MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgseisenlem3 Structured version   Visualization version   GIF version

Theorem lgseisenlem3 25940
Description: Lemma for lgseisen 25942. (Contributed by Mario Carneiro, 17-Jun-2015.) (Proof shortened by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
lgseisen.4 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
lgseisen.5 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
lgseisen.6 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
lgseisen.7 𝑌 = (ℤ/nℤ‘𝑃)
lgseisen.8 𝐺 = (mulGrp‘𝑌)
lgseisen.9 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
lgseisenlem3 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r𝑌))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐿   𝑥,𝑦,𝑃   𝜑,𝑥,𝑦   𝑦,𝑀   𝑥,𝑄,𝑦   𝑥,𝑌   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑆(𝑦)   𝐺(𝑦)   𝐿(𝑦)   𝑀(𝑥)   𝑌(𝑦)

Proof of Theorem lgseisenlem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7141 . . . . . . . . 9 (𝑘 = 𝑥 → (2 · 𝑘) = (2 · 𝑥))
21fveq2d 6650 . . . . . . . 8 (𝑘 = 𝑥 → (𝐿‘(2 · 𝑘)) = (𝐿‘(2 · 𝑥)))
32cbvmptv 5145 . . . . . . 7 (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))
43oveq2i 7144 . . . . . 6 (𝐺 Σg (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘)))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))
5 lgseisen.8 . . . . . . . 8 𝐺 = (mulGrp‘𝑌)
6 eqid 2820 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
75, 6mgpbas 19224 . . . . . . 7 (Base‘𝑌) = (Base‘𝐺)
8 eqid 2820 . . . . . . 7 (0g𝐺) = (0g𝐺)
9 lgseisen.1 . . . . . . . . . . 11 (𝜑𝑃 ∈ (ℙ ∖ {2}))
109eldifad 3925 . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
11 lgseisen.7 . . . . . . . . . . 11 𝑌 = (ℤ/nℤ‘𝑃)
1211znfld 20683 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
1310, 12syl 17 . . . . . . . . 9 (𝜑𝑌 ∈ Field)
14 isfld 19487 . . . . . . . . . 10 (𝑌 ∈ Field ↔ (𝑌 ∈ DivRing ∧ 𝑌 ∈ CRing))
1514simprbi 499 . . . . . . . . 9 (𝑌 ∈ Field → 𝑌 ∈ CRing)
1613, 15syl 17 . . . . . . . 8 (𝜑𝑌 ∈ CRing)
175crngmgp 19284 . . . . . . . 8 (𝑌 ∈ CRing → 𝐺 ∈ CMnd)
1816, 17syl 17 . . . . . . 7 (𝜑𝐺 ∈ CMnd)
19 fzfid 13325 . . . . . . 7 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
20 crngring 19287 . . . . . . . . . . . 12 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
2116, 20syl 17 . . . . . . . . . . 11 (𝜑𝑌 ∈ Ring)
22 lgseisen.9 . . . . . . . . . . . 12 𝐿 = (ℤRHom‘𝑌)
2322zrhrhm 20635 . . . . . . . . . . 11 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
2421, 23syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
25 zringbas 20599 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
2625, 6rhmf 19457 . . . . . . . . . 10 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
2724, 26syl 17 . . . . . . . . 9 (𝜑𝐿:ℤ⟶(Base‘𝑌))
28 2z 11993 . . . . . . . . . 10 2 ∈ ℤ
29 elfzelz 12892 . . . . . . . . . 10 (𝑘 ∈ (1...((𝑃 − 1) / 2)) → 𝑘 ∈ ℤ)
30 zmulcl 12010 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (2 · 𝑘) ∈ ℤ)
3128, 29, 30sylancr 589 . . . . . . . . 9 (𝑘 ∈ (1...((𝑃 − 1) / 2)) → (2 · 𝑘) ∈ ℤ)
32 ffvelrn 6825 . . . . . . . . 9 ((𝐿:ℤ⟶(Base‘𝑌) ∧ (2 · 𝑘) ∈ ℤ) → (𝐿‘(2 · 𝑘)) ∈ (Base‘𝑌))
3327, 31, 32syl2an 597 . . . . . . . 8 ((𝜑𝑘 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑘)) ∈ (Base‘𝑌))
3433fmpttd 6855 . . . . . . 7 (𝜑 → (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌))
35 eqid 2820 . . . . . . . 8 (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) = (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘)))
36 fvexd 6661 . . . . . . . 8 ((𝜑𝑘 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑘)) ∈ V)
37 fvexd 6661 . . . . . . . 8 (𝜑 → (0g𝐺) ∈ V)
3835, 19, 36, 37fsuppmptdm 8822 . . . . . . 7 (𝜑 → (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) finSupp (0g𝐺))
39 lgseisen.2 . . . . . . . 8 (𝜑𝑄 ∈ (ℙ ∖ {2}))
40 lgseisen.3 . . . . . . . 8 (𝜑𝑃𝑄)
41 lgseisen.4 . . . . . . . 8 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
42 lgseisen.5 . . . . . . . 8 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
43 lgseisen.6 . . . . . . . 8 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
449, 39, 40, 41, 42, 43lgseisenlem2 25939 . . . . . . 7 (𝜑𝑀:(1...((𝑃 − 1) / 2))–1-1-onto→(1...((𝑃 − 1) / 2)))
457, 8, 18, 19, 34, 38, 44gsumf1o 19015 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘)))) = (𝐺 Σg ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) ∘ 𝑀)))
464, 45syl5eqr 2869 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = (𝐺 Σg ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) ∘ 𝑀)))
479, 39, 40, 41, 42lgseisenlem1 25938 . . . . . . . 8 (𝜑𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) / 2)))
4842fmpt 6850 . . . . . . . 8 (∀𝑥 ∈ (1...((𝑃 − 1) / 2))((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ (1...((𝑃 − 1) / 2)) ↔ 𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) / 2)))
4947, 48sylibr 236 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (1...((𝑃 − 1) / 2))((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ (1...((𝑃 − 1) / 2)))
5042a1i 11 . . . . . . 7 (𝜑𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))
51 eqidd 2821 . . . . . . 7 (𝜑 → (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) = (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))))
52 oveq2 7141 . . . . . . . 8 (𝑘 = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) → (2 · 𝑘) = (2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))
5352fveq2d 6650 . . . . . . 7 (𝑘 = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) → (𝐿‘(2 · 𝑘)) = (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))))
5449, 50, 51, 53fmptcof 6868 . . . . . 6 (𝜑 → ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) ∘ 𝑀) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))))
5554oveq2d 7149 . . . . 5 (𝜑 → (𝐺 Σg ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) ∘ 𝑀)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))))))
5639eldifad 3925 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑄 ∈ ℙ)
5756adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℙ)
58 prmz 15997 . . . . . . . . . . . . . . . . . . . 20 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
5957, 58syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℤ)
60 2nn 11689 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ
61 elfznn 12920 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
6261adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ)
63 nnmulcl 11640 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (2 · 𝑥) ∈ ℕ)
6460, 62, 63sylancr 589 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℕ)
6564nnzd 12065 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℤ)
6659, 65zmulcld 12072 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℤ)
6710adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℙ)
68 prmnn 15996 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
6967, 68syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ)
7066, 69zmodcld 13244 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) ∈ ℕ0)
7141, 70eqeltrid 2915 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℕ0)
7271nn0zd 12064 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℤ)
73 m1expcl 13437 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℤ → (-1↑𝑅) ∈ ℤ)
7472, 73syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈ ℤ)
7574, 72zmulcld 12072 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑅) ∈ ℤ)
7675, 69zmodcld 13244 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℕ0)
7776nn0cnd 11936 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℂ)
78 2cnd 11694 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℂ)
79 2ne0 11720 . . . . . . . . . . . 12 2 ≠ 0
8079a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ≠ 0)
8177, 78, 80divcan2d 11396 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) = (((-1↑𝑅) · 𝑅) mod 𝑃))
8281fveq2d 6650 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))) = (𝐿‘(((-1↑𝑅) · 𝑅) mod 𝑃)))
8369nnrpd 12408 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℝ+)
84 eqidd 2821 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) mod 𝑃) = ((-1↑𝑅) mod 𝑃))
8541oveq1i 7143 . . . . . . . . . . . . . 14 (𝑅 mod 𝑃) = (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃)
8666zred 12066 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℝ)
87 modabs2 13257 . . . . . . . . . . . . . . 15 (((𝑄 · (2 · 𝑥)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃))
8886, 83, 87syl2anc 586 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃))
8985, 88syl5eq 2867 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑅 mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃))
9074, 74, 72, 66, 83, 84, 89modmul12d 13277 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) = (((-1↑𝑅) · (𝑄 · (2 · 𝑥))) mod 𝑃))
9175zred 12066 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑅) ∈ ℝ)
92 modabs2 13257 . . . . . . . . . . . . 13 ((((-1↑𝑅) · 𝑅) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = (((-1↑𝑅) · 𝑅) mod 𝑃))
9391, 83, 92syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = (((-1↑𝑅) · 𝑅) mod 𝑃))
9474zcnd 12067 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈ ℂ)
9559zcnd 12067 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℂ)
9665zcnd 12067 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℂ)
9794, 95, 96mulassd 10642 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑄) · (2 · 𝑥)) = ((-1↑𝑅) · (𝑄 · (2 · 𝑥))))
9897oveq1d 7148 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑄) · (2 · 𝑥)) mod 𝑃) = (((-1↑𝑅) · (𝑄 · (2 · 𝑥))) mod 𝑃))
9990, 93, 983eqtr4d 2865 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = ((((-1↑𝑅) · 𝑄) · (2 · 𝑥)) mod 𝑃))
10010, 68syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
101100adantr 483 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ)
10276nn0zd 12064 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℤ)
10374, 59zmulcld 12072 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑄) ∈ ℤ)
104103, 65zmulcld 12072 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑄) · (2 · 𝑥)) ∈ ℤ)
105 moddvds 15598 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℤ ∧ (((-1↑𝑅) · 𝑄) · (2 · 𝑥)) ∈ ℤ) → (((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = ((((-1↑𝑅) · 𝑄) · (2 · 𝑥)) mod 𝑃) ↔ 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥)))))
106101, 102, 104, 105syl3anc 1367 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = ((((-1↑𝑅) · 𝑄) · (2 · 𝑥)) mod 𝑃) ↔ 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥)))))
10799, 106mpbid 234 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥))))
10869nnnn0d 11934 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ0)
10911, 22zndvds 20672 . . . . . . . . . . 11 ((𝑃 ∈ ℕ0 ∧ (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℤ ∧ (((-1↑𝑅) · 𝑄) · (2 · 𝑥)) ∈ ℤ) → ((𝐿‘(((-1↑𝑅) · 𝑅) mod 𝑃)) = (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))) ↔ 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥)))))
110108, 102, 104, 109syl3anc 1367 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(((-1↑𝑅) · 𝑅) mod 𝑃)) = (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))) ↔ 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥)))))
111107, 110mpbird 259 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(((-1↑𝑅) · 𝑅) mod 𝑃)) = (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))))
11224adantr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿 ∈ (ℤring RingHom 𝑌))
113 zringmulr 20602 . . . . . . . . . . 11 · = (.r‘ℤring)
114 eqid 2820 . . . . . . . . . . 11 (.r𝑌) = (.r𝑌)
11525, 113, 114rhmmul 19458 . . . . . . . . . 10 ((𝐿 ∈ (ℤring RingHom 𝑌) ∧ ((-1↑𝑅) · 𝑄) ∈ ℤ ∧ (2 · 𝑥) ∈ ℤ) → (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))) = ((𝐿‘((-1↑𝑅) · 𝑄))(.r𝑌)(𝐿‘(2 · 𝑥))))
116112, 103, 65, 115syl3anc 1367 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))) = ((𝐿‘((-1↑𝑅) · 𝑄))(.r𝑌)(𝐿‘(2 · 𝑥))))
11782, 111, 1163eqtrd 2859 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))) = ((𝐿‘((-1↑𝑅) · 𝑄))(.r𝑌)(𝐿‘(2 · 𝑥))))
118117mpteq2dva 5137 . . . . . . 7 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘((-1↑𝑅) · 𝑄))(.r𝑌)(𝐿‘(2 · 𝑥)))))
11927adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿:ℤ⟶(Base‘𝑌))
120119, 103ffvelrnd 6828 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝑌))
121119, 65ffvelrnd 6828 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑥)) ∈ (Base‘𝑌))
122 eqidd 2821 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))
123 eqidd 2821 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))
12419, 120, 121, 122, 123offval2 7404 . . . . . . 7 (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘((-1↑𝑅) · 𝑄))(.r𝑌)(𝐿‘(2 · 𝑥)))))
125118, 124eqtr4d 2858 . . . . . 6 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))) = ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))
126125oveq2d 7149 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))))) = (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
12746, 55, 1263eqtrd 2859 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
1285, 114mgpplusg 19222 . . . . 5 (.r𝑌) = (+g𝐺)
129 eqid 2820 . . . . 5 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))
130 eqid 2820 . . . . 5 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))
1317, 128, 18, 19, 120, 121, 129, 130gsummptfidmadd2 19025 . . . 4 (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘f (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
132127, 131eqtrd 2855 . . 3 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
133132oveq1d 7148 . 2 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
134 eqid 2820 . . . . . 6 (Unit‘𝑌) = (Unit‘𝑌)
135134, 5unitsubm 19399 . . . . 5 (𝑌 ∈ Ring → (Unit‘𝑌) ∈ (SubMnd‘𝐺))
13621, 135syl 17 . . . 4 (𝜑 → (Unit‘𝑌) ∈ (SubMnd‘𝐺))
137 elfzle2 12895 . . . . . . . . . . 11 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ≤ ((𝑃 − 1) / 2))
138137adantl 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ≤ ((𝑃 − 1) / 2))
13962nnred 11631 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℝ)
140 prmuz2 16018 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
141 uz2m1nn 12302 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ)
14267, 140, 1413syl 18 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 − 1) ∈ ℕ)
143142nnred 11631 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 − 1) ∈ ℝ)
144 2re 11690 . . . . . . . . . . . 12 2 ∈ ℝ
145144a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℝ)
146 2pos 11719 . . . . . . . . . . . 12 0 < 2
147146a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 0 < 2)
148 lemuldiv2 11499 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ (𝑃 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑥) ≤ (𝑃 − 1) ↔ 𝑥 ≤ ((𝑃 − 1) / 2)))
149139, 143, 145, 147, 148syl112anc 1370 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((2 · 𝑥) ≤ (𝑃 − 1) ↔ 𝑥 ≤ ((𝑃 − 1) / 2)))
150138, 149mpbird 259 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ≤ (𝑃 − 1))
151 prmz 15997 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
15267, 151syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℤ)
153 peano2zm 12004 . . . . . . . . . . 11 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
154152, 153syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 − 1) ∈ ℤ)
155 fznn 12959 . . . . . . . . . 10 ((𝑃 − 1) ∈ ℤ → ((2 · 𝑥) ∈ (1...(𝑃 − 1)) ↔ ((2 · 𝑥) ∈ ℕ ∧ (2 · 𝑥) ≤ (𝑃 − 1))))
156154, 155syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((2 · 𝑥) ∈ (1...(𝑃 − 1)) ↔ ((2 · 𝑥) ∈ ℕ ∧ (2 · 𝑥) ≤ (𝑃 − 1))))
15764, 150, 156mpbir2and 711 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ (1...(𝑃 − 1)))
158 fzm1ndvds 15652 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ (2 · 𝑥) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (2 · 𝑥))
15969, 157, 158syl2anc 586 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑃 ∥ (2 · 𝑥))
160 eqid 2820 . . . . . . . . . 10 (0g𝑌) = (0g𝑌)
16111, 22, 160zndvds0 20673 . . . . . . . . 9 ((𝑃 ∈ ℕ0 ∧ (2 · 𝑥) ∈ ℤ) → ((𝐿‘(2 · 𝑥)) = (0g𝑌) ↔ 𝑃 ∥ (2 · 𝑥)))
162108, 65, 161syl2anc 586 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(2 · 𝑥)) = (0g𝑌) ↔ 𝑃 ∥ (2 · 𝑥)))
163162necon3abid 3042 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(2 · 𝑥)) ≠ (0g𝑌) ↔ ¬ 𝑃 ∥ (2 · 𝑥)))
164159, 163mpbird 259 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑥)) ≠ (0g𝑌))
16514simplbi 500 . . . . . . . . 9 (𝑌 ∈ Field → 𝑌 ∈ DivRing)
16613, 165syl 17 . . . . . . . 8 (𝜑𝑌 ∈ DivRing)
167166adantr 483 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑌 ∈ DivRing)
1686, 134, 160drngunit 19483 . . . . . . 7 (𝑌 ∈ DivRing → ((𝐿‘(2 · 𝑥)) ∈ (Unit‘𝑌) ↔ ((𝐿‘(2 · 𝑥)) ∈ (Base‘𝑌) ∧ (𝐿‘(2 · 𝑥)) ≠ (0g𝑌))))
169167, 168syl 17 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(2 · 𝑥)) ∈ (Unit‘𝑌) ↔ ((𝐿‘(2 · 𝑥)) ∈ (Base‘𝑌) ∧ (𝐿‘(2 · 𝑥)) ≠ (0g𝑌))))
170121, 164, 169mpbir2and 711 . . . . 5 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑥)) ∈ (Unit‘𝑌))
171170fmpttd 6855 . . . 4 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))):(1...((𝑃 − 1) / 2))⟶(Unit‘𝑌))
172 fvexd 6661 . . . . 5 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑥)) ∈ V)
173130, 19, 172, 37fsuppmptdm 8822 . . . 4 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))) finSupp (0g𝐺))
1748, 18, 19, 136, 171, 173gsumsubmcl 19018 . . 3 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) ∈ (Unit‘𝑌))
175 eqid 2820 . . . 4 (/r𝑌) = (/r𝑌)
176 eqid 2820 . . . 4 (1r𝑌) = (1r𝑌)
177134, 175, 176dvrid 19417 . . 3 ((𝑌 ∈ Ring ∧ (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) ∈ (Unit‘𝑌)) → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (1r𝑌))
17821, 174, 177syl2anc 586 . 2 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (1r𝑌))
179120fmpttd 6855 . . . 4 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌))
180 fvexd 6661 . . . . 5 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑𝑅) · 𝑄)) ∈ V)
181129, 19, 180, 37fsuppmptdm 8822 . . . 4 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) finSupp (0g𝐺))
1827, 8, 18, 19, 179, 181gsumcl 19014 . . 3 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) ∈ (Base‘𝑌))
1836, 134, 175, 114dvrcan3 19421 . . 3 ((𝑌 ∈ Ring ∧ (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) ∈ (Base‘𝑌) ∧ (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) ∈ (Unit‘𝑌)) → (((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))))
18421, 182, 174, 183syl3anc 1367 . 2 (𝜑 → (((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))))
185133, 178, 1843eqtr3rd 2864 1 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3006  wral 3125  Vcvv 3473  cdif 3910  {csn 4543   class class class wbr 5042  cmpt 5122  ccom 5535  wf 6327  cfv 6331  (class class class)co 7133  f cof 7385  Fincfn 8487  cr 10514  0cc0 10515  1c1 10516   · cmul 10520   < clt 10653  cle 10654  cmin 10848  -cneg 10849   / cdiv 11275  cn 11616  2c2 11671  0cn0 11876  cz 11960  cuz 12222  +crp 12368  ...cfz 12876   mod cmo 13221  cexp 13414  cdvds 15587  cprime 15993  Basecbs 16462  .rcmulr 16545  0gc0g 16692   Σg cgsu 16693  SubMndcsubmnd 17934  CMndccmn 18885  mulGrpcmgp 19218  1rcur 19230  Ringcrg 19276  CRingccrg 19277  Unitcui 19368  /rcdvr 19411   RingHom crh 19443  DivRingcdr 19478  Fieldcfield 19479  ringzring 20593  ℤRHomczrh 20623  ℤ/nczn 20626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593  ax-addf 10594  ax-mulf 10595
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-se 5491  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-isom 6340  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-of 7387  df-om 7559  df-1st 7667  df-2nd 7668  df-supp 7809  df-tpos 7870  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-2o 8081  df-oadd 8084  df-er 8267  df-ec 8269  df-qs 8273  df-map 8386  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-fsupp 8812  df-sup 8884  df-inf 8885  df-oi 8952  df-dju 9308  df-card 9346  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-7 11684  df-8 11685  df-9 11686  df-n0 11877  df-xnn0 11947  df-z 11961  df-dec 12078  df-uz 12223  df-rp 12369  df-fz 12877  df-fzo 13018  df-fl 13146  df-mod 13222  df-seq 13354  df-exp 13415  df-hash 13676  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-dvds 15588  df-gcd 15822  df-prm 15994  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-starv 16559  df-sca 16560  df-vsca 16561  df-ip 16562  df-tset 16563  df-ple 16564  df-ds 16566  df-unif 16567  df-0g 16694  df-gsum 16695  df-imas 16760  df-qus 16761  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-mhm 17935  df-submnd 17936  df-grp 18085  df-minusg 18086  df-sbg 18087  df-mulg 18204  df-subg 18255  df-nsg 18256  df-eqg 18257  df-ghm 18335  df-cntz 18426  df-cmn 18887  df-abl 18888  df-mgp 19219  df-ur 19231  df-ring 19278  df-cring 19279  df-oppr 19352  df-dvdsr 19370  df-unit 19371  df-invr 19401  df-dvr 19412  df-rnghom 19446  df-drng 19480  df-field 19481  df-subrg 19509  df-lmod 19612  df-lss 19680  df-lsp 19720  df-sra 19920  df-rgmod 19921  df-lidl 19922  df-rsp 19923  df-2idl 19981  df-nzr 20007  df-rlreg 20032  df-domn 20033  df-idom 20034  df-cnfld 20522  df-zring 20594  df-zrh 20627  df-zn 20630
This theorem is referenced by:  lgseisenlem4  25941
  Copyright terms: Public domain W3C validator