MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsssubdrg Structured version   Visualization version   GIF version

Theorem qsssubdrg 21333
Description: The rational numbers are a subset of any subfield of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
qsssubdrg ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) → ℚ ⊆ 𝑅)

Proof of Theorem qsssubdrg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 12851 . . 3 (𝑧 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦))
2 drngring 20621 . . . . . . . 8 ((ℂflds 𝑅) ∈ DivRing → (ℂflds 𝑅) ∈ Ring)
32ad2antlr 727 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (ℂflds 𝑅) ∈ Ring)
4 zsssubrg 21332 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅)
54ad2antrr 726 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → ℤ ⊆ 𝑅)
6 eqid 2729 . . . . . . . . . . 11 (ℂflds 𝑅) = (ℂflds 𝑅)
76subrgbas 20466 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘ℂfld) → 𝑅 = (Base‘(ℂflds 𝑅)))
87ad2antrr 726 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑅 = (Base‘(ℂflds 𝑅)))
95, 8sseqtrd 3972 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → ℤ ⊆ (Base‘(ℂflds 𝑅)))
10 simprl 770 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑥 ∈ ℤ)
119, 10sseldd 3936 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑥 ∈ (Base‘(ℂflds 𝑅)))
12 nnz 12492 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
1312ad2antll 729 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ∈ ℤ)
149, 13sseldd 3936 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ∈ (Base‘(ℂflds 𝑅)))
15 nnne0 12162 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
1615ad2antll 729 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ≠ 0)
17 cnfld0 21299 . . . . . . . . . . 11 0 = (0g‘ℂfld)
186, 17subrg0 20464 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘ℂfld) → 0 = (0g‘(ℂflds 𝑅)))
1918ad2antrr 726 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 0 = (0g‘(ℂflds 𝑅)))
2016, 19neeqtrd 2994 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ≠ (0g‘(ℂflds 𝑅)))
21 eqid 2729 . . . . . . . . . 10 (Base‘(ℂflds 𝑅)) = (Base‘(ℂflds 𝑅))
22 eqid 2729 . . . . . . . . . 10 (Unit‘(ℂflds 𝑅)) = (Unit‘(ℂflds 𝑅))
23 eqid 2729 . . . . . . . . . 10 (0g‘(ℂflds 𝑅)) = (0g‘(ℂflds 𝑅))
2421, 22, 23drngunit 20619 . . . . . . . . 9 ((ℂflds 𝑅) ∈ DivRing → (𝑦 ∈ (Unit‘(ℂflds 𝑅)) ↔ (𝑦 ∈ (Base‘(ℂflds 𝑅)) ∧ 𝑦 ≠ (0g‘(ℂflds 𝑅)))))
2524ad2antlr 727 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑦 ∈ (Unit‘(ℂflds 𝑅)) ↔ (𝑦 ∈ (Base‘(ℂflds 𝑅)) ∧ 𝑦 ≠ (0g‘(ℂflds 𝑅)))))
2614, 20, 25mpbir2and 713 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ∈ (Unit‘(ℂflds 𝑅)))
27 eqid 2729 . . . . . . . 8 (/r‘(ℂflds 𝑅)) = (/r‘(ℂflds 𝑅))
2821, 22, 27dvrcl 20289 . . . . . . 7 (((ℂflds 𝑅) ∈ Ring ∧ 𝑥 ∈ (Base‘(ℂflds 𝑅)) ∧ 𝑦 ∈ (Unit‘(ℂflds 𝑅))) → (𝑥(/r‘(ℂflds 𝑅))𝑦) ∈ (Base‘(ℂflds 𝑅)))
293, 11, 26, 28syl3anc 1373 . . . . . 6 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥(/r‘(ℂflds 𝑅))𝑦) ∈ (Base‘(ℂflds 𝑅)))
30 simpll 766 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑅 ∈ (SubRing‘ℂfld))
315, 10sseldd 3936 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑥𝑅)
32 cnflddiv 21307 . . . . . . . 8 / = (/r‘ℂfld)
336, 32, 22, 27subrgdv 20474 . . . . . . 7 ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥𝑅𝑦 ∈ (Unit‘(ℂflds 𝑅))) → (𝑥 / 𝑦) = (𝑥(/r‘(ℂflds 𝑅))𝑦))
3430, 31, 26, 33syl3anc 1373 . . . . . 6 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥 / 𝑦) = (𝑥(/r‘(ℂflds 𝑅))𝑦))
3529, 34, 83eltr4d 2843 . . . . 5 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥 / 𝑦) ∈ 𝑅)
36 eleq1 2816 . . . . 5 (𝑧 = (𝑥 / 𝑦) → (𝑧𝑅 ↔ (𝑥 / 𝑦) ∈ 𝑅))
3735, 36syl5ibrcom 247 . . . 4 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑧 = (𝑥 / 𝑦) → 𝑧𝑅))
3837rexlimdvva 3186 . . 3 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦) → 𝑧𝑅))
391, 38biimtrid 242 . 2 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) → (𝑧 ∈ ℚ → 𝑧𝑅))
4039ssrdv 3941 1 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) → ℚ ⊆ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  wss 3903  cfv 6482  (class class class)co 7349  0cc0 11009   / cdiv 11777  cn 12128  cz 12471  cq 12849  Basecbs 17120  s cress 17141  0gc0g 17343  Ringcrg 20118  Unitcui 20240  /rcdvr 20285  SubRingcsubrg 20454  DivRingcdr 20614  fldccnfld 21261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-fz 13411  df-seq 13909  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-mulg 18947  df-subg 19002  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-subrg 20455  df-drng 20616  df-cnfld 21262
This theorem is referenced by:  cphqss  25086  resscdrg  25256
  Copyright terms: Public domain W3C validator