| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgriedg0edg0 | Structured version Visualization version GIF version | ||
| Description: A hypergraph has no edges iff its edge function is empty. (Contributed by AV, 21-Oct-2020.) (Proof shortened by AV, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| uhgriedg0edg0 | ⊢ (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 2 | 1 | uhgrfun 29042 | . 2 ⊢ (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺)) |
| 3 | eqid 2731 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 4 | 1, 3 | edg0iedg0 29031 | . 2 ⊢ (Fun (iEdg‘𝐺) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
| 5 | 2, 4 | syl 17 | 1 ⊢ (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∅c0 4283 Fun wfun 6475 ‘cfv 6481 iEdgciedg 28973 Edgcedg 29023 UHGraphcuhgr 29032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-edg 29024 df-uhgr 29034 |
| This theorem is referenced by: uhgr0v0e 29214 uhgr0vusgr 29218 lfuhgr1v0e 29230 usgr1vr 29231 usgr1v0e 29302 uhgr0edg0rgr 29550 rgrusgrprc 29566 |
| Copyright terms: Public domain | W3C validator |