| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgriedg0edg0 | Structured version Visualization version GIF version | ||
| Description: A hypergraph has no edges iff its edge function is empty. (Contributed by AV, 21-Oct-2020.) (Proof shortened by AV, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| uhgriedg0edg0 | ⊢ (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 2 | 1 | uhgrfun 29029 | . 2 ⊢ (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺)) |
| 3 | eqid 2729 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 4 | 1, 3 | edg0iedg0 29018 | . 2 ⊢ (Fun (iEdg‘𝐺) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
| 5 | 2, 4 | syl 17 | 1 ⊢ (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∅c0 4286 Fun wfun 6480 ‘cfv 6486 iEdgciedg 28960 Edgcedg 29010 UHGraphcuhgr 29019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-edg 29011 df-uhgr 29021 |
| This theorem is referenced by: uhgr0v0e 29201 uhgr0vusgr 29205 lfuhgr1v0e 29217 usgr1vr 29218 usgr1v0e 29289 uhgr0edg0rgr 29537 rgrusgrprc 29553 |
| Copyright terms: Public domain | W3C validator |