MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcncf1ii Structured version   Visualization version   GIF version

Theorem elcncf1ii 24282
Description: Membership in the set of continuous complex functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 26-Nov-2007.)
Hypotheses
Ref Expression
elcncf1i.1 𝐹:𝐴𝐵
elcncf1i.2 ((𝑥𝐴𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+)
elcncf1i.3 (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
Assertion
Ref Expression
elcncf1ii ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴cn𝐵))
Distinct variable groups:   𝑥,𝑤,𝑦,𝐴   𝑤,𝐵,𝑥,𝑦   𝑤,𝐹,𝑥,𝑦   𝑤,𝑍
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem elcncf1ii
StepHypRef Expression
1 elcncf1i.1 . . . 4 𝐹:𝐴𝐵
21a1i 11 . . 3 (⊤ → 𝐹:𝐴𝐵)
3 elcncf1i.2 . . . 4 ((𝑥𝐴𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+)
43a1i 11 . . 3 (⊤ → ((𝑥𝐴𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+))
5 elcncf1i.3 . . . 4 (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
65a1i 11 . . 3 (⊤ → (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
72, 4, 6elcncf1di 24281 . 2 (⊤ → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴cn𝐵)))
87mptru 1549 1 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴cn𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wtru 1543  wcel 2107  wss 3914   class class class wbr 5109  wf 6496  cfv 6500  (class class class)co 7361  cc 11057   < clt 11197  cmin 11393  +crp 12923  abscabs 15128  cnccncf 24262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-map 8773  df-cncf 24264
This theorem is referenced by:  logcnlem5  26024
  Copyright terms: Public domain W3C validator