥
∈ ℤ ∧ 𝑦
∈ ℕ)) → 𝑦
≠ 0) |
17 | | cnfld0 20622 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘ℂfld) |
18 | 6, 17 | subrg0 20031 |
. . . . . . . . . 10
⊢ (𝑅 ∈
(SubRing‘ℂfld) → 0 =
(0g‘(ℂfld ↾s 𝑅))) |
19 | 18 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) ∧ (𝑥
∈ ℤ ∧ 𝑦
∈ ℕ)) → 0 = (0g‘(ℂfld
↾s 𝑅))) |
20 | 16, 19 | neeqtrd 3013 |
. . . . . . . 8
⊢ (((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) ∧ (𝑥
∈ ℤ ∧ 𝑦
∈ ℕ)) → 𝑦
≠ (0g‘(ℂfld ↾s 𝑅))) |
21 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘(ℂfld ↾s 𝑅)) = (Base‘(ℂfld
↾s 𝑅)) |
22 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Unit‘(ℂfld ↾s 𝑅)) = (Unit‘(ℂfld
↾s 𝑅)) |
23 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0g‘(ℂfld ↾s 𝑅)) =
(0g‘(ℂfld ↾s 𝑅)) |
24 | 21, 22, 23 | drngunit 19996 |
. . . . . . . . 9
⊢
((ℂfld ↾s 𝑅) ∈ DivRing → (𝑦 ∈ (Unit‘(ℂfld
↾s 𝑅))
↔ (𝑦 ∈
(Base‘(ℂfld ↾s 𝑅)) ∧ 𝑦 ≠
(0g‘(ℂfld ↾s 𝑅))))) |
25 | 24 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) ∧ (𝑥
∈ ℤ ∧ 𝑦
∈ ℕ)) → (𝑦
∈ (Unit‘(ℂfld ↾s 𝑅)) ↔ (𝑦 ∈ (Base‘(ℂfld
↾s 𝑅))
∧ 𝑦 ≠
(0g‘(ℂfld ↾s 𝑅))))) |
26 | 14, 20, 25 | mpbir2and 710 |
. . . . . . 7
⊢ (((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) ∧ (𝑥
∈ ℤ ∧ 𝑦
∈ ℕ)) → 𝑦
∈ (Unit‘(ℂfld ↾s 𝑅))) |
27 | | eqid 2738 |
. . . . . . . 8
⊢
(/r‘(ℂfld ↾s 𝑅)) =
(/r‘(ℂfld ↾s 𝑅)) |
28 | 21, 22, 27 | dvrcl 19928 |
. . . . . . 7
⊢
(((ℂfld ↾s 𝑅) ∈ Ring ∧ 𝑥 ∈ (Base‘(ℂfld
↾s 𝑅))
∧ 𝑦 ∈
(Unit‘(ℂfld ↾s 𝑅))) → (𝑥(/r‘(ℂfld
↾s 𝑅))𝑦) ∈ (Base‘(ℂfld
↾s 𝑅))) |
29 | 3, 11, 26, 28 | syl3anc 1370 |
. . . . . 6
⊢ (((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) ∧ (𝑥
∈ ℤ ∧ 𝑦
∈ ℕ)) → (𝑥(/r‘(ℂfld
↾s 𝑅))𝑦) ∈ (Base‘(ℂfld
↾s 𝑅))) |
30 | | simpll 764 |
. . . . . . 7
⊢ (((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) ∧ (𝑥
∈ ℤ ∧ 𝑦
∈ ℕ)) → 𝑅
∈ (SubRing‘ℂfld)) |
31 | 5, 10 | sseldd 3922 |
. . . . . . 7
⊢ (((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) ∧ (𝑥
∈ ℤ ∧ 𝑦
∈ ℕ)) → 𝑥
∈ 𝑅) |
32 | | cnflddiv 20628 |
. . . . . . . 8
⊢ / =
(/r‘ℂfld) |
33 | 6, 32, 22, 27 | subrgdv 20041 |
. . . . . . 7
⊢ ((𝑅 ∈
(SubRing‘ℂfld) ∧ 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ (Unit‘(ℂfld
↾s 𝑅)))
→ (𝑥 / 𝑦) = (𝑥(/r‘(ℂfld
↾s 𝑅))𝑦)) |
34 | 30, 31, 26, 33 | syl3anc 1370 |
. . . . . 6
⊢ (((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) ∧ (𝑥
∈ ℤ ∧ 𝑦
∈ ℕ)) → (𝑥
/ 𝑦) = (𝑥(/r‘(ℂfld
↾s 𝑅))𝑦)) |
35 | 29, 34, 8 | 3eltr4d 2854 |
. . . . 5
⊢ (((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) ∧ (𝑥
∈ ℤ ∧ 𝑦
∈ ℕ)) → (𝑥
/ 𝑦) ∈ 𝑅) |
36 | | eleq1 2826 |
. . . . 5
⊢ (𝑧 = (𝑥 / 𝑦) → (𝑧 ∈ 𝑅 ↔ (𝑥 / 𝑦) ∈ 𝑅)) |
37 | 35, 36 | syl5ibrcom 246 |
. . . 4
⊢ (((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) ∧ (𝑥
∈ ℤ ∧ 𝑦
∈ ℕ)) → (𝑧
= (𝑥 / 𝑦) → 𝑧 ∈ 𝑅)) |
38 | 37 | rexlimdvva 3223 |
. . 3
⊢ ((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦) → 𝑧 ∈ 𝑅)) |
39 | 1, 38 | syl5bi 241 |
. 2
⊢ ((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) → (𝑧
∈ ℚ → 𝑧
∈ 𝑅)) |
40 | 39 | ssrdv 3927 |
1
⊢ ((𝑅 ∈
(SubRing‘ℂfld) ∧ (ℂfld
↾s 𝑅)
∈ DivRing) → ℚ ⊆ 𝑅) |