Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unitpropd | Structured version Visualization version GIF version |
Description: The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
Ref | Expression |
---|---|
rngidpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
rngidpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
rngidpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
Ref | Expression |
---|---|
unitpropd | ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngidpropd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | rngidpropd.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | rngidpropd.3 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
4 | 1, 2, 3 | rngidpropd 19852 | . . . . . 6 ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
5 | 4 | breq2d 5082 | . . . . 5 ⊢ (𝜑 → (𝑧(∥r‘𝐾)(1r‘𝐾) ↔ 𝑧(∥r‘𝐾)(1r‘𝐿))) |
6 | 4 | breq2d 5082 | . . . . 5 ⊢ (𝜑 → (𝑧(∥r‘(oppr‘𝐾))(1r‘𝐾) ↔ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐿))) |
7 | 5, 6 | anbi12d 630 | . . . 4 ⊢ (𝜑 → ((𝑧(∥r‘𝐾)(1r‘𝐾) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐾)) ↔ (𝑧(∥r‘𝐾)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐿)))) |
8 | 1, 2, 3 | dvdsrpropd 19853 | . . . . . 6 ⊢ (𝜑 → (∥r‘𝐾) = (∥r‘𝐿)) |
9 | 8 | breqd 5081 | . . . . 5 ⊢ (𝜑 → (𝑧(∥r‘𝐾)(1r‘𝐿) ↔ 𝑧(∥r‘𝐿)(1r‘𝐿))) |
10 | eqid 2738 | . . . . . . . . 9 ⊢ (oppr‘𝐾) = (oppr‘𝐾) | |
11 | eqid 2738 | . . . . . . . . 9 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
12 | 10, 11 | opprbas 19784 | . . . . . . . 8 ⊢ (Base‘𝐾) = (Base‘(oppr‘𝐾)) |
13 | 1, 12 | eqtrdi 2795 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘(oppr‘𝐾))) |
14 | eqid 2738 | . . . . . . . . 9 ⊢ (oppr‘𝐿) = (oppr‘𝐿) | |
15 | eqid 2738 | . . . . . . . . 9 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
16 | 14, 15 | opprbas 19784 | . . . . . . . 8 ⊢ (Base‘𝐿) = (Base‘(oppr‘𝐿)) |
17 | 2, 16 | eqtrdi 2795 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘(oppr‘𝐿))) |
18 | 3 | ancom2s 646 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
19 | eqid 2738 | . . . . . . . . 9 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
20 | eqid 2738 | . . . . . . . . 9 ⊢ (.r‘(oppr‘𝐾)) = (.r‘(oppr‘𝐾)) | |
21 | 11, 19, 10, 20 | opprmul 19780 | . . . . . . . 8 ⊢ (𝑦(.r‘(oppr‘𝐾))𝑥) = (𝑥(.r‘𝐾)𝑦) |
22 | eqid 2738 | . . . . . . . . 9 ⊢ (.r‘𝐿) = (.r‘𝐿) | |
23 | eqid 2738 | . . . . . . . . 9 ⊢ (.r‘(oppr‘𝐿)) = (.r‘(oppr‘𝐿)) | |
24 | 15, 22, 14, 23 | opprmul 19780 | . . . . . . . 8 ⊢ (𝑦(.r‘(oppr‘𝐿))𝑥) = (𝑥(.r‘𝐿)𝑦) |
25 | 18, 21, 24 | 3eqtr4g 2804 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑦(.r‘(oppr‘𝐾))𝑥) = (𝑦(.r‘(oppr‘𝐿))𝑥)) |
26 | 13, 17, 25 | dvdsrpropd 19853 | . . . . . 6 ⊢ (𝜑 → (∥r‘(oppr‘𝐾)) = (∥r‘(oppr‘𝐿))) |
27 | 26 | breqd 5081 | . . . . 5 ⊢ (𝜑 → (𝑧(∥r‘(oppr‘𝐾))(1r‘𝐿) ↔ 𝑧(∥r‘(oppr‘𝐿))(1r‘𝐿))) |
28 | 9, 27 | anbi12d 630 | . . . 4 ⊢ (𝜑 → ((𝑧(∥r‘𝐾)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐿)) ↔ (𝑧(∥r‘𝐿)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐿))(1r‘𝐿)))) |
29 | 7, 28 | bitrd 278 | . . 3 ⊢ (𝜑 → ((𝑧(∥r‘𝐾)(1r‘𝐾) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐾)) ↔ (𝑧(∥r‘𝐿)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐿))(1r‘𝐿)))) |
30 | eqid 2738 | . . . 4 ⊢ (Unit‘𝐾) = (Unit‘𝐾) | |
31 | eqid 2738 | . . . 4 ⊢ (1r‘𝐾) = (1r‘𝐾) | |
32 | eqid 2738 | . . . 4 ⊢ (∥r‘𝐾) = (∥r‘𝐾) | |
33 | eqid 2738 | . . . 4 ⊢ (∥r‘(oppr‘𝐾)) = (∥r‘(oppr‘𝐾)) | |
34 | 30, 31, 32, 10, 33 | isunit 19814 | . . 3 ⊢ (𝑧 ∈ (Unit‘𝐾) ↔ (𝑧(∥r‘𝐾)(1r‘𝐾) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐾))) |
35 | eqid 2738 | . . . 4 ⊢ (Unit‘𝐿) = (Unit‘𝐿) | |
36 | eqid 2738 | . . . 4 ⊢ (1r‘𝐿) = (1r‘𝐿) | |
37 | eqid 2738 | . . . 4 ⊢ (∥r‘𝐿) = (∥r‘𝐿) | |
38 | eqid 2738 | . . . 4 ⊢ (∥r‘(oppr‘𝐿)) = (∥r‘(oppr‘𝐿)) | |
39 | 35, 36, 37, 14, 38 | isunit 19814 | . . 3 ⊢ (𝑧 ∈ (Unit‘𝐿) ↔ (𝑧(∥r‘𝐿)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐿))(1r‘𝐿))) |
40 | 29, 34, 39 | 3bitr4g 313 | . 2 ⊢ (𝜑 → (𝑧 ∈ (Unit‘𝐾) ↔ 𝑧 ∈ (Unit‘𝐿))) |
41 | 40 | eqrdv 2736 | 1 ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 .rcmulr 16889 1rcur 19652 opprcoppr 19776 ∥rcdsr 19795 Unitcui 19796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-0g 17069 df-mgp 19636 df-ur 19653 df-oppr 19777 df-dvdsr 19798 df-unit 19799 |
This theorem is referenced by: invrpropd 19855 drngprop 19917 drngpropd 19933 sradrng 31575 |
Copyright terms: Public domain | W3C validator |