| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdrgunit | Structured version Visualization version GIF version | ||
| Description: A unit of a sub-division-ring is a nonzero element of the subring. (Contributed by SN, 19-Feb-2025.) |
| Ref | Expression |
|---|---|
| sdrgunit.s | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| sdrgunit.0 | ⊢ 0 = (0g‘𝑅) |
| sdrgunit.u | ⊢ 𝑈 = (Unit‘𝑆) |
| Ref | Expression |
|---|---|
| sdrgunit | ⊢ (𝐴 ∈ (SubDRing‘𝑅) → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdrgunit.s | . . . 4 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | 1 | sdrgdrng 20706 | . . 3 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing) |
| 3 | eqid 2731 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 4 | sdrgunit.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑆) | |
| 5 | eqid 2731 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 6 | 3, 4, 5 | drngunit 20650 | . . 3 ⊢ (𝑆 ∈ DivRing → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ (Base‘𝑆) ∧ 𝑋 ≠ (0g‘𝑆)))) |
| 7 | 2, 6 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ (Base‘𝑆) ∧ 𝑋 ≠ (0g‘𝑆)))) |
| 8 | 1 | sdrgbas 20710 | . . . 4 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
| 9 | 8 | eleq2d 2817 | . . 3 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → (𝑋 ∈ 𝐴 ↔ 𝑋 ∈ (Base‘𝑆))) |
| 10 | sdrgsubrg 20707 | . . . . 5 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅)) | |
| 11 | sdrgunit.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 12 | 1, 11 | subrg0 20495 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 0 = (0g‘𝑆)) |
| 13 | 10, 12 | syl 17 | . . . 4 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 0 = (0g‘𝑆)) |
| 14 | 13 | neeq2d 2988 | . . 3 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → (𝑋 ≠ 0 ↔ 𝑋 ≠ (0g‘𝑆))) |
| 15 | 9, 14 | anbi12d 632 | . 2 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → ((𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ) ↔ (𝑋 ∈ (Base‘𝑆) ∧ 𝑋 ≠ (0g‘𝑆)))) |
| 16 | 7, 15 | bitr4d 282 | 1 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 0gc0g 17343 Unitcui 20274 SubRingcsubrg 20485 DivRingcdr 20645 SubDRingcsdrg 20702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-subg 19036 df-ring 20154 df-subrg 20486 df-drng 20647 df-sdrg 20703 |
| This theorem is referenced by: imadrhmcl 20713 |
| Copyright terms: Public domain | W3C validator |