Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uhgriedg0edg0 | Structured version Visualization version GIF version |
Description: A hypergraph has no edges iff its edge function is empty. (Contributed by AV, 21-Oct-2020.) (Proof shortened by AV, 8-Dec-2021.) |
Ref | Expression |
---|---|
uhgriedg0edg0 | ⊢ (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
2 | 1 | uhgrfun 27011 | . 2 ⊢ (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺)) |
3 | eqid 2738 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
4 | 1, 3 | edg0iedg0 27000 | . 2 ⊢ (Fun (iEdg‘𝐺) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
5 | 2, 4 | syl 17 | 1 ⊢ (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1542 ∈ wcel 2113 ∅c0 4212 Fun wfun 6334 ‘cfv 6340 iEdgciedg 26942 Edgcedg 26992 UHGraphcuhgr 27001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5168 ax-nul 5175 ax-pr 5297 ax-un 7480 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3683 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-fv 6348 df-edg 26993 df-uhgr 27003 |
This theorem is referenced by: uhgr0v0e 27180 uhgr0vusgr 27184 lfuhgr1v0e 27196 usgr1vr 27197 usgr1v0e 27268 uhgr0edg0rgr 27515 rgrusgrprc 27531 |
Copyright terms: Public domain | W3C validator |