| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elcncf1ii | Structured version Visualization version GIF version | ||
| Description: Membership in the set of continuous complex functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 26-Nov-2007.) |
| Ref | Expression |
|---|---|
| elcncf1i.1 | ⊢ 𝐹:𝐴⟶𝐵 |
| elcncf1i.2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+) |
| elcncf1i.3 | ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) |
| Ref | Expression |
|---|---|
| elcncf1ii | ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴–cn→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elcncf1i.1 | . . . 4 ⊢ 𝐹:𝐴⟶𝐵 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐹:𝐴⟶𝐵) |
| 3 | elcncf1i.2 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+)) |
| 5 | elcncf1i.3 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → (((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥 − 𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) |
| 7 | 2, 4, 6 | elcncf1di 24844 | . 2 ⊢ (⊤ → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴–cn→𝐵))) |
| 8 | 7 | mptru 1547 | 1 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴–cn→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊤wtru 1541 ∈ wcel 2109 ⊆ wss 3931 class class class wbr 5124 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 < clt 11274 − cmin 11471 ℝ+crp 13013 abscabs 15258 –cn→ccncf 24825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 df-cncf 24827 |
| This theorem is referenced by: logcnlem5 26612 |
| Copyright terms: Public domain | W3C validator |