Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . 3
β’
(VtxβπΊ) =
(VtxβπΊ) |
2 | | eqid 2732 |
. . 3
β’
(EdgβπΊ) =
(EdgβπΊ) |
3 | 1, 2 | iswwlks 29079 |
. 2
β’ (π β (WWalksβπΊ) β (π β β
β§ π β Word (VtxβπΊ) β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) |
4 | | edgval 28298 |
. . . . . . . . . . . . 13
β’
(EdgβπΊ) = ran
(iEdgβπΊ) |
5 | 4 | eleq2i 2825 |
. . . . . . . . . . . 12
β’ ({(πβπ), (πβ(π + 1))} β (EdgβπΊ) β {(πβπ), (πβ(π + 1))} β ran (iEdgβπΊ)) |
6 | | upgruhgr 28351 |
. . . . . . . . . . . . . . 15
β’ (πΊ β UPGraph β πΊ β
UHGraph) |
7 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
β’
(iEdgβπΊ) =
(iEdgβπΊ) |
8 | 7 | uhgrfun 28315 |
. . . . . . . . . . . . . . 15
β’ (πΊ β UHGraph β Fun
(iEdgβπΊ)) |
9 | 6, 8 | syl 17 |
. . . . . . . . . . . . . 14
β’ (πΊ β UPGraph β Fun
(iEdgβπΊ)) |
10 | 9 | adantl 482 |
. . . . . . . . . . . . 13
β’ (((π β β
β§ π β Word (VtxβπΊ)) β§ πΊ β UPGraph) β Fun
(iEdgβπΊ)) |
11 | | elrnrexdm 7087 |
. . . . . . . . . . . . . 14
β’ (Fun
(iEdgβπΊ) β
({(πβπ), (πβ(π + 1))} β ran (iEdgβπΊ) β βπ₯ β dom (iEdgβπΊ){(πβπ), (πβ(π + 1))} = ((iEdgβπΊ)βπ₯))) |
12 | | eqcom 2739 |
. . . . . . . . . . . . . . 15
β’
(((iEdgβπΊ)βπ₯) = {(πβπ), (πβ(π + 1))} β {(πβπ), (πβ(π + 1))} = ((iEdgβπΊ)βπ₯)) |
13 | 12 | rexbii 3094 |
. . . . . . . . . . . . . 14
β’
(βπ₯ β dom
(iEdgβπΊ)((iEdgβπΊ)βπ₯) = {(πβπ), (πβ(π + 1))} β βπ₯ β dom (iEdgβπΊ){(πβπ), (πβ(π + 1))} = ((iEdgβπΊ)βπ₯)) |
14 | 11, 13 | syl6ibr 251 |
. . . . . . . . . . . . 13
β’ (Fun
(iEdgβπΊ) β
({(πβπ), (πβ(π + 1))} β ran (iEdgβπΊ) β βπ₯ β dom (iEdgβπΊ)((iEdgβπΊ)βπ₯) = {(πβπ), (πβ(π + 1))})) |
15 | 10, 14 | syl 17 |
. . . . . . . . . . . 12
β’ (((π β β
β§ π β Word (VtxβπΊ)) β§ πΊ β UPGraph) β ({(πβπ), (πβ(π + 1))} β ran (iEdgβπΊ) β βπ₯ β dom (iEdgβπΊ)((iEdgβπΊ)βπ₯) = {(πβπ), (πβ(π + 1))})) |
16 | 5, 15 | biimtrid 241 |
. . . . . . . . . . 11
β’ (((π β β
β§ π β Word (VtxβπΊ)) β§ πΊ β UPGraph) β ({(πβπ), (πβ(π + 1))} β (EdgβπΊ) β βπ₯ β dom (iEdgβπΊ)((iEdgβπΊ)βπ₯) = {(πβπ), (πβ(π + 1))})) |
17 | 16 | ralimdv 3169 |
. . . . . . . . . 10
β’ (((π β β
β§ π β Word (VtxβπΊ)) β§ πΊ β UPGraph) β (βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β βπ β (0..^((β―βπ) β 1))βπ₯ β dom (iEdgβπΊ)((iEdgβπΊ)βπ₯) = {(πβπ), (πβ(π + 1))})) |
18 | 17 | ex 413 |
. . . . . . . . 9
β’ ((π β β
β§ π β Word (VtxβπΊ)) β (πΊ β UPGraph β (βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β βπ β (0..^((β―βπ) β 1))βπ₯ β dom (iEdgβπΊ)((iEdgβπΊ)βπ₯) = {(πβπ), (πβ(π + 1))}))) |
19 | 18 | com23 86 |
. . . . . . . 8
β’ ((π β β
β§ π β Word (VtxβπΊ)) β (βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β (πΊ β UPGraph β βπ β
(0..^((β―βπ)
β 1))βπ₯ β
dom (iEdgβπΊ)((iEdgβπΊ)βπ₯) = {(πβπ), (πβ(π + 1))}))) |
20 | 19 | 3impia 1117 |
. . . . . . 7
β’ ((π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ)) β (πΊ β UPGraph β βπ β
(0..^((β―βπ)
β 1))βπ₯ β
dom (iEdgβπΊ)((iEdgβπΊ)βπ₯) = {(πβπ), (πβ(π + 1))})) |
21 | 20 | impcom 408 |
. . . . . 6
β’ ((πΊ β UPGraph β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β βπ β (0..^((β―βπ) β 1))βπ₯ β dom (iEdgβπΊ)((iEdgβπΊ)βπ₯) = {(πβπ), (πβ(π + 1))}) |
22 | | ovex 7438 |
. . . . . . 7
β’
(0..^((β―βπ) β 1)) β V |
23 | | fvex 6901 |
. . . . . . . 8
β’
(iEdgβπΊ)
β V |
24 | 23 | dmex 7898 |
. . . . . . 7
β’ dom
(iEdgβπΊ) β
V |
25 | | fveqeq2 6897 |
. . . . . . 7
β’ (π₯ = (πβπ) β (((iEdgβπΊ)βπ₯) = {(πβπ), (πβ(π + 1))} β ((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))})) |
26 | 22, 24, 25 | ac6 10471 |
. . . . . 6
β’
(βπ β
(0..^((β―βπ)
β 1))βπ₯ β
dom (iEdgβπΊ)((iEdgβπΊ)βπ₯) = {(πβπ), (πβ(π + 1))} β βπ(π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ) β§ βπ β
(0..^((β―βπ)
β 1))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))})) |
27 | 21, 26 | syl 17 |
. . . . 5
β’ ((πΊ β UPGraph β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β βπ(π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ) β§ βπ β
(0..^((β―βπ)
β 1))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))})) |
28 | | iswrdi 14464 |
. . . . . . . . . 10
β’ (π:(0..^((β―βπ) β 1))βΆdom
(iEdgβπΊ) β π β Word dom
(iEdgβπΊ)) |
29 | 28 | adantr 481 |
. . . . . . . . 9
β’ ((π:(0..^((β―βπ) β 1))βΆdom
(iEdgβπΊ) β§
βπ β
(0..^((β―βπ)
β 1))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}) β π β Word dom (iEdgβπΊ)) |
30 | 29 | adantl 482 |
. . . . . . . 8
β’ (((πΊ β UPGraph β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β§ (π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ) β§ βπ β
(0..^((β―βπ)
β 1))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))})) β π β Word dom (iEdgβπΊ)) |
31 | | len0nnbi 14497 |
. . . . . . . . . . . . . . 15
β’ (π β Word (VtxβπΊ) β (π β β
β (β―βπ) β
β)) |
32 | 31 | biimpac 479 |
. . . . . . . . . . . . . 14
β’ ((π β β
β§ π β Word (VtxβπΊ)) β (β―βπ) β
β) |
33 | | wrdf 14465 |
. . . . . . . . . . . . . . . 16
β’ (π β Word (VtxβπΊ) β π:(0..^(β―βπ))βΆ(VtxβπΊ)) |
34 | | nnz 12575 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
((β―βπ)
β β β (β―βπ) β β€) |
35 | | fzoval 13629 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
((β―βπ)
β β€ β (0..^(β―βπ)) = (0...((β―βπ) β 1))) |
36 | 34, 35 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
β’
((β―βπ)
β β β (0..^(β―βπ)) = (0...((β―βπ) β 1))) |
37 | 36 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((β―βπ)
β β β§ π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ)) β
(0..^(β―βπ)) =
(0...((β―βπ)
β 1))) |
38 | | nnm1nn0 12509 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
((β―βπ)
β β β ((β―βπ) β 1) β
β0) |
39 | | fnfzo0hash 14405 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
((((β―βπ)
β 1) β β0 β§ π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ)) β (β―βπ) = ((β―βπ) β 1)) |
40 | 38, 39 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(((β―βπ)
β β β§ π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ)) β (β―βπ) = ((β―βπ) β 1)) |
41 | 40 | eqcomd 2738 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(((β―βπ)
β β β§ π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ)) β ((β―βπ) β 1) =
(β―βπ)) |
42 | 41 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((β―βπ)
β β β§ π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ)) β
(0...((β―βπ)
β 1)) = (0...(β―βπ))) |
43 | 37, 42 | eqtrd 2772 |
. . . . . . . . . . . . . . . . . . 19
β’
(((β―βπ)
β β β§ π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ)) β
(0..^(β―βπ)) =
(0...(β―βπ))) |
44 | 43 | feq2d 6700 |
. . . . . . . . . . . . . . . . . 18
β’
(((β―βπ)
β β β§ π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ)) β (π:(0..^(β―βπ))βΆ(VtxβπΊ) β π:(0...(β―βπ))βΆ(VtxβπΊ))) |
45 | 44 | biimpcd 248 |
. . . . . . . . . . . . . . . . 17
β’ (π:(0..^(β―βπ))βΆ(VtxβπΊ) β (((β―βπ) β β β§ π:(0..^((β―βπ) β 1))βΆdom
(iEdgβπΊ)) β
π:(0...(β―βπ))βΆ(VtxβπΊ))) |
46 | 45 | expd 416 |
. . . . . . . . . . . . . . . 16
β’ (π:(0..^(β―βπ))βΆ(VtxβπΊ) β ((β―βπ) β β β (π:(0..^((β―βπ) β 1))βΆdom
(iEdgβπΊ) β π:(0...(β―βπ))βΆ(VtxβπΊ)))) |
47 | 33, 46 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β Word (VtxβπΊ) β ((β―βπ) β β β (π:(0..^((β―βπ) β 1))βΆdom
(iEdgβπΊ) β π:(0...(β―βπ))βΆ(VtxβπΊ)))) |
48 | 47 | adantl 482 |
. . . . . . . . . . . . . 14
β’ ((π β β
β§ π β Word (VtxβπΊ)) β ((β―βπ) β β β (π:(0..^((β―βπ) β 1))βΆdom
(iEdgβπΊ) β π:(0...(β―βπ))βΆ(VtxβπΊ)))) |
49 | 32, 48 | mpd 15 |
. . . . . . . . . . . . 13
β’ ((π β β
β§ π β Word (VtxβπΊ)) β (π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ) β π:(0...(β―βπ))βΆ(VtxβπΊ))) |
50 | 49 | 3adant3 1132 |
. . . . . . . . . . . 12
β’ ((π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ)) β (π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ) β π:(0...(β―βπ))βΆ(VtxβπΊ))) |
51 | 50 | adantl 482 |
. . . . . . . . . . 11
β’ ((πΊ β UPGraph β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β (π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ) β π:(0...(β―βπ))βΆ(VtxβπΊ))) |
52 | 51 | com12 32 |
. . . . . . . . . 10
β’ (π:(0..^((β―βπ) β 1))βΆdom
(iEdgβπΊ) β
((πΊ β UPGraph β§
(π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β π:(0...(β―βπ))βΆ(VtxβπΊ))) |
53 | 52 | adantr 481 |
. . . . . . . . 9
β’ ((π:(0..^((β―βπ) β 1))βΆdom
(iEdgβπΊ) β§
βπ β
(0..^((β―βπ)
β 1))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}) β ((πΊ β UPGraph β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β π:(0...(β―βπ))βΆ(VtxβπΊ))) |
54 | 53 | impcom 408 |
. . . . . . . 8
β’ (((πΊ β UPGraph β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β§ (π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ) β§ βπ β
(0..^((β―βπ)
β 1))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))})) β π:(0...(β―βπ))βΆ(VtxβπΊ)) |
55 | | simpr 485 |
. . . . . . . . . 10
β’ ((((πΊ β UPGraph β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β§ π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ)) β§ βπ β
(0..^((β―βπ)
β 1))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}) β βπ β (0..^((β―βπ) β 1))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}) |
56 | 32, 40 | sylan 580 |
. . . . . . . . . . . . . . . . 17
β’ (((π β β
β§ π β Word (VtxβπΊ)) β§ π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ)) β (β―βπ) = ((β―βπ) β 1)) |
57 | 56 | oveq2d 7421 |
. . . . . . . . . . . . . . . 16
β’ (((π β β
β§ π β Word (VtxβπΊ)) β§ π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ)) β
(0..^(β―βπ)) =
(0..^((β―βπ)
β 1))) |
58 | 57 | ex 413 |
. . . . . . . . . . . . . . 15
β’ ((π β β
β§ π β Word (VtxβπΊ)) β (π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ) β
(0..^(β―βπ)) =
(0..^((β―βπ)
β 1)))) |
59 | 58 | 3adant3 1132 |
. . . . . . . . . . . . . 14
β’ ((π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ)) β (π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ) β
(0..^(β―βπ)) =
(0..^((β―βπ)
β 1)))) |
60 | 59 | adantl 482 |
. . . . . . . . . . . . 13
β’ ((πΊ β UPGraph β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β (π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ) β
(0..^(β―βπ)) =
(0..^((β―βπ)
β 1)))) |
61 | 60 | imp 407 |
. . . . . . . . . . . 12
β’ (((πΊ β UPGraph β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β§ π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ)) β
(0..^(β―βπ)) =
(0..^((β―βπ)
β 1))) |
62 | 61 | adantr 481 |
. . . . . . . . . . 11
β’ ((((πΊ β UPGraph β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β§ π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ)) β§ βπ β
(0..^((β―βπ)
β 1))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}) β (0..^(β―βπ)) = (0..^((β―βπ) β 1))) |
63 | 62 | raleqdv 3325 |
. . . . . . . . . 10
β’ ((((πΊ β UPGraph β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β§ π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ)) β§ βπ β
(0..^((β―βπ)
β 1))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}) β (βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))} β βπ β (0..^((β―βπ) β 1))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))})) |
64 | 55, 63 | mpbird 256 |
. . . . . . . . 9
β’ ((((πΊ β UPGraph β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β§ π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ)) β§ βπ β
(0..^((β―βπ)
β 1))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}) β βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}) |
65 | 64 | anasss 467 |
. . . . . . . 8
β’ (((πΊ β UPGraph β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β§ (π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ) β§ βπ β
(0..^((β―βπ)
β 1))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))})) β βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}) |
66 | 30, 54, 65 | 3jca 1128 |
. . . . . . 7
β’ (((πΊ β UPGraph β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β§ (π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ) β§ βπ β
(0..^((β―βπ)
β 1))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))})) β (π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))})) |
67 | 66 | ex 413 |
. . . . . 6
β’ ((πΊ β UPGraph β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β ((π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ) β§ βπ β
(0..^((β―βπ)
β 1))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}) β (π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}))) |
68 | 67 | eximdv 1920 |
. . . . 5
β’ ((πΊ β UPGraph β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β (βπ(π:(0..^((β―βπ) β 1))βΆdom (iEdgβπΊ) β§ βπ β
(0..^((β―βπ)
β 1))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}) β βπ(π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}))) |
69 | 27, 68 | mpd 15 |
. . . 4
β’ ((πΊ β UPGraph β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β βπ(π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))})) |
70 | 1, 7 | upgriswlk 28887 |
. . . . . 6
β’ (πΊ β UPGraph β (π(WalksβπΊ)π β (π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}))) |
71 | 70 | adantr 481 |
. . . . 5
β’ ((πΊ β UPGraph β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β (π(WalksβπΊ)π β (π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}))) |
72 | 71 | exbidv 1924 |
. . . 4
β’ ((πΊ β UPGraph β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β (βπ π(WalksβπΊ)π β βπ(π β Word dom (iEdgβπΊ) β§ π:(0...(β―βπ))βΆ(VtxβπΊ) β§ βπ β (0..^(β―βπ))((iEdgβπΊ)β(πβπ)) = {(πβπ), (πβ(π + 1))}))) |
73 | 69, 72 | mpbird 256 |
. . 3
β’ ((πΊ β UPGraph β§ (π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ))) β βπ π(WalksβπΊ)π) |
74 | 73 | ex 413 |
. 2
β’ (πΊ β UPGraph β ((π β β
β§ π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ)) β βπ π(WalksβπΊ)π)) |
75 | 3, 74 | biimtrid 241 |
1
β’ (πΊ β UPGraph β (π β (WWalksβπΊ) β βπ π(WalksβπΊ)π)) |