| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unitpropd | Structured version Visualization version GIF version | ||
| Description: The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
| Ref | Expression |
|---|---|
| rngidpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| rngidpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| rngidpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| Ref | Expression |
|---|---|
| unitpropd | ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngidpropd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 2 | rngidpropd.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 3 | rngidpropd.3 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
| 4 | 1, 2, 3 | rngidpropd 20335 | . . . . . 6 ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
| 5 | 4 | breq2d 5105 | . . . . 5 ⊢ (𝜑 → (𝑧(∥r‘𝐾)(1r‘𝐾) ↔ 𝑧(∥r‘𝐾)(1r‘𝐿))) |
| 6 | 4 | breq2d 5105 | . . . . 5 ⊢ (𝜑 → (𝑧(∥r‘(oppr‘𝐾))(1r‘𝐾) ↔ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐿))) |
| 7 | 5, 6 | anbi12d 632 | . . . 4 ⊢ (𝜑 → ((𝑧(∥r‘𝐾)(1r‘𝐾) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐾)) ↔ (𝑧(∥r‘𝐾)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐿)))) |
| 8 | 1, 2, 3 | dvdsrpropd 20336 | . . . . . 6 ⊢ (𝜑 → (∥r‘𝐾) = (∥r‘𝐿)) |
| 9 | 8 | breqd 5104 | . . . . 5 ⊢ (𝜑 → (𝑧(∥r‘𝐾)(1r‘𝐿) ↔ 𝑧(∥r‘𝐿)(1r‘𝐿))) |
| 10 | eqid 2733 | . . . . . . . . 9 ⊢ (oppr‘𝐾) = (oppr‘𝐾) | |
| 11 | eqid 2733 | . . . . . . . . 9 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 12 | 10, 11 | opprbas 20263 | . . . . . . . 8 ⊢ (Base‘𝐾) = (Base‘(oppr‘𝐾)) |
| 13 | 1, 12 | eqtrdi 2784 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘(oppr‘𝐾))) |
| 14 | eqid 2733 | . . . . . . . . 9 ⊢ (oppr‘𝐿) = (oppr‘𝐿) | |
| 15 | eqid 2733 | . . . . . . . . 9 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 16 | 14, 15 | opprbas 20263 | . . . . . . . 8 ⊢ (Base‘𝐿) = (Base‘(oppr‘𝐿)) |
| 17 | 2, 16 | eqtrdi 2784 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘(oppr‘𝐿))) |
| 18 | 3 | ancom2s 650 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| 19 | eqid 2733 | . . . . . . . . 9 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
| 20 | eqid 2733 | . . . . . . . . 9 ⊢ (.r‘(oppr‘𝐾)) = (.r‘(oppr‘𝐾)) | |
| 21 | 11, 19, 10, 20 | opprmul 20260 | . . . . . . . 8 ⊢ (𝑦(.r‘(oppr‘𝐾))𝑥) = (𝑥(.r‘𝐾)𝑦) |
| 22 | eqid 2733 | . . . . . . . . 9 ⊢ (.r‘𝐿) = (.r‘𝐿) | |
| 23 | eqid 2733 | . . . . . . . . 9 ⊢ (.r‘(oppr‘𝐿)) = (.r‘(oppr‘𝐿)) | |
| 24 | 15, 22, 14, 23 | opprmul 20260 | . . . . . . . 8 ⊢ (𝑦(.r‘(oppr‘𝐿))𝑥) = (𝑥(.r‘𝐿)𝑦) |
| 25 | 18, 21, 24 | 3eqtr4g 2793 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑦(.r‘(oppr‘𝐾))𝑥) = (𝑦(.r‘(oppr‘𝐿))𝑥)) |
| 26 | 13, 17, 25 | dvdsrpropd 20336 | . . . . . 6 ⊢ (𝜑 → (∥r‘(oppr‘𝐾)) = (∥r‘(oppr‘𝐿))) |
| 27 | 26 | breqd 5104 | . . . . 5 ⊢ (𝜑 → (𝑧(∥r‘(oppr‘𝐾))(1r‘𝐿) ↔ 𝑧(∥r‘(oppr‘𝐿))(1r‘𝐿))) |
| 28 | 9, 27 | anbi12d 632 | . . . 4 ⊢ (𝜑 → ((𝑧(∥r‘𝐾)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐿)) ↔ (𝑧(∥r‘𝐿)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐿))(1r‘𝐿)))) |
| 29 | 7, 28 | bitrd 279 | . . 3 ⊢ (𝜑 → ((𝑧(∥r‘𝐾)(1r‘𝐾) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐾)) ↔ (𝑧(∥r‘𝐿)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐿))(1r‘𝐿)))) |
| 30 | eqid 2733 | . . . 4 ⊢ (Unit‘𝐾) = (Unit‘𝐾) | |
| 31 | eqid 2733 | . . . 4 ⊢ (1r‘𝐾) = (1r‘𝐾) | |
| 32 | eqid 2733 | . . . 4 ⊢ (∥r‘𝐾) = (∥r‘𝐾) | |
| 33 | eqid 2733 | . . . 4 ⊢ (∥r‘(oppr‘𝐾)) = (∥r‘(oppr‘𝐾)) | |
| 34 | 30, 31, 32, 10, 33 | isunit 20293 | . . 3 ⊢ (𝑧 ∈ (Unit‘𝐾) ↔ (𝑧(∥r‘𝐾)(1r‘𝐾) ∧ 𝑧(∥r‘(oppr‘𝐾))(1r‘𝐾))) |
| 35 | eqid 2733 | . . . 4 ⊢ (Unit‘𝐿) = (Unit‘𝐿) | |
| 36 | eqid 2733 | . . . 4 ⊢ (1r‘𝐿) = (1r‘𝐿) | |
| 37 | eqid 2733 | . . . 4 ⊢ (∥r‘𝐿) = (∥r‘𝐿) | |
| 38 | eqid 2733 | . . . 4 ⊢ (∥r‘(oppr‘𝐿)) = (∥r‘(oppr‘𝐿)) | |
| 39 | 35, 36, 37, 14, 38 | isunit 20293 | . . 3 ⊢ (𝑧 ∈ (Unit‘𝐿) ↔ (𝑧(∥r‘𝐿)(1r‘𝐿) ∧ 𝑧(∥r‘(oppr‘𝐿))(1r‘𝐿))) |
| 40 | 29, 34, 39 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑧 ∈ (Unit‘𝐾) ↔ 𝑧 ∈ (Unit‘𝐿))) |
| 41 | 40 | eqrdv 2731 | 1 ⊢ (𝜑 → (Unit‘𝐾) = (Unit‘𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 .rcmulr 17164 1rcur 20101 opprcoppr 20256 ∥rcdsr 20274 Unitcui 20275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-plusg 17176 df-mulr 17177 df-0g 17347 df-mgp 20061 df-ur 20102 df-oppr 20257 df-dvdsr 20277 df-unit 20278 |
| This theorem is referenced by: invrpropd 20338 drngprop 20661 drngpropd 20686 sradrng 33615 |
| Copyright terms: Public domain | W3C validator |