Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unitpropd | Structured version Visualization version GIF version |
Description: The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
Ref | Expression |
---|---|
rngidpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
rngidpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
rngidpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
Ref | Expression |
---|---|
unitpropd | ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngidpropd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | rngidpropd.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | rngidpropd.3 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
4 | 1, 2, 3 | rngidpropd 19937 | . . . . . 6 ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
5 | 4 | breq2d 5086 | . . . . 5 ⊢ (𝜑 → (𝑧(∥r‘𝐾)(1r‘𝐾) ↔ 𝑧(∥r‘𝐾)(1r‘𝐿))) |
6 | 4 | breq2d 5086 | . . . . 5 ⊢ (𝜑 → (𝑧(∥r‘(oppr‘𝐾))(1r‘𝐾) ↔ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐿))) |
7 | 5, 6 | anbi12d 631 | . . . 4 ⊢ (𝜑 → ((𝑧(∥r‘𝐾)(1r‘𝐾) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐾)) ↔ (𝑧(∥r‘𝐾)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐿)))) |
8 | 1, 2, 3 | dvdsrpropd 19938 | . . . . . 6 ⊢ (𝜑 → (∥r‘𝐾) = (∥r‘𝐿)) |
9 | 8 | breqd 5085 | . . . . 5 ⊢ (𝜑 → (𝑧(∥r‘𝐾)(1r‘𝐿) ↔ 𝑧(∥r‘𝐿)(1r‘𝐿))) |
10 | eqid 2738 | . . . . . . . . 9 ⊢ (oppr‘𝐾) = (oppr‘𝐾) | |
11 | eqid 2738 | . . . . . . . . 9 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
12 | 10, 11 | opprbas 19869 | . . . . . . . 8 ⊢ (Base‘𝐾) = (Base‘(oppr‘𝐾)) |
13 | 1, 12 | eqtrdi 2794 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘(oppr‘𝐾))) |
14 | eqid 2738 | . . . . . . . . 9 ⊢ (oppr‘𝐿) = (oppr‘𝐿) | |
15 | eqid 2738 | . . . . . . . . 9 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
16 | 14, 15 | opprbas 19869 | . . . . . . . 8 ⊢ (Base‘𝐿) = (Base‘(oppr‘𝐿)) |
17 | 2, 16 | eqtrdi 2794 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘(oppr‘𝐿))) |
18 | 3 | ancom2s 647 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
19 | eqid 2738 | . . . . . . . . 9 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
20 | eqid 2738 | . . . . . . . . 9 ⊢ (.r‘(oppr‘𝐾)) = (.r‘(oppr‘𝐾)) | |
21 | 11, 19, 10, 20 | opprmul 19865 | . . . . . . . 8 ⊢ (𝑦(.r‘(oppr‘𝐾))𝑥) = (𝑥(.r‘𝐾)𝑦) |
22 | eqid 2738 | . . . . . . . . 9 ⊢ (.r‘𝐿) = (.r‘𝐿) | |
23 | eqid 2738 | . . . . . . . . 9 ⊢ (.r‘(oppr‘𝐿)) = (.r‘(oppr‘𝐿)) | |
24 | 15, 22, 14, 23 | opprmul 19865 | . . . . . . . 8 ⊢ (𝑦(.r‘(oppr‘𝐿))𝑥) = (𝑥(.r‘𝐿)𝑦) |
25 | 18, 21, 24 | 3eqtr4g 2803 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑦(.r‘(oppr‘𝐾))𝑥) = (𝑦(.r‘(oppr‘𝐿))𝑥)) |
26 | 13, 17, 25 | dvdsrpropd 19938 | . . . . . 6 ⊢ (𝜑 → (∥r‘(oppr‘𝐾)) = (∥r‘(oppr‘𝐿))) |
27 | 26 | breqd 5085 | . . . . 5 ⊢ (𝜑 → (𝑧(∥r‘(oppr‘𝐾))(1r‘𝐿) ↔ 𝑧(∥r‘(oppr‘𝐿))(1r‘𝐿))) |
28 | 9, 27 | anbi12d 631 | . . . 4 ⊢ (𝜑 → ((𝑧(∥r‘𝐾)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐿)) ↔ (𝑧(∥r‘𝐿)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐿))(1r‘𝐿)))) |
29 | 7, 28 | bitrd 278 | . . 3 ⊢ (𝜑 → ((𝑧(∥r‘𝐾)(1r‘𝐾) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐾)) ↔ (𝑧(∥r‘𝐿)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐿))(1r‘𝐿)))) |
30 | eqid 2738 | . . . 4 ⊢ (Unit‘𝐾) = (Unit‘𝐾) | |
31 | eqid 2738 | . . . 4 ⊢ (1r‘𝐾) = (1r‘𝐾) | |
32 | eqid 2738 | . . . 4 ⊢ (∥r‘𝐾) = (∥r‘𝐾) | |
33 | eqid 2738 | . . . 4 ⊢ (∥r‘(oppr‘𝐾)) = (∥r‘(oppr‘𝐾)) | |
34 | 30, 31, 32, 10, 33 | isunit 19899 | . . 3 ⊢ (𝑧 ∈ (Unit‘𝐾) ↔ (𝑧(∥r‘𝐾)(1r‘𝐾) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐾))) |
35 | eqid 2738 | . . . 4 ⊢ (Unit‘𝐿) = (Unit‘𝐿) | |
36 | eqid 2738 | . . . 4 ⊢ (1r‘𝐿) = (1r‘𝐿) | |
37 | eqid 2738 | . . . 4 ⊢ (∥r‘𝐿) = (∥r‘𝐿) | |
38 | eqid 2738 | . . . 4 ⊢ (∥r‘(oppr‘𝐿)) = (∥r‘(oppr‘𝐿)) | |
39 | 35, 36, 37, 14, 38 | isunit 19899 | . . 3 ⊢ (𝑧 ∈ (Unit‘𝐿) ↔ (𝑧(∥r‘𝐿)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐿))(1r‘𝐿))) |
40 | 29, 34, 39 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑧 ∈ (Unit‘𝐾) ↔ 𝑧 ∈ (Unit‘𝐿))) |
41 | 40 | eqrdv 2736 | 1 ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 .rcmulr 16963 1rcur 19737 opprcoppr 19861 ∥rcdsr 19880 Unitcui 19881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-0g 17152 df-mgp 19721 df-ur 19738 df-oppr 19862 df-dvdsr 19883 df-unit 19884 |
This theorem is referenced by: invrpropd 19940 drngprop 20002 drngpropd 20018 sradrng 31673 |
Copyright terms: Public domain | W3C validator |