MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngidpropd Structured version   Visualization version   GIF version

Theorem rngidpropd 20342
Description: The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
rngidpropd.1 (𝜑𝐵 = (Base‘𝐾))
rngidpropd.2 (𝜑𝐵 = (Base‘𝐿))
rngidpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
rngidpropd (𝜑 → (1r𝐾) = (1r𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem rngidpropd
StepHypRef Expression
1 rngidpropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 eqid 2733 . . . . 5 (mulGrp‘𝐾) = (mulGrp‘𝐾)
3 eqid 2733 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
42, 3mgpbas 20071 . . . 4 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
51, 4eqtrdi 2784 . . 3 (𝜑𝐵 = (Base‘(mulGrp‘𝐾)))
6 rngidpropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
7 eqid 2733 . . . . 5 (mulGrp‘𝐿) = (mulGrp‘𝐿)
8 eqid 2733 . . . . 5 (Base‘𝐿) = (Base‘𝐿)
97, 8mgpbas 20071 . . . 4 (Base‘𝐿) = (Base‘(mulGrp‘𝐿))
106, 9eqtrdi 2784 . . 3 (𝜑𝐵 = (Base‘(mulGrp‘𝐿)))
11 rngidpropd.3 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
12 eqid 2733 . . . . . 6 (.r𝐾) = (.r𝐾)
132, 12mgpplusg 20070 . . . . 5 (.r𝐾) = (+g‘(mulGrp‘𝐾))
1413oveqi 7368 . . . 4 (𝑥(.r𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)
15 eqid 2733 . . . . . 6 (.r𝐿) = (.r𝐿)
167, 15mgpplusg 20070 . . . . 5 (.r𝐿) = (+g‘(mulGrp‘𝐿))
1716oveqi 7368 . . . 4 (𝑥(.r𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)
1811, 14, 173eqtr3g 2791 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
195, 10, 18grpidpropd 18578 . 2 (𝜑 → (0g‘(mulGrp‘𝐾)) = (0g‘(mulGrp‘𝐿)))
20 eqid 2733 . . 3 (1r𝐾) = (1r𝐾)
212, 20ringidval 20109 . 2 (1r𝐾) = (0g‘(mulGrp‘𝐾))
22 eqid 2733 . . 3 (1r𝐿) = (1r𝐿)
237, 22ringidval 20109 . 2 (1r𝐿) = (0g‘(mulGrp‘𝐿))
2419, 21, 233eqtr4g 2793 1 (𝜑 → (1r𝐾) = (1r𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cfv 6489  (class class class)co 7355  Basecbs 17127  +gcplusg 17168  .rcmulr 17169  0gc0g 17350  mulGrpcmgp 20066  1rcur 20107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-plusg 17181  df-0g 17352  df-mgp 20067  df-ur 20108
This theorem is referenced by:  unitpropd  20344  nzrpropd  20444  subrgpropd  20532  lmodprop2d  20866  opsr1  22151  ply1mpl1  22190  sra1r  33665  zlm1  34046  hlhils1N  42118
  Copyright terms: Public domain W3C validator