MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgseisenlem3 Structured version   Visualization version   GIF version

Theorem lgseisenlem3 27323
Description: Lemma for lgseisen 27325. (Contributed by Mario Carneiro, 17-Jun-2015.) (Proof shortened by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
lgseisen.4 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
lgseisen.5 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
lgseisen.6 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
lgseisen.7 𝑌 = (ℤ/nℤ‘𝑃)
lgseisen.8 𝐺 = (mulGrp‘𝑌)
lgseisen.9 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
lgseisenlem3 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r𝑌))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐿   𝑥,𝑦,𝑃   𝜑,𝑥,𝑦   𝑦,𝑀   𝑥,𝑄,𝑦   𝑥,𝑌   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑆(𝑦)   𝐺(𝑦)   𝐿(𝑦)   𝑀(𝑥)   𝑌(𝑦)

Proof of Theorem lgseisenlem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7378 . . . . . . . . 9 (𝑘 = 𝑥 → (2 · 𝑘) = (2 · 𝑥))
21fveq2d 6845 . . . . . . . 8 (𝑘 = 𝑥 → (𝐿‘(2 · 𝑘)) = (𝐿‘(2 · 𝑥)))
32cbvmptv 5206 . . . . . . 7 (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))
43oveq2i 7381 . . . . . 6 (𝐺 Σg (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘)))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))
5 lgseisen.8 . . . . . . . 8 𝐺 = (mulGrp‘𝑌)
6 eqid 2729 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
75, 6mgpbas 20067 . . . . . . 7 (Base‘𝑌) = (Base‘𝐺)
8 eqid 2729 . . . . . . 7 (0g𝐺) = (0g𝐺)
9 lgseisen.1 . . . . . . . . . . 11 (𝜑𝑃 ∈ (ℙ ∖ {2}))
109eldifad 3923 . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
11 lgseisen.7 . . . . . . . . . . 11 𝑌 = (ℤ/nℤ‘𝑃)
1211znfld 21504 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
1310, 12syl 17 . . . . . . . . 9 (𝜑𝑌 ∈ Field)
14 isfld 20662 . . . . . . . . . 10 (𝑌 ∈ Field ↔ (𝑌 ∈ DivRing ∧ 𝑌 ∈ CRing))
1514simprbi 496 . . . . . . . . 9 (𝑌 ∈ Field → 𝑌 ∈ CRing)
1613, 15syl 17 . . . . . . . 8 (𝜑𝑌 ∈ CRing)
175crngmgp 20163 . . . . . . . 8 (𝑌 ∈ CRing → 𝐺 ∈ CMnd)
1816, 17syl 17 . . . . . . 7 (𝜑𝐺 ∈ CMnd)
19 fzfid 13917 . . . . . . 7 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
20 crngring 20167 . . . . . . . . . . . 12 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
2116, 20syl 17 . . . . . . . . . . 11 (𝜑𝑌 ∈ Ring)
22 lgseisen.9 . . . . . . . . . . . 12 𝐿 = (ℤRHom‘𝑌)
2322zrhrhm 21455 . . . . . . . . . . 11 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
2421, 23syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
25 zringbas 21397 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
2625, 6rhmf 20407 . . . . . . . . . 10 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
2724, 26syl 17 . . . . . . . . 9 (𝜑𝐿:ℤ⟶(Base‘𝑌))
28 2z 12544 . . . . . . . . . 10 2 ∈ ℤ
29 elfzelz 13464 . . . . . . . . . 10 (𝑘 ∈ (1...((𝑃 − 1) / 2)) → 𝑘 ∈ ℤ)
30 zmulcl 12561 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (2 · 𝑘) ∈ ℤ)
3128, 29, 30sylancr 587 . . . . . . . . 9 (𝑘 ∈ (1...((𝑃 − 1) / 2)) → (2 · 𝑘) ∈ ℤ)
32 ffvelcdm 7036 . . . . . . . . 9 ((𝐿:ℤ⟶(Base‘𝑌) ∧ (2 · 𝑘) ∈ ℤ) → (𝐿‘(2 · 𝑘)) ∈ (Base‘𝑌))
3327, 31, 32syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑘)) ∈ (Base‘𝑌))
3433fmpttd 7070 . . . . . . 7 (𝜑 → (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌))
35 eqid 2729 . . . . . . . 8 (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) = (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘)))
36 fvexd 6856 . . . . . . . 8 ((𝜑𝑘 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑘)) ∈ V)
37 fvexd 6856 . . . . . . . 8 (𝜑 → (0g𝐺) ∈ V)
3835, 19, 36, 37fsuppmptdm 9304 . . . . . . 7 (𝜑 → (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) finSupp (0g𝐺))
39 lgseisen.2 . . . . . . . 8 (𝜑𝑄 ∈ (ℙ ∖ {2}))
40 lgseisen.3 . . . . . . . 8 (𝜑𝑃𝑄)
41 lgseisen.4 . . . . . . . 8 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
42 lgseisen.5 . . . . . . . 8 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
43 lgseisen.6 . . . . . . . 8 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
449, 39, 40, 41, 42, 43lgseisenlem2 27322 . . . . . . 7 (𝜑𝑀:(1...((𝑃 − 1) / 2))–1-1-onto→(1...((𝑃 − 1) / 2)))
457, 8, 18, 19, 34, 38, 44gsumf1o 19832 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘)))) = (𝐺 Σg ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) ∘ 𝑀)))
464, 45eqtr3id 2778 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = (𝐺 Σg ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) ∘ 𝑀)))
479, 39, 40, 41, 42lgseisenlem1 27321 . . . . . . . 8 (𝜑𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) / 2)))
4842fmpt 7065 . . . . . . . 8 (∀𝑥 ∈ (1...((𝑃 − 1) / 2))((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ (1...((𝑃 − 1) / 2)) ↔ 𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) / 2)))
4947, 48sylibr 234 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (1...((𝑃 − 1) / 2))((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ (1...((𝑃 − 1) / 2)))
5042a1i 11 . . . . . . 7 (𝜑𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))
51 eqidd 2730 . . . . . . 7 (𝜑 → (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) = (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))))
52 oveq2 7378 . . . . . . . 8 (𝑘 = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) → (2 · 𝑘) = (2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))
5352fveq2d 6845 . . . . . . 7 (𝑘 = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) → (𝐿‘(2 · 𝑘)) = (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))))
5449, 50, 51, 53fmptcof 7085 . . . . . 6 (𝜑 → ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) ∘ 𝑀) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))))
5554oveq2d 7386 . . . . 5 (𝜑 → (𝐺 Σg ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) ∘ 𝑀)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))))))
5639eldifad 3923 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑄 ∈ ℙ)
5756adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℙ)
58 prmz 16623 . . . . . . . . . . . . . . . . . . . 20 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
5957, 58syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℤ)
60 2nn 12238 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ
61 elfznn 13493 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
6261adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ)
63 nnmulcl 12189 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (2 · 𝑥) ∈ ℕ)
6460, 62, 63sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℕ)
6564nnzd 12535 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℤ)
6659, 65zmulcld 12623 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℤ)
6710adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℙ)
68 prmnn 16622 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
6967, 68syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ)
7066, 69zmodcld 13833 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) ∈ ℕ0)
7141, 70eqeltrid 2832 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℕ0)
7271nn0zd 12534 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℤ)
73 m1expcl 14030 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℤ → (-1↑𝑅) ∈ ℤ)
7472, 73syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈ ℤ)
7574, 72zmulcld 12623 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑅) ∈ ℤ)
7675, 69zmodcld 13833 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℕ0)
7776nn0cnd 12484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℂ)
78 2cnd 12243 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℂ)
79 2ne0 12269 . . . . . . . . . . . 12 2 ≠ 0
8079a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ≠ 0)
8177, 78, 80divcan2d 11939 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) = (((-1↑𝑅) · 𝑅) mod 𝑃))
8281fveq2d 6845 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))) = (𝐿‘(((-1↑𝑅) · 𝑅) mod 𝑃)))
8369nnrpd 12972 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℝ+)
84 eqidd 2730 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) mod 𝑃) = ((-1↑𝑅) mod 𝑃))
8541oveq1i 7380 . . . . . . . . . . . . . 14 (𝑅 mod 𝑃) = (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃)
8666zred 12617 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℝ)
87 modabs2 13846 . . . . . . . . . . . . . . 15 (((𝑄 · (2 · 𝑥)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃))
8886, 83, 87syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃))
8985, 88eqtrid 2776 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑅 mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃))
9074, 74, 72, 66, 83, 84, 89modmul12d 13869 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) = (((-1↑𝑅) · (𝑄 · (2 · 𝑥))) mod 𝑃))
9175zred 12617 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑅) ∈ ℝ)
92 modabs2 13846 . . . . . . . . . . . . 13 ((((-1↑𝑅) · 𝑅) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = (((-1↑𝑅) · 𝑅) mod 𝑃))
9391, 83, 92syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = (((-1↑𝑅) · 𝑅) mod 𝑃))
9474zcnd 12618 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈ ℂ)
9559zcnd 12618 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℂ)
9665zcnd 12618 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℂ)
9794, 95, 96mulassd 11176 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑄) · (2 · 𝑥)) = ((-1↑𝑅) · (𝑄 · (2 · 𝑥))))
9897oveq1d 7385 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑄) · (2 · 𝑥)) mod 𝑃) = (((-1↑𝑅) · (𝑄 · (2 · 𝑥))) mod 𝑃))
9990, 93, 983eqtr4d 2774 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = ((((-1↑𝑅) · 𝑄) · (2 · 𝑥)) mod 𝑃))
10010, 68syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
101100adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ)
10276nn0zd 12534 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℤ)
10374, 59zmulcld 12623 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑄) ∈ ℤ)
104103, 65zmulcld 12623 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑄) · (2 · 𝑥)) ∈ ℤ)
105 moddvds 16211 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℤ ∧ (((-1↑𝑅) · 𝑄) · (2 · 𝑥)) ∈ ℤ) → (((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = ((((-1↑𝑅) · 𝑄) · (2 · 𝑥)) mod 𝑃) ↔ 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥)))))
106101, 102, 104, 105syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = ((((-1↑𝑅) · 𝑄) · (2 · 𝑥)) mod 𝑃) ↔ 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥)))))
10799, 106mpbid 232 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥))))
10869nnnn0d 12482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ0)
10911, 22zndvds 21493 . . . . . . . . . . 11 ((𝑃 ∈ ℕ0 ∧ (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℤ ∧ (((-1↑𝑅) · 𝑄) · (2 · 𝑥)) ∈ ℤ) → ((𝐿‘(((-1↑𝑅) · 𝑅) mod 𝑃)) = (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))) ↔ 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥)))))
110108, 102, 104, 109syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(((-1↑𝑅) · 𝑅) mod 𝑃)) = (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))) ↔ 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥)))))
111107, 110mpbird 257 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(((-1↑𝑅) · 𝑅) mod 𝑃)) = (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))))
11224adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿 ∈ (ℤring RingHom 𝑌))
113 zringmulr 21401 . . . . . . . . . . 11 · = (.r‘ℤring)
114 eqid 2729 . . . . . . . . . . 11 (.r𝑌) = (.r𝑌)
11525, 113, 114rhmmul 20408 . . . . . . . . . 10 ((𝐿 ∈ (ℤring RingHom 𝑌) ∧ ((-1↑𝑅) · 𝑄) ∈ ℤ ∧ (2 · 𝑥) ∈ ℤ) → (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))) = ((𝐿‘((-1↑𝑅) · 𝑄))(.r𝑌)(𝐿‘(2 · 𝑥))))
116112, 103, 65, 115syl3anc 1373 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))) = ((𝐿‘((-1↑𝑅) · 𝑄))(.r𝑌)(𝐿‘(2 · 𝑥))))
11782, 111, 1163eqtrd 2768 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))) = ((𝐿‘((-1↑𝑅) · 𝑄))(.r𝑌)(𝐿‘(2 · 𝑥))))
118117mpteq2dva 5195 . . . . . . 7 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘((-1↑𝑅) · 𝑄))(.r𝑌)(𝐿‘(2 · 𝑥)))))
11927adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿:ℤ⟶(Base‘𝑌))
120119, 103ffvelcdmd 7040 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝑌))
121119, 65ffvelcdmd 7040 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑥)) ∈ (Base‘𝑌))
122 eqidd 2730 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))
123 eqidd 2730 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))
12419, 120, 121, 122, 123offval2 7654 . . . . . . 7 (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘((-1↑𝑅) · 𝑄))(.r𝑌)(𝐿‘(2 · 𝑥)))))
125118, 124eqtr4d 2767 . . . . . 6 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))) = ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))
126125oveq2d 7386 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))))) = (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
12746, 55, 1263eqtrd 2768 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
1285, 114mgpplusg 20066 . . . . 5 (.r𝑌) = (+g𝐺)
129 eqid 2729 . . . . 5 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))
130 eqid 2729 . . . . 5 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))
1317, 128, 18, 19, 120, 121, 129, 130gsummptfidmadd2 19842 . . . 4 (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
132127, 131eqtrd 2764 . . 3 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
133132oveq1d 7385 . 2 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
134 eqid 2729 . . . . . 6 (Unit‘𝑌) = (Unit‘𝑌)
135134, 5unitsubm 20308 . . . . 5 (𝑌 ∈ Ring → (Unit‘𝑌) ∈ (SubMnd‘𝐺))
13621, 135syl 17 . . . 4 (𝜑 → (Unit‘𝑌) ∈ (SubMnd‘𝐺))
137 elfzle2 13468 . . . . . . . . . . 11 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ≤ ((𝑃 − 1) / 2))
138137adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ≤ ((𝑃 − 1) / 2))
13962nnred 12180 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℝ)
140 prmuz2 16644 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
141 uz2m1nn 12861 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ)
14267, 140, 1413syl 18 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 − 1) ∈ ℕ)
143142nnred 12180 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 − 1) ∈ ℝ)
144 2re 12239 . . . . . . . . . . . 12 2 ∈ ℝ
145144a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℝ)
146 2pos 12268 . . . . . . . . . . . 12 0 < 2
147146a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 0 < 2)
148 lemuldiv2 12043 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ (𝑃 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑥) ≤ (𝑃 − 1) ↔ 𝑥 ≤ ((𝑃 − 1) / 2)))
149139, 143, 145, 147, 148syl112anc 1376 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((2 · 𝑥) ≤ (𝑃 − 1) ↔ 𝑥 ≤ ((𝑃 − 1) / 2)))
150138, 149mpbird 257 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ≤ (𝑃 − 1))
151 prmz 16623 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
15267, 151syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℤ)
153 peano2zm 12555 . . . . . . . . . . 11 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
154152, 153syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 − 1) ∈ ℤ)
155 fznn 13532 . . . . . . . . . 10 ((𝑃 − 1) ∈ ℤ → ((2 · 𝑥) ∈ (1...(𝑃 − 1)) ↔ ((2 · 𝑥) ∈ ℕ ∧ (2 · 𝑥) ≤ (𝑃 − 1))))
156154, 155syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((2 · 𝑥) ∈ (1...(𝑃 − 1)) ↔ ((2 · 𝑥) ∈ ℕ ∧ (2 · 𝑥) ≤ (𝑃 − 1))))
15764, 150, 156mpbir2and 713 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ (1...(𝑃 − 1)))
158 fzm1ndvds 16270 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ (2 · 𝑥) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (2 · 𝑥))
15969, 157, 158syl2anc 584 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑃 ∥ (2 · 𝑥))
160 eqid 2729 . . . . . . . . . 10 (0g𝑌) = (0g𝑌)
16111, 22, 160zndvds0 21494 . . . . . . . . 9 ((𝑃 ∈ ℕ0 ∧ (2 · 𝑥) ∈ ℤ) → ((𝐿‘(2 · 𝑥)) = (0g𝑌) ↔ 𝑃 ∥ (2 · 𝑥)))
162108, 65, 161syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(2 · 𝑥)) = (0g𝑌) ↔ 𝑃 ∥ (2 · 𝑥)))
163162necon3abid 2961 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(2 · 𝑥)) ≠ (0g𝑌) ↔ ¬ 𝑃 ∥ (2 · 𝑥)))
164159, 163mpbird 257 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑥)) ≠ (0g𝑌))
16514simplbi 497 . . . . . . . . 9 (𝑌 ∈ Field → 𝑌 ∈ DivRing)
16613, 165syl 17 . . . . . . . 8 (𝜑𝑌 ∈ DivRing)
167166adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑌 ∈ DivRing)
1686, 134, 160drngunit 20656 . . . . . . 7 (𝑌 ∈ DivRing → ((𝐿‘(2 · 𝑥)) ∈ (Unit‘𝑌) ↔ ((𝐿‘(2 · 𝑥)) ∈ (Base‘𝑌) ∧ (𝐿‘(2 · 𝑥)) ≠ (0g𝑌))))
169167, 168syl 17 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(2 · 𝑥)) ∈ (Unit‘𝑌) ↔ ((𝐿‘(2 · 𝑥)) ∈ (Base‘𝑌) ∧ (𝐿‘(2 · 𝑥)) ≠ (0g𝑌))))
170121, 164, 169mpbir2and 713 . . . . 5 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑥)) ∈ (Unit‘𝑌))
171170fmpttd 7070 . . . 4 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))):(1...((𝑃 − 1) / 2))⟶(Unit‘𝑌))
172 fvexd 6856 . . . . 5 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑥)) ∈ V)
173130, 19, 172, 37fsuppmptdm 9304 . . . 4 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))) finSupp (0g𝐺))
1748, 18, 19, 136, 171, 173gsumsubmcl 19835 . . 3 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) ∈ (Unit‘𝑌))
175 eqid 2729 . . . 4 (/r𝑌) = (/r𝑌)
176 eqid 2729 . . . 4 (1r𝑌) = (1r𝑌)
177134, 175, 176dvrid 20328 . . 3 ((𝑌 ∈ Ring ∧ (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) ∈ (Unit‘𝑌)) → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (1r𝑌))
17821, 174, 177syl2anc 584 . 2 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (1r𝑌))
179120fmpttd 7070 . . . 4 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌))
180 fvexd 6856 . . . . 5 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑𝑅) · 𝑄)) ∈ V)
181129, 19, 180, 37fsuppmptdm 9304 . . . 4 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) finSupp (0g𝐺))
1827, 8, 18, 19, 179, 181gsumcl 19831 . . 3 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) ∈ (Base‘𝑌))
1836, 134, 175, 114dvrcan3 20332 . . 3 ((𝑌 ∈ Ring ∧ (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) ∈ (Base‘𝑌) ∧ (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) ∈ (Unit‘𝑌)) → (((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))))
18421, 182, 174, 183syl3anc 1373 . 2 (𝜑 → (((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))))
185133, 178, 1843eqtr3rd 2773 1 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3444  cdif 3908  {csn 4585   class class class wbr 5102  cmpt 5183  ccom 5635  wf 6496  cfv 6500  (class class class)co 7370  f cof 7632  Fincfn 8896  cr 11046  0cc0 11047  1c1 11048   · cmul 11052   < clt 11187  cle 11188  cmin 11384  -cneg 11385   / cdiv 11814  cn 12165  2c2 12220  0cn0 12421  cz 12508  cuz 12772  +crp 12930  ...cfz 13447   mod cmo 13810  cexp 14005  cdvds 16200  cprime 16619  Basecbs 17157  .rcmulr 17199  0gc0g 17380   Σg cgsu 17381  SubMndcsubmnd 18693  CMndccmn 19696  mulGrpcmgp 20062  1rcur 20103  Ringcrg 20155  CRingccrg 20156  Unitcui 20277  /rcdvr 20322   RingHom crh 20391  DivRingcdr 20651  Fieldcfield 20652  ringczring 21390  ℤRHomczrh 21443  ℤ/nczn 21446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125  ax-addf 11126  ax-mulf 11127
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-of 7634  df-om 7824  df-1st 7948  df-2nd 7949  df-supp 8118  df-tpos 8183  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8649  df-ec 8651  df-qs 8655  df-map 8779  df-en 8897  df-dom 8898  df-sdom 8899  df-fin 8900  df-fsupp 9290  df-sup 9370  df-inf 9371  df-oi 9440  df-dju 9833  df-card 9871  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-div 11815  df-nn 12166  df-2 12228  df-3 12229  df-4 12230  df-5 12231  df-6 12232  df-7 12233  df-8 12234  df-9 12235  df-n0 12422  df-xnn0 12495  df-z 12509  df-dec 12629  df-uz 12773  df-rp 12931  df-fz 13448  df-fzo 13595  df-fl 13733  df-mod 13811  df-seq 13946  df-exp 14006  df-hash 14275  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-dvds 16201  df-gcd 16443  df-prm 16620  df-struct 17095  df-sets 17112  df-slot 17130  df-ndx 17142  df-base 17158  df-ress 17179  df-plusg 17211  df-mulr 17212  df-starv 17213  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-0g 17382  df-gsum 17383  df-imas 17449  df-qus 17450  df-mgm 18551  df-sgrp 18630  df-mnd 18646  df-mhm 18694  df-submnd 18695  df-grp 18852  df-minusg 18853  df-sbg 18854  df-mulg 18984  df-subg 19039  df-nsg 19040  df-eqg 19041  df-ghm 19129  df-cntz 19233  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-cring 20158  df-oppr 20259  df-dvdsr 20279  df-unit 20280  df-invr 20310  df-dvr 20323  df-rhm 20394  df-nzr 20435  df-subrng 20468  df-subrg 20492  df-rlreg 20616  df-domn 20617  df-idom 20618  df-drng 20653  df-field 20654  df-lmod 20802  df-lss 20872  df-lsp 20912  df-sra 21114  df-rgmod 21115  df-lidl 21152  df-rsp 21153  df-2idl 21194  df-cnfld 21299  df-zring 21391  df-zrh 21447  df-zn 21450
This theorem is referenced by:  lgseisenlem4  27324
  Copyright terms: Public domain W3C validator