| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitpropd | Structured version Visualization version GIF version | ||
| Description: The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
| Ref | Expression |
|---|---|
| rngidpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| rngidpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| rngidpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| Ref | Expression |
|---|---|
| unitpropd | ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngidpropd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 2 | rngidpropd.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 3 | rngidpropd.3 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
| 4 | 1, 2, 3 | rngidpropd 20331 | . . . . . 6 ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
| 5 | 4 | breq2d 5103 | . . . . 5 ⊢ (𝜑 → (𝑧(∥r‘𝐾)(1r‘𝐾) ↔ 𝑧(∥r‘𝐾)(1r‘𝐿))) |
| 6 | 4 | breq2d 5103 | . . . . 5 ⊢ (𝜑 → (𝑧(∥r‘(oppr‘𝐾))(1r‘𝐾) ↔ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐿))) |
| 7 | 5, 6 | anbi12d 632 | . . . 4 ⊢ (𝜑 → ((𝑧(∥r‘𝐾)(1r‘𝐾) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐾)) ↔ (𝑧(∥r‘𝐾)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐿)))) |
| 8 | 1, 2, 3 | dvdsrpropd 20332 | . . . . . 6 ⊢ (𝜑 → (∥r‘𝐾) = (∥r‘𝐿)) |
| 9 | 8 | breqd 5102 | . . . . 5 ⊢ (𝜑 → (𝑧(∥r‘𝐾)(1r‘𝐿) ↔ 𝑧(∥r‘𝐿)(1r‘𝐿))) |
| 10 | eqid 2731 | . . . . . . . . 9 ⊢ (oppr‘𝐾) = (oppr‘𝐾) | |
| 11 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 12 | 10, 11 | opprbas 20259 | . . . . . . . 8 ⊢ (Base‘𝐾) = (Base‘(oppr‘𝐾)) |
| 13 | 1, 12 | eqtrdi 2782 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘(oppr‘𝐾))) |
| 14 | eqid 2731 | . . . . . . . . 9 ⊢ (oppr‘𝐿) = (oppr‘𝐿) | |
| 15 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 16 | 14, 15 | opprbas 20259 | . . . . . . . 8 ⊢ (Base‘𝐿) = (Base‘(oppr‘𝐿)) |
| 17 | 2, 16 | eqtrdi 2782 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘(oppr‘𝐿))) |
| 18 | 3 | ancom2s 650 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| 19 | eqid 2731 | . . . . . . . . 9 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
| 20 | eqid 2731 | . . . . . . . . 9 ⊢ (.r‘(oppr‘𝐾)) = (.r‘(oppr‘𝐾)) | |
| 21 | 11, 19, 10, 20 | opprmul 20256 | . . . . . . . 8 ⊢ (𝑦(.r‘(oppr‘𝐾))𝑥) = (𝑥(.r‘𝐾)𝑦) |
| 22 | eqid 2731 | . . . . . . . . 9 ⊢ (.r‘𝐿) = (.r‘𝐿) | |
| 23 | eqid 2731 | . . . . . . . . 9 ⊢ (.r‘(oppr‘𝐿)) = (.r‘(oppr‘𝐿)) | |
| 24 | 15, 22, 14, 23 | opprmul 20256 | . . . . . . . 8 ⊢ (𝑦(.r‘(oppr‘𝐿))𝑥) = (𝑥(.r‘𝐿)𝑦) |
| 25 | 18, 21, 24 | 3eqtr4g 2791 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑦(.r‘(oppr‘𝐾))𝑥) = (𝑦(.r‘(oppr‘𝐿))𝑥)) |
| 26 | 13, 17, 25 | dvdsrpropd 20332 | . . . . . 6 ⊢ (𝜑 → (∥r‘(oppr‘𝐾)) = (∥r‘(oppr‘𝐿))) |
| 27 | 26 | breqd 5102 | . . . . 5 ⊢ (𝜑 → (𝑧(∥r‘(oppr‘𝐾))(1r‘𝐿) ↔ 𝑧(∥r‘(oppr‘𝐿))(1r‘𝐿))) |
| 28 | 9, 27 | anbi12d 632 | . . . 4 ⊢ (𝜑 → ((𝑧(∥r‘𝐾)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐿)) ↔ (𝑧(∥r‘𝐿)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐿))(1r‘𝐿)))) |
| 29 | 7, 28 | bitrd 279 | . . 3 ⊢ (𝜑 → ((𝑧(∥r‘𝐾)(1r‘𝐾) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐾)) ↔ (𝑧(∥r‘𝐿)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐿))(1r‘𝐿)))) |
| 30 | eqid 2731 | . . . 4 ⊢ (Unit‘𝐾) = (Unit‘𝐾) | |
| 31 | eqid 2731 | . . . 4 ⊢ (1r‘𝐾) = (1r‘𝐾) | |
| 32 | eqid 2731 | . . . 4 ⊢ (∥r‘𝐾) = (∥r‘𝐾) | |
| 33 | eqid 2731 | . . . 4 ⊢ (∥r‘(oppr‘𝐾)) = (∥r‘(oppr‘𝐾)) | |
| 34 | 30, 31, 32, 10, 33 | isunit 20289 | . . 3 ⊢ (𝑧 ∈ (Unit‘𝐾) ↔ (𝑧(∥r‘𝐾)(1r‘𝐾) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐾))) |
| 35 | eqid 2731 | . . . 4 ⊢ (Unit‘𝐿) = (Unit‘𝐿) | |
| 36 | eqid 2731 | . . . 4 ⊢ (1r‘𝐿) = (1r‘𝐿) | |
| 37 | eqid 2731 | . . . 4 ⊢ (∥r‘𝐿) = (∥r‘𝐿) | |
| 38 | eqid 2731 | . . . 4 ⊢ (∥r‘(oppr‘𝐿)) = (∥r‘(oppr‘𝐿)) | |
| 39 | 35, 36, 37, 14, 38 | isunit 20289 | . . 3 ⊢ (𝑧 ∈ (Unit‘𝐿) ↔ (𝑧(∥r‘𝐿)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐿))(1r‘𝐿))) |
| 40 | 29, 34, 39 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑧 ∈ (Unit‘𝐾) ↔ 𝑧 ∈ (Unit‘𝐿))) |
| 41 | 40 | eqrdv 2729 | 1 ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 .rcmulr 17159 1rcur 20097 opprcoppr 20252 ∥rcdsr 20270 Unitcui 20271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-mulr 17172 df-0g 17342 df-mgp 20057 df-ur 20098 df-oppr 20253 df-dvdsr 20273 df-unit 20274 |
| This theorem is referenced by: invrpropd 20334 drngprop 20657 drngpropd 20682 sradrng 33589 |
| Copyright terms: Public domain | W3C validator |