| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngidpropd | Structured version Visualization version GIF version | ||
| Description: The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
| Ref | Expression |
|---|---|
| rngidpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| rngidpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| rngidpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| Ref | Expression |
|---|---|
| rngidpropd | ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngidpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 2 | eqid 2736 | . . . . 5 ⊢ (mulGrp‘𝐾) = (mulGrp‘𝐾) | |
| 3 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | 2, 3 | mgpbas 20143 | . . . 4 ⊢ (Base‘𝐾) = (Base‘(mulGrp‘𝐾)) |
| 5 | 1, 4 | eqtrdi 2792 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐾))) |
| 6 | rngidpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 7 | eqid 2736 | . . . . 5 ⊢ (mulGrp‘𝐿) = (mulGrp‘𝐿) | |
| 8 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 9 | 7, 8 | mgpbas 20143 | . . . 4 ⊢ (Base‘𝐿) = (Base‘(mulGrp‘𝐿)) |
| 10 | 6, 9 | eqtrdi 2792 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐿))) |
| 11 | rngidpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
| 12 | eqid 2736 | . . . . . 6 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
| 13 | 2, 12 | mgpplusg 20142 | . . . . 5 ⊢ (.r‘𝐾) = (+g‘(mulGrp‘𝐾)) |
| 14 | 13 | oveqi 7445 | . . . 4 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦) |
| 15 | eqid 2736 | . . . . . 6 ⊢ (.r‘𝐿) = (.r‘𝐿) | |
| 16 | 7, 15 | mgpplusg 20142 | . . . . 5 ⊢ (.r‘𝐿) = (+g‘(mulGrp‘𝐿)) |
| 17 | 16 | oveqi 7445 | . . . 4 ⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦) |
| 18 | 11, 14, 17 | 3eqtr3g 2799 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
| 19 | 5, 10, 18 | grpidpropd 18676 | . 2 ⊢ (𝜑 → (0g‘(mulGrp‘𝐾)) = (0g‘(mulGrp‘𝐿))) |
| 20 | eqid 2736 | . . 3 ⊢ (1r‘𝐾) = (1r‘𝐾) | |
| 21 | 2, 20 | ringidval 20181 | . 2 ⊢ (1r‘𝐾) = (0g‘(mulGrp‘𝐾)) |
| 22 | eqid 2736 | . . 3 ⊢ (1r‘𝐿) = (1r‘𝐿) | |
| 23 | 7, 22 | ringidval 20181 | . 2 ⊢ (1r‘𝐿) = (0g‘(mulGrp‘𝐿)) |
| 24 | 19, 21, 23 | 3eqtr4g 2801 | 1 ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 +gcplusg 17298 .rcmulr 17299 0gc0g 17485 mulGrpcmgp 20138 1rcur 20179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-plusg 17311 df-0g 17487 df-mgp 20139 df-ur 20180 |
| This theorem is referenced by: unitpropd 20418 nzrpropd 20521 subrgpropd 20609 lmodprop2d 20923 opsr1 22222 ply1mpl1 22261 sra1r 33633 zlm1 33961 hlhils1N 41953 |
| Copyright terms: Public domain | W3C validator |