Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
2 | | eqid 2738 |
. . 3
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
3 | 1, 2 | iswwlks 28102 |
. 2
⊢ (𝑃 ∈ (WWalks‘𝐺) ↔ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
4 | | edgval 27322 |
. . . . . . . . . . . . 13
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) |
5 | 4 | eleq2i 2830 |
. . . . . . . . . . . 12
⊢ ({(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺)) |
6 | | upgruhgr 27375 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ UPGraph → 𝐺 ∈
UHGraph) |
7 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
8 | 7 | uhgrfun 27339 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ UHGraph → Fun
(iEdg‘𝐺)) |
9 | 6, 8 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ UPGraph → Fun
(iEdg‘𝐺)) |
10 | 9 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) → Fun
(iEdg‘𝐺)) |
11 | | elrnrexdm 6947 |
. . . . . . . . . . . . . 14
⊢ (Fun
(iEdg‘𝐺) →
({(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) → ∃𝑥 ∈ dom (iEdg‘𝐺){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} = ((iEdg‘𝐺)‘𝑥))) |
12 | | eqcom 2745 |
. . . . . . . . . . . . . . 15
⊢
(((iEdg‘𝐺)‘𝑥) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} = ((iEdg‘𝐺)‘𝑥)) |
13 | 12 | rexbii 3177 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ∃𝑥 ∈ dom (iEdg‘𝐺){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} = ((iEdg‘𝐺)‘𝑥)) |
14 | 11, 13 | syl6ibr 251 |
. . . . . . . . . . . . 13
⊢ (Fun
(iEdg‘𝐺) →
({(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) → ∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
15 | 10, 14 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) → ({(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) → ∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
16 | 5, 15 | syl5bi 241 |
. . . . . . . . . . 11
⊢ (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) → ({(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
17 | 16 | ralimdv 3103 |
. . . . . . . . . 10
⊢ (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) → (∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
18 | 17 | ex 412 |
. . . . . . . . 9
⊢ ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝐺 ∈ UPGraph → (∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
19 | 18 | com23 86 |
. . . . . . . 8
⊢ ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝐺 ∈ UPGraph → ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1))∃𝑥 ∈
dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
20 | 19 | 3impia 1115 |
. . . . . . 7
⊢ ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝐺 ∈ UPGraph → ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1))∃𝑥 ∈
dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
21 | 20 | impcom 407 |
. . . . . 6
⊢ ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) |
22 | | ovex 7288 |
. . . . . . 7
⊢
(0..^((♯‘𝑃) − 1)) ∈ V |
23 | | fvex 6769 |
. . . . . . . 8
⊢
(iEdg‘𝐺)
∈ V |
24 | 23 | dmex 7732 |
. . . . . . 7
⊢ dom
(iEdg‘𝐺) ∈
V |
25 | | fveqeq2 6765 |
. . . . . . 7
⊢ (𝑥 = (𝑓‘𝑖) → (((iEdg‘𝐺)‘𝑥) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
26 | 22, 24, 25 | ac6 10167 |
. . . . . 6
⊢
(∀𝑖 ∈
(0..^((♯‘𝑃)
− 1))∃𝑥 ∈
dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} → ∃𝑓(𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
27 | 21, 26 | syl 17 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → ∃𝑓(𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
28 | | iswrdi 14149 |
. . . . . . . . . 10
⊢ (𝑓:(0..^((♯‘𝑃) − 1))⟶dom
(iEdg‘𝐺) → 𝑓 ∈ Word dom
(iEdg‘𝐺)) |
29 | 28 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑓:(0..^((♯‘𝑃) − 1))⟶dom
(iEdg‘𝐺) ∧
∀𝑖 ∈
(0..^((♯‘𝑃)
− 1))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → 𝑓 ∈ Word dom (iEdg‘𝐺)) |
30 | 29 | adantl 481 |
. . . . . . . 8
⊢ (((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) → 𝑓 ∈ Word dom (iEdg‘𝐺)) |
31 | | len0nnbi 14182 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ Word (Vtx‘𝐺) → (𝑃 ≠ ∅ ↔ (♯‘𝑃) ∈
ℕ)) |
32 | 31 | biimpac 478 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (♯‘𝑃) ∈
ℕ) |
33 | | wrdf 14150 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ Word (Vtx‘𝐺) → 𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺)) |
34 | | nnz 12272 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((♯‘𝑃)
∈ ℕ → (♯‘𝑃) ∈ ℤ) |
35 | | fzoval 13317 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((♯‘𝑃)
∈ ℤ → (0..^(♯‘𝑃)) = (0...((♯‘𝑃) − 1))) |
36 | 34, 35 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝑃)
∈ ℕ → (0..^(♯‘𝑃)) = (0...((♯‘𝑃) − 1))) |
37 | 36 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((♯‘𝑃)
∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) →
(0..^(♯‘𝑃)) =
(0...((♯‘𝑃)
− 1))) |
38 | | nnm1nn0 12204 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((♯‘𝑃)
∈ ℕ → ((♯‘𝑃) − 1) ∈
ℕ0) |
39 | | fnfzo0hash 14090 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((♯‘𝑃)
− 1) ∈ ℕ0 ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (♯‘𝑓) = ((♯‘𝑃) − 1)) |
40 | 38, 39 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((♯‘𝑃)
∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (♯‘𝑓) = ((♯‘𝑃) − 1)) |
41 | 40 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((♯‘𝑃)
∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → ((♯‘𝑃) − 1) =
(♯‘𝑓)) |
42 | 41 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((♯‘𝑃)
∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) →
(0...((♯‘𝑃)
− 1)) = (0...(♯‘𝑓))) |
43 | 37, 42 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((♯‘𝑃)
∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) →
(0..^(♯‘𝑃)) =
(0...(♯‘𝑓))) |
44 | 43 | feq2d 6570 |
. . . . . . . . . . . . . . . . . 18
⊢
(((♯‘𝑃)
∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺) ↔ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺))) |
45 | 44 | biimpcd 248 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺) → (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom
(iEdg‘𝐺)) →
𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺))) |
46 | 45 | expd 415 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺) → ((♯‘𝑃) ∈ ℕ → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom
(iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))) |
47 | 33, 46 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ Word (Vtx‘𝐺) → ((♯‘𝑃) ∈ ℕ → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom
(iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))) |
48 | 47 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → ((♯‘𝑃) ∈ ℕ → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom
(iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))) |
49 | 32, 48 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺))) |
50 | 49 | 3adant3 1130 |
. . . . . . . . . . . 12
⊢ ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺))) |
51 | 50 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺))) |
52 | 51 | com12 32 |
. . . . . . . . . 10
⊢ (𝑓:(0..^((♯‘𝑃) − 1))⟶dom
(iEdg‘𝐺) →
((𝐺 ∈ UPGraph ∧
(𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺))) |
53 | 52 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑓:(0..^((♯‘𝑃) − 1))⟶dom
(iEdg‘𝐺) ∧
∀𝑖 ∈
(0..^((♯‘𝑃)
− 1))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺))) |
54 | 53 | impcom 407 |
. . . . . . . 8
⊢ (((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)) |
55 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) |
56 | 32, 40 | sylan 579 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (♯‘𝑓) = ((♯‘𝑃) − 1)) |
57 | 56 | oveq2d 7271 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) →
(0..^(♯‘𝑓)) =
(0..^((♯‘𝑃)
− 1))) |
58 | 57 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) →
(0..^(♯‘𝑓)) =
(0..^((♯‘𝑃)
− 1)))) |
59 | 58 | 3adant3 1130 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) →
(0..^(♯‘𝑓)) =
(0..^((♯‘𝑃)
− 1)))) |
60 | 59 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) →
(0..^(♯‘𝑓)) =
(0..^((♯‘𝑃)
− 1)))) |
61 | 60 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) →
(0..^(♯‘𝑓)) =
(0..^((♯‘𝑃)
− 1))) |
62 | 61 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → (0..^(♯‘𝑓)) = (0..^((♯‘𝑃) − 1))) |
63 | 62 | raleqdv 3339 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → (∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
64 | 55, 63 | mpbird 256 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) |
65 | 64 | anasss 466 |
. . . . . . . 8
⊢ (((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) → ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) |
66 | 30, 54, 65 | 3jca 1126 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
67 | 66 | ex 412 |
. . . . . 6
⊢ ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → ((𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
68 | 67 | eximdv 1921 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (∃𝑓(𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
69 | 27, 68 | mpd 15 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
70 | 1, 7 | upgriswlk 27910 |
. . . . . 6
⊢ (𝐺 ∈ UPGraph → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
71 | 70 | adantr 480 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
72 | 71 | exbidv 1925 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (∃𝑓 𝑓(Walks‘𝐺)𝑃 ↔ ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}))) |
73 | 69, 72 | mpbird 256 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → ∃𝑓 𝑓(Walks‘𝐺)𝑃) |
74 | 73 | ex 412 |
. 2
⊢ (𝐺 ∈ UPGraph → ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑃)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ∃𝑓 𝑓(Walks‘𝐺)𝑃)) |
75 | 3, 74 | syl5bi 241 |
1
⊢ (𝐺 ∈ UPGraph → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃)) |