![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngidpropd | Structured version Visualization version GIF version |
Description: The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) |
Ref | Expression |
---|---|
rngidpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
rngidpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
rngidpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
Ref | Expression |
---|---|
rngidpropd | ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngidpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | eqid 2735 | . . . . 5 ⊢ (mulGrp‘𝐾) = (mulGrp‘𝐾) | |
3 | eqid 2735 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | 2, 3 | mgpbas 20158 | . . . 4 ⊢ (Base‘𝐾) = (Base‘(mulGrp‘𝐾)) |
5 | 1, 4 | eqtrdi 2791 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐾))) |
6 | rngidpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
7 | eqid 2735 | . . . . 5 ⊢ (mulGrp‘𝐿) = (mulGrp‘𝐿) | |
8 | eqid 2735 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
9 | 7, 8 | mgpbas 20158 | . . . 4 ⊢ (Base‘𝐿) = (Base‘(mulGrp‘𝐿)) |
10 | 6, 9 | eqtrdi 2791 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐿))) |
11 | rngidpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
12 | eqid 2735 | . . . . . 6 ⊢ (.r‘𝐾) = (.r‘𝐾) | |
13 | 2, 12 | mgpplusg 20156 | . . . . 5 ⊢ (.r‘𝐾) = (+g‘(mulGrp‘𝐾)) |
14 | 13 | oveqi 7444 | . . . 4 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦) |
15 | eqid 2735 | . . . . . 6 ⊢ (.r‘𝐿) = (.r‘𝐿) | |
16 | 7, 15 | mgpplusg 20156 | . . . . 5 ⊢ (.r‘𝐿) = (+g‘(mulGrp‘𝐿)) |
17 | 16 | oveqi 7444 | . . . 4 ⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦) |
18 | 11, 14, 17 | 3eqtr3g 2798 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
19 | 5, 10, 18 | grpidpropd 18688 | . 2 ⊢ (𝜑 → (0g‘(mulGrp‘𝐾)) = (0g‘(mulGrp‘𝐿))) |
20 | eqid 2735 | . . 3 ⊢ (1r‘𝐾) = (1r‘𝐾) | |
21 | 2, 20 | ringidval 20201 | . 2 ⊢ (1r‘𝐾) = (0g‘(mulGrp‘𝐾)) |
22 | eqid 2735 | . . 3 ⊢ (1r‘𝐿) = (1r‘𝐿) | |
23 | 7, 22 | ringidval 20201 | . 2 ⊢ (1r‘𝐿) = (0g‘(mulGrp‘𝐿)) |
24 | 19, 21, 23 | 3eqtr4g 2800 | 1 ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 .rcmulr 17299 0gc0g 17486 mulGrpcmgp 20152 1rcur 20199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-0g 17488 df-mgp 20153 df-ur 20200 |
This theorem is referenced by: unitpropd 20434 nzrpropd 20537 subrgpropd 20625 lmodprop2d 20939 opsr1 22237 ply1mpl1 22276 sra1r 33612 zlm1 33922 hlhils1N 41933 |
Copyright terms: Public domain | W3C validator |