MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrpropd Structured version   Visualization version   GIF version

Theorem dvdsrpropd 18894
Description: The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
rngidpropd.1 (𝜑𝐵 = (Base‘𝐾))
rngidpropd.2 (𝜑𝐵 = (Base‘𝐿))
rngidpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
dvdsrpropd (𝜑 → (∥r𝐾) = (∥r𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem dvdsrpropd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 rngidpropd.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
21anassrs 455 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
32eqeq1d 2808 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥(.r𝐾)𝑦) = 𝑧 ↔ (𝑥(.r𝐿)𝑦) = 𝑧))
43an32s 634 . . . . . 6 (((𝜑𝑦𝐵) ∧ 𝑥𝐵) → ((𝑥(.r𝐾)𝑦) = 𝑧 ↔ (𝑥(.r𝐿)𝑦) = 𝑧))
54rexbidva 3237 . . . . 5 ((𝜑𝑦𝐵) → (∃𝑥𝐵 (𝑥(.r𝐾)𝑦) = 𝑧 ↔ ∃𝑥𝐵 (𝑥(.r𝐿)𝑦) = 𝑧))
65pm5.32da 570 . . . 4 (𝜑 → ((𝑦𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝐾)𝑦) = 𝑧) ↔ (𝑦𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝐿)𝑦) = 𝑧)))
7 rngidpropd.1 . . . . . 6 (𝜑𝐵 = (Base‘𝐾))
87eleq2d 2871 . . . . 5 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐾)))
97rexeqdv 3334 . . . . 5 (𝜑 → (∃𝑥𝐵 (𝑥(.r𝐾)𝑦) = 𝑧 ↔ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r𝐾)𝑦) = 𝑧))
108, 9anbi12d 618 . . . 4 (𝜑 → ((𝑦𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝐾)𝑦) = 𝑧) ↔ (𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r𝐾)𝑦) = 𝑧)))
11 rngidpropd.2 . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
1211eleq2d 2871 . . . . 5 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐿)))
1311rexeqdv 3334 . . . . 5 (𝜑 → (∃𝑥𝐵 (𝑥(.r𝐿)𝑦) = 𝑧 ↔ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r𝐿)𝑦) = 𝑧))
1412, 13anbi12d 618 . . . 4 (𝜑 → ((𝑦𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝐿)𝑦) = 𝑧) ↔ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r𝐿)𝑦) = 𝑧)))
156, 10, 143bitr3d 300 . . 3 (𝜑 → ((𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r𝐾)𝑦) = 𝑧) ↔ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r𝐿)𝑦) = 𝑧)))
1615opabbidv 4910 . 2 (𝜑 → {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r𝐾)𝑦) = 𝑧)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r𝐿)𝑦) = 𝑧)})
17 eqid 2806 . . 3 (Base‘𝐾) = (Base‘𝐾)
18 eqid 2806 . . 3 (∥r𝐾) = (∥r𝐾)
19 eqid 2806 . . 3 (.r𝐾) = (.r𝐾)
2017, 18, 19dvdsrval 18843 . 2 (∥r𝐾) = {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r𝐾)𝑦) = 𝑧)}
21 eqid 2806 . . 3 (Base‘𝐿) = (Base‘𝐿)
22 eqid 2806 . . 3 (∥r𝐿) = (∥r𝐿)
23 eqid 2806 . . 3 (.r𝐿) = (.r𝐿)
2421, 22, 23dvdsrval 18843 . 2 (∥r𝐿) = {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r𝐿)𝑦) = 𝑧)}
2516, 20, 243eqtr4g 2865 1 (𝜑 → (∥r𝐾) = (∥r𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2156  wrex 3097  {copab 4906  cfv 6097  (class class class)co 6870  Basecbs 16064  .rcmulr 16150  rcdsr 18836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-ov 6873  df-dvdsr 18839
This theorem is referenced by:  unitpropd  18895
  Copyright terms: Public domain W3C validator