MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgriedg0edg0 Structured version   Visualization version   GIF version

Theorem uhgriedg0edg0 29107
Description: A hypergraph has no edges iff its edge function is empty. (Contributed by AV, 21-Oct-2020.) (Proof shortened by AV, 8-Dec-2021.)
Assertion
Ref Expression
uhgriedg0edg0 (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))

Proof of Theorem uhgriedg0edg0
StepHypRef Expression
1 eqid 2733 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
21uhgrfun 29046 . 2 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
3 eqid 2733 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
41, 3edg0iedg0 29035 . 2 (Fun (iEdg‘𝐺) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
52, 4syl 17 1 (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  c0 4282  Fun wfun 6480  cfv 6486  iEdgciedg 28977  Edgcedg 29027  UHGraphcuhgr 29036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-edg 29028  df-uhgr 29038
This theorem is referenced by:  uhgr0v0e  29218  uhgr0vusgr  29222  lfuhgr1v0e  29234  usgr1vr  29235  usgr1v0e  29306  uhgr0edg0rgr  29554  rgrusgrprc  29570
  Copyright terms: Public domain W3C validator