MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrpropd Structured version   Visualization version   GIF version

Theorem dvdsrpropd 19581
Description: The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
rngidpropd.1 (𝜑𝐵 = (Base‘𝐾))
rngidpropd.2 (𝜑𝐵 = (Base‘𝐿))
rngidpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
dvdsrpropd (𝜑 → (∥r𝐾) = (∥r𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem dvdsrpropd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 rngidpropd.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
21anassrs 471 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
32eqeq1d 2741 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥(.r𝐾)𝑦) = 𝑧 ↔ (𝑥(.r𝐿)𝑦) = 𝑧))
43an32s 652 . . . . . 6 (((𝜑𝑦𝐵) ∧ 𝑥𝐵) → ((𝑥(.r𝐾)𝑦) = 𝑧 ↔ (𝑥(.r𝐿)𝑦) = 𝑧))
54rexbidva 3207 . . . . 5 ((𝜑𝑦𝐵) → (∃𝑥𝐵 (𝑥(.r𝐾)𝑦) = 𝑧 ↔ ∃𝑥𝐵 (𝑥(.r𝐿)𝑦) = 𝑧))
65pm5.32da 582 . . . 4 (𝜑 → ((𝑦𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝐾)𝑦) = 𝑧) ↔ (𝑦𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝐿)𝑦) = 𝑧)))
7 rngidpropd.1 . . . . . 6 (𝜑𝐵 = (Base‘𝐾))
87eleq2d 2819 . . . . 5 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐾)))
97rexeqdv 3318 . . . . 5 (𝜑 → (∃𝑥𝐵 (𝑥(.r𝐾)𝑦) = 𝑧 ↔ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r𝐾)𝑦) = 𝑧))
108, 9anbi12d 634 . . . 4 (𝜑 → ((𝑦𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝐾)𝑦) = 𝑧) ↔ (𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r𝐾)𝑦) = 𝑧)))
11 rngidpropd.2 . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
1211eleq2d 2819 . . . . 5 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐿)))
1311rexeqdv 3318 . . . . 5 (𝜑 → (∃𝑥𝐵 (𝑥(.r𝐿)𝑦) = 𝑧 ↔ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r𝐿)𝑦) = 𝑧))
1412, 13anbi12d 634 . . . 4 (𝜑 → ((𝑦𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝐿)𝑦) = 𝑧) ↔ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r𝐿)𝑦) = 𝑧)))
156, 10, 143bitr3d 312 . . 3 (𝜑 → ((𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r𝐾)𝑦) = 𝑧) ↔ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r𝐿)𝑦) = 𝑧)))
1615opabbidv 5106 . 2 (𝜑 → {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r𝐾)𝑦) = 𝑧)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r𝐿)𝑦) = 𝑧)})
17 eqid 2739 . . 3 (Base‘𝐾) = (Base‘𝐾)
18 eqid 2739 . . 3 (∥r𝐾) = (∥r𝐾)
19 eqid 2739 . . 3 (.r𝐾) = (.r𝐾)
2017, 18, 19dvdsrval 19530 . 2 (∥r𝐾) = {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(𝑥(.r𝐾)𝑦) = 𝑧)}
21 eqid 2739 . . 3 (Base‘𝐿) = (Base‘𝐿)
22 eqid 2739 . . 3 (∥r𝐿) = (∥r𝐿)
23 eqid 2739 . . 3 (.r𝐿) = (.r𝐿)
2421, 22, 23dvdsrval 19530 . 2 (∥r𝐿) = {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ (Base‘𝐿) ∧ ∃𝑥 ∈ (Base‘𝐿)(𝑥(.r𝐿)𝑦) = 𝑧)}
2516, 20, 243eqtr4g 2799 1 (𝜑 → (∥r𝐾) = (∥r𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wrex 3055  {copab 5102  cfv 6350  (class class class)co 7183  Basecbs 16599  .rcmulr 16682  rcdsr 19523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7186  df-dvdsr 19526
This theorem is referenced by:  unitpropd  19582
  Copyright terms: Public domain W3C validator