Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > logcnlem5 | Structured version Visualization version GIF version |
Description: Lemma for logcn 25535. (Contributed by Mario Carneiro, 18-Feb-2015.) |
Ref | Expression |
---|---|
logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
Ref | Expression |
---|---|
logcnlem5 | ⊢ (𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷–cn→ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logcn.d | . . 3 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
2 | difss 4046 | . . 3 ⊢ (ℂ ∖ (-∞(,]0)) ⊆ ℂ | |
3 | 1, 2 | eqsstri 3935 | . 2 ⊢ 𝐷 ⊆ ℂ |
4 | ax-resscn 10786 | . 2 ⊢ ℝ ⊆ ℂ | |
5 | eqid 2737 | . . . 4 ⊢ (𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥))) | |
6 | 1 | ellogdm 25527 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ+))) |
7 | 6 | simplbi 501 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ) |
8 | 1 | logdmn0 25528 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ≠ 0) |
9 | 7, 8 | logcld 25459 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → (log‘𝑥) ∈ ℂ) |
10 | 9 | imcld 14758 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (ℑ‘(log‘𝑥)) ∈ ℝ) |
11 | 5, 10 | fmpti 6929 | . . 3 ⊢ (𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥))):𝐷⟶ℝ |
12 | eqid 2737 | . . . 4 ⊢ if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) = if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) | |
13 | eqid 2737 | . . . 4 ⊢ ((abs‘𝑦) · (𝑧 / (1 + 𝑧))) = ((abs‘𝑦) · (𝑧 / (1 + 𝑧))) | |
14 | simpl 486 | . . . 4 ⊢ ((𝑦 ∈ 𝐷 ∧ 𝑧 ∈ ℝ+) → 𝑦 ∈ 𝐷) | |
15 | simpr 488 | . . . 4 ⊢ ((𝑦 ∈ 𝐷 ∧ 𝑧 ∈ ℝ+) → 𝑧 ∈ ℝ+) | |
16 | 1, 12, 13, 14, 15 | logcnlem2 25531 | . . 3 ⊢ ((𝑦 ∈ 𝐷 ∧ 𝑧 ∈ ℝ+) → if(if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) ≤ ((abs‘𝑦) · (𝑧 / (1 + 𝑧))), if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))), ((abs‘𝑦) · (𝑧 / (1 + 𝑧)))) ∈ ℝ+) |
17 | simpll 767 | . . . . . 6 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑧 ∈ ℝ+ ∧ (abs‘(𝑦 − 𝑤)) < if(if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) ≤ ((abs‘𝑦) · (𝑧 / (1 + 𝑧))), if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))), ((abs‘𝑦) · (𝑧 / (1 + 𝑧)))))) → 𝑦 ∈ 𝐷) | |
18 | simprl 771 | . . . . . 6 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑧 ∈ ℝ+ ∧ (abs‘(𝑦 − 𝑤)) < if(if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) ≤ ((abs‘𝑦) · (𝑧 / (1 + 𝑧))), if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))), ((abs‘𝑦) · (𝑧 / (1 + 𝑧)))))) → 𝑧 ∈ ℝ+) | |
19 | simplr 769 | . . . . . 6 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑧 ∈ ℝ+ ∧ (abs‘(𝑦 − 𝑤)) < if(if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) ≤ ((abs‘𝑦) · (𝑧 / (1 + 𝑧))), if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))), ((abs‘𝑦) · (𝑧 / (1 + 𝑧)))))) → 𝑤 ∈ 𝐷) | |
20 | simprr 773 | . . . . . 6 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑧 ∈ ℝ+ ∧ (abs‘(𝑦 − 𝑤)) < if(if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) ≤ ((abs‘𝑦) · (𝑧 / (1 + 𝑧))), if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))), ((abs‘𝑦) · (𝑧 / (1 + 𝑧)))))) → (abs‘(𝑦 − 𝑤)) < if(if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) ≤ ((abs‘𝑦) · (𝑧 / (1 + 𝑧))), if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))), ((abs‘𝑦) · (𝑧 / (1 + 𝑧))))) | |
21 | 1, 12, 13, 17, 18, 19, 20 | logcnlem4 25533 | . . . . 5 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑧 ∈ ℝ+ ∧ (abs‘(𝑦 − 𝑤)) < if(if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) ≤ ((abs‘𝑦) · (𝑧 / (1 + 𝑧))), if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))), ((abs‘𝑦) · (𝑧 / (1 + 𝑧)))))) → (abs‘((ℑ‘(log‘𝑦)) − (ℑ‘(log‘𝑤)))) < 𝑧) |
22 | 21 | expr 460 | . . . 4 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ 𝑧 ∈ ℝ+) → ((abs‘(𝑦 − 𝑤)) < if(if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) ≤ ((abs‘𝑦) · (𝑧 / (1 + 𝑧))), if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))), ((abs‘𝑦) · (𝑧 / (1 + 𝑧)))) → (abs‘((ℑ‘(log‘𝑦)) − (ℑ‘(log‘𝑤)))) < 𝑧)) |
23 | 2fveq3 6722 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (ℑ‘(log‘𝑥)) = (ℑ‘(log‘𝑦))) | |
24 | fvex 6730 | . . . . . . . . 9 ⊢ (ℑ‘(log‘𝑦)) ∈ V | |
25 | 23, 5, 24 | fvmpt 6818 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐷 → ((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑦) = (ℑ‘(log‘𝑦))) |
26 | 25 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ 𝑧 ∈ ℝ+) → ((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑦) = (ℑ‘(log‘𝑦))) |
27 | 2fveq3 6722 | . . . . . . . . 9 ⊢ (𝑥 = 𝑤 → (ℑ‘(log‘𝑥)) = (ℑ‘(log‘𝑤))) | |
28 | fvex 6730 | . . . . . . . . 9 ⊢ (ℑ‘(log‘𝑤)) ∈ V | |
29 | 27, 5, 28 | fvmpt 6818 | . . . . . . . 8 ⊢ (𝑤 ∈ 𝐷 → ((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑤) = (ℑ‘(log‘𝑤))) |
30 | 29 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ 𝑧 ∈ ℝ+) → ((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑤) = (ℑ‘(log‘𝑤))) |
31 | 26, 30 | oveq12d 7231 | . . . . . 6 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ 𝑧 ∈ ℝ+) → (((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑦) − ((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑤)) = ((ℑ‘(log‘𝑦)) − (ℑ‘(log‘𝑤)))) |
32 | 31 | fveq2d 6721 | . . . . 5 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ 𝑧 ∈ ℝ+) → (abs‘(((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑦) − ((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑤))) = (abs‘((ℑ‘(log‘𝑦)) − (ℑ‘(log‘𝑤))))) |
33 | 32 | breq1d 5063 | . . . 4 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ 𝑧 ∈ ℝ+) → ((abs‘(((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑦) − ((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑤))) < 𝑧 ↔ (abs‘((ℑ‘(log‘𝑦)) − (ℑ‘(log‘𝑤)))) < 𝑧)) |
34 | 22, 33 | sylibrd 262 | . . 3 ⊢ (((𝑦 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ 𝑧 ∈ ℝ+) → ((abs‘(𝑦 − 𝑤)) < if(if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))) ≤ ((abs‘𝑦) · (𝑧 / (1 + 𝑧))), if(𝑦 ∈ ℝ+, 𝑦, (abs‘(ℑ‘𝑦))), ((abs‘𝑦) · (𝑧 / (1 + 𝑧)))) → (abs‘(((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑦) − ((𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥)))‘𝑤))) < 𝑧)) |
35 | 11, 16, 34 | elcncf1ii 23793 | . 2 ⊢ ((𝐷 ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷–cn→ℝ)) |
36 | 3, 4, 35 | mp2an 692 | 1 ⊢ (𝑥 ∈ 𝐷 ↦ (ℑ‘(log‘𝑥))) ∈ (𝐷–cn→ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∖ cdif 3863 ⊆ wss 3866 ifcif 4439 class class class wbr 5053 ↦ cmpt 5135 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 ℝcr 10728 0cc0 10729 1c1 10730 + caddc 10732 · cmul 10734 -∞cmnf 10865 < clt 10867 ≤ cle 10868 − cmin 11062 / cdiv 11489 ℝ+crp 12586 (,]cioc 12936 ℑcim 14661 abscabs 14797 –cn→ccncf 23773 logclog 25443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 ax-addf 10808 ax-mulf 10809 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-er 8391 df-map 8510 df-pm 8511 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-fi 9027 df-sup 9058 df-inf 9059 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-q 12545 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-ioo 12939 df-ioc 12940 df-ico 12941 df-icc 12942 df-fz 13096 df-fzo 13239 df-fl 13367 df-mod 13443 df-seq 13575 df-exp 13636 df-fac 13840 df-bc 13869 df-hash 13897 df-shft 14630 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-limsup 15032 df-clim 15049 df-rlim 15050 df-sum 15250 df-ef 15629 df-sin 15631 df-cos 15632 df-tan 15633 df-pi 15634 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-hom 16826 df-cco 16827 df-rest 16927 df-topn 16928 df-0g 16946 df-gsum 16947 df-topgen 16948 df-pt 16949 df-prds 16952 df-xrs 17007 df-qtop 17012 df-imas 17013 df-xps 17015 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-mulg 18489 df-cntz 18711 df-cmn 19172 df-psmet 20355 df-xmet 20356 df-met 20357 df-bl 20358 df-mopn 20359 df-fbas 20360 df-fg 20361 df-cnfld 20364 df-top 21791 df-topon 21808 df-topsp 21830 df-bases 21843 df-cld 21916 df-ntr 21917 df-cls 21918 df-nei 21995 df-lp 22033 df-perf 22034 df-cn 22124 df-cnp 22125 df-haus 22212 df-tx 22459 df-hmeo 22652 df-fil 22743 df-fm 22835 df-flim 22836 df-flf 22837 df-xms 23218 df-ms 23219 df-tms 23220 df-cncf 23775 df-limc 24763 df-dv 24764 df-log 25445 |
This theorem is referenced by: logcn 25535 |
Copyright terms: Public domain | W3C validator |