MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlksupgr2 Structured version   Visualization version   GIF version

Theorem wlkiswwlksupgr2 27657
Description: A walk as word corresponds to the sequence of vertices in a walk in a pseudograph. This variant of wlkiswwlks2 27655 does not require 𝐺 to be a simple pseudograph, but it requires the Axiom of Choice (ac6 9904) for its proof. Notice that only the existence of a function 𝑓 can be proven, but, in general, it cannot be "constructed" (as in wlkiswwlks2 27655). (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Assertion
Ref Expression
wlkiswwlksupgr2 (𝐺 ∈ UPGraph → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Distinct variable groups:   𝑓,𝐺   𝑃,𝑓

Proof of Theorem wlkiswwlksupgr2
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2823 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
31, 2iswwlks 27616 . 2 (𝑃 ∈ (WWalks‘𝐺) ↔ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
4 edgval 26836 . . . . . . . . . . . . 13 (Edg‘𝐺) = ran (iEdg‘𝐺)
54eleq2i 2906 . . . . . . . . . . . 12 ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺))
6 upgruhgr 26889 . . . . . . . . . . . . . . 15 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
7 eqid 2823 . . . . . . . . . . . . . . . 16 (iEdg‘𝐺) = (iEdg‘𝐺)
87uhgrfun 26853 . . . . . . . . . . . . . . 15 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
96, 8syl 17 . . . . . . . . . . . . . 14 (𝐺 ∈ UPGraph → Fun (iEdg‘𝐺))
109adantl 484 . . . . . . . . . . . . 13 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) → Fun (iEdg‘𝐺))
11 elrnrexdm 6857 . . . . . . . . . . . . . 14 (Fun (iEdg‘𝐺) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) → ∃𝑥 ∈ dom (iEdg‘𝐺){(𝑃𝑖), (𝑃‘(𝑖 + 1))} = ((iEdg‘𝐺)‘𝑥)))
12 eqcom 2830 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = ((iEdg‘𝐺)‘𝑥))
1312rexbii 3249 . . . . . . . . . . . . . 14 (∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∃𝑥 ∈ dom (iEdg‘𝐺){(𝑃𝑖), (𝑃‘(𝑖 + 1))} = ((iEdg‘𝐺)‘𝑥))
1411, 13syl6ibr 254 . . . . . . . . . . . . 13 (Fun (iEdg‘𝐺) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) → ∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
1510, 14syl 17 . . . . . . . . . . . 12 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) → ∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
165, 15syl5bi 244 . . . . . . . . . . 11 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
1716ralimdv 3180 . . . . . . . . . 10 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
1817ex 415 . . . . . . . . 9 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝐺 ∈ UPGraph → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
1918com23 86 . . . . . . . 8 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝐺 ∈ UPGraph → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
20193impia 1113 . . . . . . 7 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝐺 ∈ UPGraph → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2120impcom 410 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
22 ovex 7191 . . . . . . 7 (0..^((♯‘𝑃) − 1)) ∈ V
23 fvex 6685 . . . . . . . 8 (iEdg‘𝐺) ∈ V
2423dmex 7618 . . . . . . 7 dom (iEdg‘𝐺) ∈ V
25 fveqeq2 6681 . . . . . . 7 (𝑥 = (𝑓𝑖) → (((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2622, 24, 25ac6 9904 . . . . . 6 (∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → ∃𝑓(𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2721, 26syl 17 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → ∃𝑓(𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
28 iswrdi 13868 . . . . . . . . . 10 (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑓 ∈ Word dom (iEdg‘𝐺))
2928adantr 483 . . . . . . . . 9 ((𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → 𝑓 ∈ Word dom (iEdg‘𝐺))
3029adantl 484 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) → 𝑓 ∈ Word dom (iEdg‘𝐺))
31 len0nnbi 13905 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word (Vtx‘𝐺) → (𝑃 ≠ ∅ ↔ (♯‘𝑃) ∈ ℕ))
3231biimpac 481 . . . . . . . . . . . . . 14 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (♯‘𝑃) ∈ ℕ)
33 wrdf 13869 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word (Vtx‘𝐺) → 𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺))
34 nnz 12007 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑃) ∈ ℕ → (♯‘𝑃) ∈ ℤ)
35 fzoval 13042 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑃) ∈ ℤ → (0..^(♯‘𝑃)) = (0...((♯‘𝑃) − 1)))
3634, 35syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑃) ∈ ℕ → (0..^(♯‘𝑃)) = (0...((♯‘𝑃) − 1)))
3736adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (0..^(♯‘𝑃)) = (0...((♯‘𝑃) − 1)))
38 nnm1nn0 11941 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑃) ∈ ℕ → ((♯‘𝑃) − 1) ∈ ℕ0)
39 fnfzo0hash 13811 . . . . . . . . . . . . . . . . . . . . . . 23 ((((♯‘𝑃) − 1) ∈ ℕ0𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (♯‘𝑓) = ((♯‘𝑃) − 1))
4038, 39sylan 582 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (♯‘𝑓) = ((♯‘𝑃) − 1))
4140eqcomd 2829 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → ((♯‘𝑃) − 1) = (♯‘𝑓))
4241oveq2d 7174 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (0...((♯‘𝑃) − 1)) = (0...(♯‘𝑓)))
4337, 42eqtrd 2858 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (0..^(♯‘𝑃)) = (0...(♯‘𝑓)))
4443feq2d 6502 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺) ↔ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
4544biimpcd 251 . . . . . . . . . . . . . . . . 17 (𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺) → (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
4645expd 418 . . . . . . . . . . . . . . . 16 (𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺) → ((♯‘𝑃) ∈ ℕ → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺))))
4733, 46syl 17 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word (Vtx‘𝐺) → ((♯‘𝑃) ∈ ℕ → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺))))
4847adantl 484 . . . . . . . . . . . . . 14 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → ((♯‘𝑃) ∈ ℕ → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺))))
4932, 48mpd 15 . . . . . . . . . . . . 13 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
50493adant3 1128 . . . . . . . . . . . 12 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
5150adantl 484 . . . . . . . . . . 11 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
5251com12 32 . . . . . . . . . 10 (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
5352adantr 483 . . . . . . . . 9 ((𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
5453impcom 410 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺))
55 simpr 487 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
5632, 40sylan 582 . . . . . . . . . . . . . . . . 17 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (♯‘𝑓) = ((♯‘𝑃) − 1))
5756oveq2d 7174 . . . . . . . . . . . . . . . 16 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (0..^(♯‘𝑓)) = (0..^((♯‘𝑃) − 1)))
5857ex 415 . . . . . . . . . . . . . . 15 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → (0..^(♯‘𝑓)) = (0..^((♯‘𝑃) − 1))))
59583adant3 1128 . . . . . . . . . . . . . 14 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → (0..^(♯‘𝑓)) = (0..^((♯‘𝑃) − 1))))
6059adantl 484 . . . . . . . . . . . . 13 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → (0..^(♯‘𝑓)) = (0..^((♯‘𝑃) − 1))))
6160imp 409 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (0..^(♯‘𝑓)) = (0..^((♯‘𝑃) − 1)))
6261adantr 483 . . . . . . . . . . 11 ((((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (0..^(♯‘𝑓)) = (0..^((♯‘𝑃) − 1)))
6362raleqdv 3417 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
6455, 63mpbird 259 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
6564anasss 469 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) → ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
6630, 54, 653jca 1124 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
6766ex 415 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → ((𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
6867eximdv 1918 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (∃𝑓(𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
6927, 68mpd 15 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
701, 7upgriswlk 27424 . . . . . 6 (𝐺 ∈ UPGraph → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
7170adantr 483 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
7271exbidv 1922 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (∃𝑓 𝑓(Walks‘𝐺)𝑃 ↔ ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
7369, 72mpbird 259 . . 3 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → ∃𝑓 𝑓(Walks‘𝐺)𝑃)
7473ex 415 . 2 (𝐺 ∈ UPGraph → ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
753, 74syl5bi 244 1 (𝐺 ∈ UPGraph → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3018  wral 3140  wrex 3141  c0 4293  {cpr 4571   class class class wbr 5068  dom cdm 5557  ran crn 5558  Fun wfun 6351  wf 6353  cfv 6357  (class class class)co 7158  0cc0 10539  1c1 10540   + caddc 10542  cmin 10872  cn 11640  0cn0 11900  cz 11984  ...cfz 12895  ..^cfzo 13036  chash 13693  Word cword 13864  Vtxcvtx 26783  iEdgciedg 26784  Edgcedg 26834  UHGraphcuhgr 26843  UPGraphcupgr 26867  Walkscwlks 27380  WWalkscwwlks 27605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-ac2 9887  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-ac 9544  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-edg 26835  df-uhgr 26845  df-upgr 26869  df-wlks 27383  df-wwlks 27610
This theorem is referenced by:  wlkiswwlkupgr  27658  wlklnwwlklnupgr2  27665
  Copyright terms: Public domain W3C validator