Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rngidpropd | Structured version Visualization version GIF version |
Description: The ring identity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
Ref | Expression |
---|---|
rngidpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
rngidpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
rngidpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
Ref | Expression |
---|---|
rngidpropd | ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngidpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | eqid 2736 | . . . . 5 ⊢ (mulGrp‘𝐾) = (mulGrp‘𝐾) | |
3 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | 2, 3 | mgpbas 19775 | . . . 4 ⊢ (Base‘𝐾) = (Base‘(mulGrp‘𝐾)) |
5 | 1, 4 | eqtrdi 2792 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐾))) |
6 | rngidpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
7 | eqid 2736 | . . . . 5 ⊢ (mulGrp‘𝐿) = (mulGrp‘𝐿) | |
8 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
9 | 7, 8 | mgpbas 19775 | . . . 4 ⊢ (Base‘𝐿) = (Base‘(mulGrp‘𝐿)) |
10 | 6, 9 | eqtrdi 2792 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐿))) |
11 | rngidpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
12 | eqid 2736 | . . . . . 6 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
13 | 2, 12 | mgpplusg 19773 | . . . . 5 ⊢ (.r‘𝐾) = (+g‘(mulGrp‘𝐾)) |
14 | 13 | oveqi 7320 | . . . 4 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦) |
15 | eqid 2736 | . . . . . 6 ⊢ (.r‘𝐿) = (.r‘𝐿) | |
16 | 7, 15 | mgpplusg 19773 | . . . . 5 ⊢ (.r‘𝐿) = (+g‘(mulGrp‘𝐿)) |
17 | 16 | oveqi 7320 | . . . 4 ⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦) |
18 | 11, 14, 17 | 3eqtr3g 2799 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
19 | 5, 10, 18 | grpidpropd 18395 | . 2 ⊢ (𝜑 → (0g‘(mulGrp‘𝐾)) = (0g‘(mulGrp‘𝐿))) |
20 | eqid 2736 | . . 3 ⊢ (1r‘𝐾) = (1r‘𝐾) | |
21 | 2, 20 | ringidval 19788 | . 2 ⊢ (1r‘𝐾) = (0g‘(mulGrp‘𝐾)) |
22 | eqid 2736 | . . 3 ⊢ (1r‘𝐿) = (1r‘𝐿) | |
23 | 7, 22 | ringidval 19788 | . 2 ⊢ (1r‘𝐿) = (0g‘(mulGrp‘𝐿)) |
24 | 19, 21, 23 | 3eqtr4g 2801 | 1 ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 Basecbs 16961 +gcplusg 17011 .rcmulr 17012 0gc0g 17199 mulGrpcmgp 19769 1rcur 19786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-plusg 17024 df-0g 17201 df-mgp 19770 df-ur 19787 |
This theorem is referenced by: unitpropd 19988 subrgpropd 20108 lmodprop2d 20234 opsr1 21439 ply1mpl1 21477 sra1r 31720 zlm1 31960 hlhils1N 40164 |
Copyright terms: Public domain | W3C validator |