MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlksupgr2 Structured version   Visualization version   GIF version

Theorem wlkiswwlksupgr2 27663
Description: A walk as word corresponds to the sequence of vertices in a walk in a pseudograph. This variant of wlkiswwlks2 27661 does not require 𝐺 to be a simple pseudograph, but it requires the Axiom of Choice (ac6 9891) for its proof. Notice that only the existence of a function 𝑓 can be proven, but, in general, it cannot be "constructed" (as in wlkiswwlks2 27661). (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Assertion
Ref Expression
wlkiswwlksupgr2 (𝐺 ∈ UPGraph → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Distinct variable groups:   𝑓,𝐺   𝑃,𝑓

Proof of Theorem wlkiswwlksupgr2
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2798 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
31, 2iswwlks 27622 . 2 (𝑃 ∈ (WWalks‘𝐺) ↔ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
4 edgval 26842 . . . . . . . . . . . . 13 (Edg‘𝐺) = ran (iEdg‘𝐺)
54eleq2i 2881 . . . . . . . . . . . 12 ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺))
6 upgruhgr 26895 . . . . . . . . . . . . . . 15 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
7 eqid 2798 . . . . . . . . . . . . . . . 16 (iEdg‘𝐺) = (iEdg‘𝐺)
87uhgrfun 26859 . . . . . . . . . . . . . . 15 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
96, 8syl 17 . . . . . . . . . . . . . 14 (𝐺 ∈ UPGraph → Fun (iEdg‘𝐺))
109adantl 485 . . . . . . . . . . . . 13 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) → Fun (iEdg‘𝐺))
11 elrnrexdm 6832 . . . . . . . . . . . . . 14 (Fun (iEdg‘𝐺) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) → ∃𝑥 ∈ dom (iEdg‘𝐺){(𝑃𝑖), (𝑃‘(𝑖 + 1))} = ((iEdg‘𝐺)‘𝑥)))
12 eqcom 2805 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = ((iEdg‘𝐺)‘𝑥))
1312rexbii 3210 . . . . . . . . . . . . . 14 (∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∃𝑥 ∈ dom (iEdg‘𝐺){(𝑃𝑖), (𝑃‘(𝑖 + 1))} = ((iEdg‘𝐺)‘𝑥))
1411, 13syl6ibr 255 . . . . . . . . . . . . 13 (Fun (iEdg‘𝐺) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) → ∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
1510, 14syl 17 . . . . . . . . . . . 12 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) → ∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
165, 15syl5bi 245 . . . . . . . . . . 11 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
1716ralimdv 3145 . . . . . . . . . 10 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
1817ex 416 . . . . . . . . 9 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝐺 ∈ UPGraph → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
1918com23 86 . . . . . . . 8 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝐺 ∈ UPGraph → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
20193impia 1114 . . . . . . 7 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝐺 ∈ UPGraph → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2120impcom 411 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
22 ovex 7168 . . . . . . 7 (0..^((♯‘𝑃) − 1)) ∈ V
23 fvex 6658 . . . . . . . 8 (iEdg‘𝐺) ∈ V
2423dmex 7598 . . . . . . 7 dom (iEdg‘𝐺) ∈ V
25 fveqeq2 6654 . . . . . . 7 (𝑥 = (𝑓𝑖) → (((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2622, 24, 25ac6 9891 . . . . . 6 (∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → ∃𝑓(𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2721, 26syl 17 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → ∃𝑓(𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
28 iswrdi 13861 . . . . . . . . . 10 (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑓 ∈ Word dom (iEdg‘𝐺))
2928adantr 484 . . . . . . . . 9 ((𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → 𝑓 ∈ Word dom (iEdg‘𝐺))
3029adantl 485 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) → 𝑓 ∈ Word dom (iEdg‘𝐺))
31 len0nnbi 13894 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word (Vtx‘𝐺) → (𝑃 ≠ ∅ ↔ (♯‘𝑃) ∈ ℕ))
3231biimpac 482 . . . . . . . . . . . . . 14 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (♯‘𝑃) ∈ ℕ)
33 wrdf 13862 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word (Vtx‘𝐺) → 𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺))
34 nnz 11992 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑃) ∈ ℕ → (♯‘𝑃) ∈ ℤ)
35 fzoval 13034 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑃) ∈ ℤ → (0..^(♯‘𝑃)) = (0...((♯‘𝑃) − 1)))
3634, 35syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑃) ∈ ℕ → (0..^(♯‘𝑃)) = (0...((♯‘𝑃) − 1)))
3736adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (0..^(♯‘𝑃)) = (0...((♯‘𝑃) − 1)))
38 nnm1nn0 11926 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑃) ∈ ℕ → ((♯‘𝑃) − 1) ∈ ℕ0)
39 fnfzo0hash 13804 . . . . . . . . . . . . . . . . . . . . . . 23 ((((♯‘𝑃) − 1) ∈ ℕ0𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (♯‘𝑓) = ((♯‘𝑃) − 1))
4038, 39sylan 583 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (♯‘𝑓) = ((♯‘𝑃) − 1))
4140eqcomd 2804 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → ((♯‘𝑃) − 1) = (♯‘𝑓))
4241oveq2d 7151 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (0...((♯‘𝑃) − 1)) = (0...(♯‘𝑓)))
4337, 42eqtrd 2833 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (0..^(♯‘𝑃)) = (0...(♯‘𝑓)))
4443feq2d 6473 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺) ↔ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
4544biimpcd 252 . . . . . . . . . . . . . . . . 17 (𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺) → (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
4645expd 419 . . . . . . . . . . . . . . . 16 (𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺) → ((♯‘𝑃) ∈ ℕ → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺))))
4733, 46syl 17 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word (Vtx‘𝐺) → ((♯‘𝑃) ∈ ℕ → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺))))
4847adantl 485 . . . . . . . . . . . . . 14 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → ((♯‘𝑃) ∈ ℕ → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺))))
4932, 48mpd 15 . . . . . . . . . . . . 13 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
50493adant3 1129 . . . . . . . . . . . 12 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
5150adantl 485 . . . . . . . . . . 11 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
5251com12 32 . . . . . . . . . 10 (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
5352adantr 484 . . . . . . . . 9 ((𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
5453impcom 411 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺))
55 simpr 488 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
5632, 40sylan 583 . . . . . . . . . . . . . . . . 17 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (♯‘𝑓) = ((♯‘𝑃) − 1))
5756oveq2d 7151 . . . . . . . . . . . . . . . 16 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (0..^(♯‘𝑓)) = (0..^((♯‘𝑃) − 1)))
5857ex 416 . . . . . . . . . . . . . . 15 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → (0..^(♯‘𝑓)) = (0..^((♯‘𝑃) − 1))))
59583adant3 1129 . . . . . . . . . . . . . 14 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → (0..^(♯‘𝑓)) = (0..^((♯‘𝑃) − 1))))
6059adantl 485 . . . . . . . . . . . . 13 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → (0..^(♯‘𝑓)) = (0..^((♯‘𝑃) − 1))))
6160imp 410 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (0..^(♯‘𝑓)) = (0..^((♯‘𝑃) − 1)))
6261adantr 484 . . . . . . . . . . 11 ((((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (0..^(♯‘𝑓)) = (0..^((♯‘𝑃) − 1)))
6362raleqdv 3364 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
6455, 63mpbird 260 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
6564anasss 470 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) → ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
6630, 54, 653jca 1125 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
6766ex 416 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → ((𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
6867eximdv 1918 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (∃𝑓(𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
6927, 68mpd 15 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
701, 7upgriswlk 27430 . . . . . 6 (𝐺 ∈ UPGraph → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
7170adantr 484 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
7271exbidv 1922 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (∃𝑓 𝑓(Walks‘𝐺)𝑃 ↔ ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
7369, 72mpbird 260 . . 3 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → ∃𝑓 𝑓(Walks‘𝐺)𝑃)
7473ex 416 . 2 (𝐺 ∈ UPGraph → ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
753, 74syl5bi 245 1 (𝐺 ∈ UPGraph → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  wrex 3107  c0 4243  {cpr 4527   class class class wbr 5030  dom cdm 5519  ran crn 5520  Fun wfun 6318  wf 6320  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529  cmin 10859  cn 11625  0cn0 11885  cz 11969  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857  Vtxcvtx 26789  iEdgciedg 26790  Edgcedg 26840  UHGraphcuhgr 26849  UPGraphcupgr 26873  Walkscwlks 27386  WWalkscwwlks 27611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-edg 26841  df-uhgr 26851  df-upgr 26875  df-wlks 27389  df-wwlks 27616
This theorem is referenced by:  wlkiswwlkupgr  27664  wlklnwwlklnupgr2  27671
  Copyright terms: Public domain W3C validator