![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elcncf1ii | Structured version Visualization version GIF version |
Description: Membership in the set of continuous complex functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 26-Nov-2007.) |
Ref | Expression |
---|---|
elcncf1i.1 | ⊢ 𝐹:𝐴⟶𝐵 |
elcncf1i.2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+) |
elcncf1i.3 | ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
Ref | Expression |
---|---|
elcncf1ii | ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴–cn→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elcncf1i.1 | . . . 4 ⊢ 𝐹:𝐴⟶𝐵 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐹:𝐴⟶𝐵) |
3 | elcncf1i.2 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+) | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+)) |
5 | elcncf1i.3 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → (((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
7 | 2, 4, 6 | elcncf1di 24735 | . 2 ⊢ (⊤ → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴–cn→𝐵))) |
8 | 7 | mptru 1547 | 1 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴–cn→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊤wtru 1541 ∈ wcel 2105 ⊆ wss 3948 class class class wbr 5148 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 ℂcc 11114 < clt 11255 − cmin 11451 ℝ+crp 12981 abscabs 15188 –cn→ccncf 24716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8828 df-cncf 24718 |
This theorem is referenced by: logcnlem5 26494 |
Copyright terms: Public domain | W3C validator |