| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > logcnlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for logcn 26576. (Contributed by Mario Carneiro, 18-Feb-2015.) |
| Ref | Expression |
|---|---|
| logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
| Ref | Expression |
|---|---|
| logcnlem5 | ⊢ (𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷–cn→ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | . . 3 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
| 2 | difss 4084 | . . 3 ⊢ (ℂ ∖ (-∞(,]0)) ⊆ ℂ | |
| 3 | 1, 2 | eqsstri 3979 | . 2 ⊢ 𝐷 ⊆ ℂ |
| 4 | ax-resscn 11055 | . 2 ⊢ ℝ ⊆ ℂ | |
| 5 | eqid 2730 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥))) | |
| 6 | 1 | ellogdm 26568 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+))) |
| 7 | 6 | simplbi 497 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ) |
| 8 | 1 | logdmn0 26569 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ≠ 0) |
| 9 | 7, 8 | logcld 26499 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → (log‘𝑥) ∈ ℂ) |
| 10 | 9 | imcld 15094 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (ℑ‘(log‘𝑥)) ∈ ℝ) |
| 11 | 5, 10 | fmpti 7040 | . . 3 ⊢ (𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥))):𝐷⟶ℝ |
| 12 | eqid 2730 | . . . 4 ⊢ if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) = if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) | |
| 13 | eqid 2730 | . . . 4 ⊢ ((abs‘𝑦) · (𝑧 / (1 + 𝑧))) = ((abs‘𝑦) · (𝑧 / (1 + 𝑧))) | |
| 14 | simpl 482 | . . . 4 ⊢ ((𝑦 ∈ 𝐷 ∧ 𝑧 ∈ ℝ+) → 𝑦 ∈ 𝐷) | |
| 15 | simpr 484 | . . . 4 ⊢ ((𝑦 ∈ 𝐷 ∧ 𝑧 ∈ ℝ+) → 𝑧 ∈ ℝ+) | |
| 16 | 1, 12, 13, 14, 15 | logcnlem2 26572 | . . 3 ⊢ ((𝑦 ∈ 𝐷 ∧ 𝑧 ∈ ℝ+) → if(if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) ≤ ((abs‘𝑦) · (𝑧 / (1 + 𝑧))), if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))), ((abs‘𝑦) · (𝑧 / (1 + 𝑧)))) ∈ ℝ+) |
| 17 | simpll 766 | . . . . . 6 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑧 ∈ ℝ+ ∧ (abs‘(𝑦 − 𝑤)) < if(if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) ≤ ((abs‘𝑦) · (𝑧 / (1 + 𝑧))), if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))), ((abs‘𝑦) · (𝑧 / (1 + 𝑧)))))) → 𝑦 ∈ 𝐷) | |
| 18 | simprl 770 | . . . . . 6 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑧 ∈ ℝ+ ∧ (abs‘(𝑦 − 𝑤)) < if(if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) ≤ ((abs‘𝑦) · (𝑧 / (1 + 𝑧))), if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))), ((abs‘𝑦) · (𝑧 / (1 + 𝑧)))))) → 𝑧 ∈ ℝ+) | |
| 19 | simplr 768 | . . . . . 6 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑧 ∈ ℝ+ ∧ (abs‘(𝑦 − 𝑤)) < if(if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) ≤ ((abs‘𝑦) · (𝑧 / (1 + 𝑧))), if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))), ((abs‘𝑦) · (𝑧 / (1 + 𝑧)))))) → 𝑤 ∈ 𝐷) | |
| 20 | simprr 772 | . . . . . 6 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑧 ∈ ℝ+ ∧ (abs‘(𝑦 − 𝑤)) < if(if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) ≤ ((abs‘𝑦) · (𝑧 / (1 + 𝑧))), if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))), ((abs‘𝑦) · (𝑧 / (1 + 𝑧)))))) → (abs‘(𝑦 − 𝑤)) < if(if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) ≤ ((abs‘𝑦) · (𝑧 / (1 + 𝑧))), if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))), ((abs‘𝑦) · (𝑧 / (1 + 𝑧))))) | |
| 21 | 1, 12, 13, 17, 18, 19, 20 | logcnlem4 26574 | . . . . 5 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑧 ∈ ℝ+ ∧ (abs‘(𝑦 − 𝑤)) < if(if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) ≤ ((abs‘𝑦) · (𝑧 / (1 + 𝑧))), if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))), ((abs‘𝑦) · (𝑧 / (1 + 𝑧)))))) → (abs‘((ℑ‘(log‘𝑦)) − (ℑ‘(log‘𝑤)))) < 𝑧) |
| 22 | 21 | expr 456 | . . . 4 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ 𝑧 ∈ ℝ+) → ((abs‘(𝑦 − 𝑤)) < if(if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) ≤ ((abs‘𝑦) · (𝑧 / (1 + 𝑧))), if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))), ((abs‘𝑦) · (𝑧 / (1 + 𝑧)))) → (abs‘((ℑ‘(log‘𝑦)) − (ℑ‘(log‘𝑤)))) < 𝑧)) |
| 23 | 2fveq3 6822 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (ℑ‘(log‘𝑥)) = (ℑ‘(log‘𝑦))) | |
| 24 | fvex 6830 | . . . . . . . . 9 ⊢ (ℑ‘(log‘𝑦)) ∈ V | |
| 25 | 23, 5, 24 | fvmpt 6924 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐷 → ((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑦) = (ℑ‘(log‘𝑦))) |
| 26 | 25 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ 𝑧 ∈ ℝ+) → ((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑦) = (ℑ‘(log‘𝑦))) |
| 27 | 2fveq3 6822 | . . . . . . . . 9 ⊢ (𝑥 = 𝑤 → (ℑ‘(log‘𝑥)) = (ℑ‘(log‘𝑤))) | |
| 28 | fvex 6830 | . . . . . . . . 9 ⊢ (ℑ‘(log‘𝑤)) ∈ V | |
| 29 | 27, 5, 28 | fvmpt 6924 | . . . . . . . 8 ⊢ (𝑤 ∈ 𝐷 → ((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑤) = (ℑ‘(log‘𝑤))) |
| 30 | 29 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ 𝑧 ∈ ℝ+) → ((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑤) = (ℑ‘(log‘𝑤))) |
| 31 | 26, 30 | oveq12d 7359 | . . . . . 6 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ 𝑧 ∈ ℝ+) → (((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑦) − ((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑤)) = ((ℑ‘(log‘𝑦)) − (ℑ‘(log‘𝑤)))) |
| 32 | 31 | fveq2d 6821 | . . . . 5 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ 𝑧 ∈ ℝ+) → (abs‘(((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑦) − ((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑤))) = (abs‘((ℑ‘(log‘𝑦)) − (ℑ‘(log‘𝑤))))) |
| 33 | 32 | breq1d 5099 | . . . 4 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ 𝑧 ∈ ℝ+) → ((abs‘(((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑦) − ((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑤))) < 𝑧 ↔ (abs‘((ℑ‘(log‘𝑦)) − (ℑ‘(log‘𝑤)))) < 𝑧)) |
| 34 | 22, 33 | sylibrd 259 | . . 3 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ 𝑧 ∈ ℝ+) → ((abs‘(𝑦 − 𝑤)) < if(if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) ≤ ((abs‘𝑦) · (𝑧 / (1 + 𝑧))), if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))), ((abs‘𝑦) · (𝑧 / (1 + 𝑧)))) → (abs‘(((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑦) − ((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑤))) < 𝑧)) |
| 35 | 11, 16, 34 | elcncf1ii 24809 | . 2 ⊢ ((𝐷 ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷–cn→ℝ)) |
| 36 | 3, 4, 35 | mp2an 692 | 1 ⊢ (𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷–cn→ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∖ cdif 3897 ⊆ wss 3900 ifcif 4473 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6477 (class class class)co 7341 ℂcc 10996 ℝcr 10997 0cc0 10998 1c1 10999 + caddc 11001 · cmul 11003 -∞cmnf 11136 < clt 11138 ≤ cle 11139 − cmin 11336 / cdiv 11766 ℝ+crp 12882 (,]cioc 13238 ℑcim 14997 abscabs 15133 –cn→ccncf 24789 logclog 26483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-addf 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-q 12839 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-ioo 13241 df-ioc 13242 df-ico 13243 df-icc 13244 df-fz 13400 df-fzo 13547 df-fl 13688 df-mod 13766 df-seq 13901 df-exp 13961 df-fac 14173 df-bc 14202 df-hash 14230 df-shft 14966 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-limsup 15370 df-clim 15387 df-rlim 15388 df-sum 15586 df-ef 15966 df-sin 15968 df-cos 15969 df-tan 15970 df-pi 15971 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-hom 17177 df-cco 17178 df-rest 17318 df-topn 17319 df-0g 17337 df-gsum 17338 df-topgen 17339 df-pt 17340 df-prds 17343 df-xrs 17398 df-qtop 17403 df-imas 17404 df-xps 17406 df-mre 17480 df-mrc 17481 df-acs 17483 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-submnd 18684 df-mulg 18973 df-cntz 19222 df-cmn 19687 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-fbas 21281 df-fg 21282 df-cnfld 21285 df-top 22802 df-topon 22819 df-topsp 22841 df-bases 22854 df-cld 22927 df-ntr 22928 df-cls 22929 df-nei 23006 df-lp 23044 df-perf 23045 df-cn 23135 df-cnp 23136 df-haus 23223 df-tx 23470 df-hmeo 23663 df-fil 23754 df-fm 23846 df-flim 23847 df-flf 23848 df-xms 24228 df-ms 24229 df-tms 24230 df-cncf 24791 df-limc 25787 df-dv 25788 df-log 26485 |
| This theorem is referenced by: logcn 26576 |
| Copyright terms: Public domain | W3C validator |