MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsssubdrg Structured version   Visualization version   GIF version

Theorem qsssubdrg 20569
Description: The rational numbers are a subset of any subfield of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
qsssubdrg ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) → ℚ ⊆ 𝑅)

Proof of Theorem qsssubdrg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 12619 . . 3 (𝑧 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦))
2 drngring 19913 . . . . . . . 8 ((ℂflds 𝑅) ∈ DivRing → (ℂflds 𝑅) ∈ Ring)
32ad2antlr 723 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (ℂflds 𝑅) ∈ Ring)
4 zsssubrg 20568 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅)
54ad2antrr 722 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → ℤ ⊆ 𝑅)
6 eqid 2738 . . . . . . . . . . 11 (ℂflds 𝑅) = (ℂflds 𝑅)
76subrgbas 19948 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘ℂfld) → 𝑅 = (Base‘(ℂflds 𝑅)))
87ad2antrr 722 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑅 = (Base‘(ℂflds 𝑅)))
95, 8sseqtrd 3957 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → ℤ ⊆ (Base‘(ℂflds 𝑅)))
10 simprl 767 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑥 ∈ ℤ)
119, 10sseldd 3918 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑥 ∈ (Base‘(ℂflds 𝑅)))
12 nnz 12272 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
1312ad2antll 725 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ∈ ℤ)
149, 13sseldd 3918 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ∈ (Base‘(ℂflds 𝑅)))
15 nnne0 11937 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
1615ad2antll 725 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ≠ 0)
17 cnfld0 20534 . . . . . . . . . . 11 0 = (0g‘ℂfld)
186, 17subrg0 19946 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘ℂfld) → 0 = (0g‘(ℂflds 𝑅)))
1918ad2antrr 722 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 0 = (0g‘(ℂflds 𝑅)))
2016, 19neeqtrd 3012 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ≠ (0g‘(ℂflds 𝑅)))
21 eqid 2738 . . . . . . . . . 10 (Base‘(ℂflds 𝑅)) = (Base‘(ℂflds 𝑅))
22 eqid 2738 . . . . . . . . . 10 (Unit‘(ℂflds 𝑅)) = (Unit‘(ℂflds 𝑅))
23 eqid 2738 . . . . . . . . . 10 (0g‘(ℂflds 𝑅)) = (0g‘(ℂflds 𝑅))
2421, 22, 23drngunit 19911 . . . . . . . . 9 ((ℂflds 𝑅) ∈ DivRing → (𝑦 ∈ (Unit‘(ℂflds 𝑅)) ↔ (𝑦 ∈ (Base‘(ℂflds 𝑅)) ∧ 𝑦 ≠ (0g‘(ℂflds 𝑅)))))
2524ad2antlr 723 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑦 ∈ (Unit‘(ℂflds 𝑅)) ↔ (𝑦 ∈ (Base‘(ℂflds 𝑅)) ∧ 𝑦 ≠ (0g‘(ℂflds 𝑅)))))
2614, 20, 25mpbir2and 709 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ∈ (Unit‘(ℂflds 𝑅)))
27 eqid 2738 . . . . . . . 8 (/r‘(ℂflds 𝑅)) = (/r‘(ℂflds 𝑅))
2821, 22, 27dvrcl 19843 . . . . . . 7 (((ℂflds 𝑅) ∈ Ring ∧ 𝑥 ∈ (Base‘(ℂflds 𝑅)) ∧ 𝑦 ∈ (Unit‘(ℂflds 𝑅))) → (𝑥(/r‘(ℂflds 𝑅))𝑦) ∈ (Base‘(ℂflds 𝑅)))
293, 11, 26, 28syl3anc 1369 . . . . . 6 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥(/r‘(ℂflds 𝑅))𝑦) ∈ (Base‘(ℂflds 𝑅)))
30 simpll 763 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑅 ∈ (SubRing‘ℂfld))
315, 10sseldd 3918 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑥𝑅)
32 cnflddiv 20540 . . . . . . . 8 / = (/r‘ℂfld)
336, 32, 22, 27subrgdv 19956 . . . . . . 7 ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥𝑅𝑦 ∈ (Unit‘(ℂflds 𝑅))) → (𝑥 / 𝑦) = (𝑥(/r‘(ℂflds 𝑅))𝑦))
3430, 31, 26, 33syl3anc 1369 . . . . . 6 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥 / 𝑦) = (𝑥(/r‘(ℂflds 𝑅))𝑦))
3529, 34, 83eltr4d 2854 . . . . 5 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥 / 𝑦) ∈ 𝑅)
36 eleq1 2826 . . . . 5 (𝑧 = (𝑥 / 𝑦) → (𝑧𝑅 ↔ (𝑥 / 𝑦) ∈ 𝑅))
3735, 36syl5ibrcom 246 . . . 4 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑧 = (𝑥 / 𝑦) → 𝑧𝑅))
3837rexlimdvva 3222 . . 3 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦) → 𝑧𝑅))
391, 38syl5bi 241 . 2 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) → (𝑧 ∈ ℚ → 𝑧𝑅))
4039ssrdv 3923 1 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) → ℚ ⊆ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  wss 3883  cfv 6418  (class class class)co 7255  0cc0 10802   / cdiv 11562  cn 11903  cz 12249  cq 12617  Basecbs 16840  s cress 16867  0gc0g 17067  Ringcrg 19698  Unitcui 19796  /rcdvr 19839  DivRingcdr 19906  SubRingcsubrg 19935  fldccnfld 20510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-fz 13169  df-seq 13650  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mulg 18616  df-subg 18667  df-cmn 19303  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908  df-subrg 19937  df-cnfld 20511
This theorem is referenced by:  cphqss  24257  resscdrg  24427
  Copyright terms: Public domain W3C validator