MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlksupgr2 Structured version   Visualization version   GIF version

Theorem wlkiswwlksupgr2 29120
Description: A walk as word corresponds to the sequence of vertices in a walk in a pseudograph. This variant of wlkiswwlks2 29118 does not require 𝐺 to be a simple pseudograph, but it requires the Axiom of Choice (ac6 10471) for its proof. Notice that only the existence of a function 𝑓 can be proven, but, in general, it cannot be "constructed" (as in wlkiswwlks2 29118). (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Assertion
Ref Expression
wlkiswwlksupgr2 (𝐺 ∈ UPGraph β†’ (𝑃 ∈ (WWalksβ€˜πΊ) β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃))
Distinct variable groups:   𝑓,𝐺   𝑃,𝑓

Proof of Theorem wlkiswwlksupgr2
Dummy variables 𝑖 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
2 eqid 2732 . . 3 (Edgβ€˜πΊ) = (Edgβ€˜πΊ)
31, 2iswwlks 29079 . 2 (𝑃 ∈ (WWalksβ€˜πΊ) ↔ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
4 edgval 28298 . . . . . . . . . . . . 13 (Edgβ€˜πΊ) = ran (iEdgβ€˜πΊ)
54eleq2i 2825 . . . . . . . . . . . 12 ({(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran (iEdgβ€˜πΊ))
6 upgruhgr 28351 . . . . . . . . . . . . . . 15 (𝐺 ∈ UPGraph β†’ 𝐺 ∈ UHGraph)
7 eqid 2732 . . . . . . . . . . . . . . . 16 (iEdgβ€˜πΊ) = (iEdgβ€˜πΊ)
87uhgrfun 28315 . . . . . . . . . . . . . . 15 (𝐺 ∈ UHGraph β†’ Fun (iEdgβ€˜πΊ))
96, 8syl 17 . . . . . . . . . . . . . 14 (𝐺 ∈ UPGraph β†’ Fun (iEdgβ€˜πΊ))
109adantl 482 . . . . . . . . . . . . 13 (((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ UPGraph) β†’ Fun (iEdgβ€˜πΊ))
11 elrnrexdm 7087 . . . . . . . . . . . . . 14 (Fun (iEdgβ€˜πΊ) β†’ ({(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran (iEdgβ€˜πΊ) β†’ βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} = ((iEdgβ€˜πΊ)β€˜π‘₯)))
12 eqcom 2739 . . . . . . . . . . . . . . 15 (((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ↔ {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} = ((iEdgβ€˜πΊ)β€˜π‘₯))
1312rexbii 3094 . . . . . . . . . . . . . 14 (βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ↔ βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} = ((iEdgβ€˜πΊ)β€˜π‘₯))
1411, 13syl6ibr 251 . . . . . . . . . . . . 13 (Fun (iEdgβ€˜πΊ) β†’ ({(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran (iEdgβ€˜πΊ) β†’ βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
1510, 14syl 17 . . . . . . . . . . . 12 (((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ UPGraph) β†’ ({(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran (iEdgβ€˜πΊ) β†’ βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
165, 15biimtrid 241 . . . . . . . . . . 11 (((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ UPGraph) β†’ ({(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
1716ralimdv 3169 . . . . . . . . . 10 (((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ UPGraph) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
1817ex 413 . . . . . . . . 9 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ (𝐺 ∈ UPGraph β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
1918com23 86 . . . . . . . 8 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ (𝐺 ∈ UPGraph β†’ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
20193impia 1117 . . . . . . 7 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) β†’ (𝐺 ∈ UPGraph β†’ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
2120impcom 408 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})
22 ovex 7438 . . . . . . 7 (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∈ V
23 fvex 6901 . . . . . . . 8 (iEdgβ€˜πΊ) ∈ V
2423dmex 7898 . . . . . . 7 dom (iEdgβ€˜πΊ) ∈ V
25 fveqeq2 6897 . . . . . . 7 (π‘₯ = (π‘“β€˜π‘–) β†’ (((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ↔ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
2622, 24, 25ac6 10471 . . . . . 6 (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} β†’ βˆƒπ‘“(𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
2721, 26syl 17 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ βˆƒπ‘“(𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
28 iswrdi 14464 . . . . . . . . . 10 (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ 𝑓 ∈ Word dom (iEdgβ€˜πΊ))
2928adantr 481 . . . . . . . . 9 ((𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) β†’ 𝑓 ∈ Word dom (iEdgβ€˜πΊ))
3029adantl 482 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})) β†’ 𝑓 ∈ Word dom (iEdgβ€˜πΊ))
31 len0nnbi 14497 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word (Vtxβ€˜πΊ) β†’ (𝑃 β‰  βˆ… ↔ (β™―β€˜π‘ƒ) ∈ β„•))
3231biimpac 479 . . . . . . . . . . . . . 14 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ (β™―β€˜π‘ƒ) ∈ β„•)
33 wrdf 14465 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word (Vtxβ€˜πΊ) β†’ 𝑃:(0..^(β™―β€˜π‘ƒ))⟢(Vtxβ€˜πΊ))
34 nnz 12575 . . . . . . . . . . . . . . . . . . . . . 22 ((β™―β€˜π‘ƒ) ∈ β„• β†’ (β™―β€˜π‘ƒ) ∈ β„€)
35 fzoval 13629 . . . . . . . . . . . . . . . . . . . . . 22 ((β™―β€˜π‘ƒ) ∈ β„€ β†’ (0..^(β™―β€˜π‘ƒ)) = (0...((β™―β€˜π‘ƒ) βˆ’ 1)))
3634, 35syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((β™―β€˜π‘ƒ) ∈ β„• β†’ (0..^(β™―β€˜π‘ƒ)) = (0...((β™―β€˜π‘ƒ) βˆ’ 1)))
3736adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((β™―β€˜π‘ƒ) ∈ β„• ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ (0..^(β™―β€˜π‘ƒ)) = (0...((β™―β€˜π‘ƒ) βˆ’ 1)))
38 nnm1nn0 12509 . . . . . . . . . . . . . . . . . . . . . . 23 ((β™―β€˜π‘ƒ) ∈ β„• β†’ ((β™―β€˜π‘ƒ) βˆ’ 1) ∈ β„•0)
39 fnfzo0hash 14405 . . . . . . . . . . . . . . . . . . . . . . 23 ((((β™―β€˜π‘ƒ) βˆ’ 1) ∈ β„•0 ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ (β™―β€˜π‘“) = ((β™―β€˜π‘ƒ) βˆ’ 1))
4038, 39sylan 580 . . . . . . . . . . . . . . . . . . . . . 22 (((β™―β€˜π‘ƒ) ∈ β„• ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ (β™―β€˜π‘“) = ((β™―β€˜π‘ƒ) βˆ’ 1))
4140eqcomd 2738 . . . . . . . . . . . . . . . . . . . . 21 (((β™―β€˜π‘ƒ) ∈ β„• ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ ((β™―β€˜π‘ƒ) βˆ’ 1) = (β™―β€˜π‘“))
4241oveq2d 7421 . . . . . . . . . . . . . . . . . . . 20 (((β™―β€˜π‘ƒ) ∈ β„• ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ (0...((β™―β€˜π‘ƒ) βˆ’ 1)) = (0...(β™―β€˜π‘“)))
4337, 42eqtrd 2772 . . . . . . . . . . . . . . . . . . 19 (((β™―β€˜π‘ƒ) ∈ β„• ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ (0..^(β™―β€˜π‘ƒ)) = (0...(β™―β€˜π‘“)))
4443feq2d 6700 . . . . . . . . . . . . . . . . . 18 (((β™―β€˜π‘ƒ) ∈ β„• ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ (𝑃:(0..^(β™―β€˜π‘ƒ))⟢(Vtxβ€˜πΊ) ↔ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ)))
4544biimpcd 248 . . . . . . . . . . . . . . . . 17 (𝑃:(0..^(β™―β€˜π‘ƒ))⟢(Vtxβ€˜πΊ) β†’ (((β™―β€˜π‘ƒ) ∈ β„• ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ)))
4645expd 416 . . . . . . . . . . . . . . . 16 (𝑃:(0..^(β™―β€˜π‘ƒ))⟢(Vtxβ€˜πΊ) β†’ ((β™―β€˜π‘ƒ) ∈ β„• β†’ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ))))
4733, 46syl 17 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word (Vtxβ€˜πΊ) β†’ ((β™―β€˜π‘ƒ) ∈ β„• β†’ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ))))
4847adantl 482 . . . . . . . . . . . . . 14 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ ((β™―β€˜π‘ƒ) ∈ β„• β†’ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ))))
4932, 48mpd 15 . . . . . . . . . . . . 13 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ)))
50493adant3 1132 . . . . . . . . . . . 12 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) β†’ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ)))
5150adantl 482 . . . . . . . . . . 11 ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ)))
5251com12 32 . . . . . . . . . 10 (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ)))
5352adantr 481 . . . . . . . . 9 ((𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) β†’ ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ)))
5453impcom 408 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})) β†’ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ))
55 simpr 485 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) β†’ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})
5632, 40sylan 580 . . . . . . . . . . . . . . . . 17 (((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ (β™―β€˜π‘“) = ((β™―β€˜π‘ƒ) βˆ’ 1))
5756oveq2d 7421 . . . . . . . . . . . . . . . 16 (((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ (0..^(β™―β€˜π‘“)) = (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))
5857ex 413 . . . . . . . . . . . . . . 15 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ (0..^(β™―β€˜π‘“)) = (0..^((β™―β€˜π‘ƒ) βˆ’ 1))))
59583adant3 1132 . . . . . . . . . . . . . 14 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) β†’ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ (0..^(β™―β€˜π‘“)) = (0..^((β™―β€˜π‘ƒ) βˆ’ 1))))
6059adantl 482 . . . . . . . . . . . . 13 ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ (0..^(β™―β€˜π‘“)) = (0..^((β™―β€˜π‘ƒ) βˆ’ 1))))
6160imp 407 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ (0..^(β™―β€˜π‘“)) = (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))
6261adantr 481 . . . . . . . . . . 11 ((((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) β†’ (0..^(β™―β€˜π‘“)) = (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))
6362raleqdv 3325 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) β†’ (βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ↔ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
6455, 63mpbird 256 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) β†’ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})
6564anasss 467 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})) β†’ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})
6630, 54, 653jca 1128 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})) β†’ (𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
6766ex 413 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ ((𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) β†’ (𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
6867eximdv 1920 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ (βˆƒπ‘“(𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) β†’ βˆƒπ‘“(𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
6927, 68mpd 15 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ βˆƒπ‘“(𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
701, 7upgriswlk 28887 . . . . . 6 (𝐺 ∈ UPGraph β†’ (𝑓(Walksβ€˜πΊ)𝑃 ↔ (𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
7170adantr 481 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ (𝑓(Walksβ€˜πΊ)𝑃 ↔ (𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
7271exbidv 1924 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ (βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃 ↔ βˆƒπ‘“(𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
7369, 72mpbird 256 . . 3 ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃)
7473ex 413 . 2 (𝐺 ∈ UPGraph β†’ ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃))
753, 74biimtrid 241 1 (𝐺 ∈ UPGraph β†’ (𝑃 ∈ (WWalksβ€˜πΊ) β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  βˆ…c0 4321  {cpr 4629   class class class wbr 5147  dom cdm 5675  ran crn 5676  Fun wfun 6534  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  0cc0 11106  1c1 11107   + caddc 11109   βˆ’ cmin 11440  β„•cn 12208  β„•0cn0 12468  β„€cz 12554  ...cfz 13480  ..^cfzo 13623  β™―chash 14286  Word cword 14460  Vtxcvtx 28245  iEdgciedg 28246  Edgcedg 28296  UHGraphcuhgr 28305  UPGraphcupgr 28329  Walkscwlks 28842  WWalkscwwlks 29068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-ac2 10454  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-ac 10107  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-edg 28297  df-uhgr 28307  df-upgr 28331  df-wlks 28845  df-wwlks 29073
This theorem is referenced by:  wlkiswwlkupgr  29121  wlklnwwlklnupgr2  29128
  Copyright terms: Public domain W3C validator