MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlksupgr2 Structured version   Visualization version   GIF version

Theorem wlkiswwlksupgr2 29131
Description: A walk as word corresponds to the sequence of vertices in a walk in a pseudograph. This variant of wlkiswwlks2 29129 does not require 𝐺 to be a simple pseudograph, but it requires the Axiom of Choice (ac6 10475) for its proof. Notice that only the existence of a function 𝑓 can be proven, but, in general, it cannot be "constructed" (as in wlkiswwlks2 29129). (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Assertion
Ref Expression
wlkiswwlksupgr2 (𝐺 ∈ UPGraph β†’ (𝑃 ∈ (WWalksβ€˜πΊ) β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃))
Distinct variable groups:   𝑓,𝐺   𝑃,𝑓

Proof of Theorem wlkiswwlksupgr2
Dummy variables 𝑖 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
2 eqid 2733 . . 3 (Edgβ€˜πΊ) = (Edgβ€˜πΊ)
31, 2iswwlks 29090 . 2 (𝑃 ∈ (WWalksβ€˜πΊ) ↔ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
4 edgval 28309 . . . . . . . . . . . . 13 (Edgβ€˜πΊ) = ran (iEdgβ€˜πΊ)
54eleq2i 2826 . . . . . . . . . . . 12 ({(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran (iEdgβ€˜πΊ))
6 upgruhgr 28362 . . . . . . . . . . . . . . 15 (𝐺 ∈ UPGraph β†’ 𝐺 ∈ UHGraph)
7 eqid 2733 . . . . . . . . . . . . . . . 16 (iEdgβ€˜πΊ) = (iEdgβ€˜πΊ)
87uhgrfun 28326 . . . . . . . . . . . . . . 15 (𝐺 ∈ UHGraph β†’ Fun (iEdgβ€˜πΊ))
96, 8syl 17 . . . . . . . . . . . . . 14 (𝐺 ∈ UPGraph β†’ Fun (iEdgβ€˜πΊ))
109adantl 483 . . . . . . . . . . . . 13 (((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ UPGraph) β†’ Fun (iEdgβ€˜πΊ))
11 elrnrexdm 7091 . . . . . . . . . . . . . 14 (Fun (iEdgβ€˜πΊ) β†’ ({(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran (iEdgβ€˜πΊ) β†’ βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} = ((iEdgβ€˜πΊ)β€˜π‘₯)))
12 eqcom 2740 . . . . . . . . . . . . . . 15 (((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ↔ {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} = ((iEdgβ€˜πΊ)β€˜π‘₯))
1312rexbii 3095 . . . . . . . . . . . . . 14 (βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ↔ βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} = ((iEdgβ€˜πΊ)β€˜π‘₯))
1411, 13syl6ibr 252 . . . . . . . . . . . . 13 (Fun (iEdgβ€˜πΊ) β†’ ({(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran (iEdgβ€˜πΊ) β†’ βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
1510, 14syl 17 . . . . . . . . . . . 12 (((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ UPGraph) β†’ ({(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran (iEdgβ€˜πΊ) β†’ βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
165, 15biimtrid 241 . . . . . . . . . . 11 (((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ UPGraph) β†’ ({(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
1716ralimdv 3170 . . . . . . . . . 10 (((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝐺 ∈ UPGraph) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
1817ex 414 . . . . . . . . 9 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ (𝐺 ∈ UPGraph β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
1918com23 86 . . . . . . . 8 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ (𝐺 ∈ UPGraph β†’ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
20193impia 1118 . . . . . . 7 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) β†’ (𝐺 ∈ UPGraph β†’ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
2120impcom 409 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})
22 ovex 7442 . . . . . . 7 (0..^((β™―β€˜π‘ƒ) βˆ’ 1)) ∈ V
23 fvex 6905 . . . . . . . 8 (iEdgβ€˜πΊ) ∈ V
2423dmex 7902 . . . . . . 7 dom (iEdgβ€˜πΊ) ∈ V
25 fveqeq2 6901 . . . . . . 7 (π‘₯ = (π‘“β€˜π‘–) β†’ (((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ↔ ((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
2622, 24, 25ac6 10475 . . . . . 6 (βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))βˆƒπ‘₯ ∈ dom (iEdgβ€˜πΊ)((iEdgβ€˜πΊ)β€˜π‘₯) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} β†’ βˆƒπ‘“(𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
2721, 26syl 17 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ βˆƒπ‘“(𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
28 iswrdi 14468 . . . . . . . . . 10 (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ 𝑓 ∈ Word dom (iEdgβ€˜πΊ))
2928adantr 482 . . . . . . . . 9 ((𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) β†’ 𝑓 ∈ Word dom (iEdgβ€˜πΊ))
3029adantl 483 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})) β†’ 𝑓 ∈ Word dom (iEdgβ€˜πΊ))
31 len0nnbi 14501 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word (Vtxβ€˜πΊ) β†’ (𝑃 β‰  βˆ… ↔ (β™―β€˜π‘ƒ) ∈ β„•))
3231biimpac 480 . . . . . . . . . . . . . 14 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ (β™―β€˜π‘ƒ) ∈ β„•)
33 wrdf 14469 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word (Vtxβ€˜πΊ) β†’ 𝑃:(0..^(β™―β€˜π‘ƒ))⟢(Vtxβ€˜πΊ))
34 nnz 12579 . . . . . . . . . . . . . . . . . . . . . 22 ((β™―β€˜π‘ƒ) ∈ β„• β†’ (β™―β€˜π‘ƒ) ∈ β„€)
35 fzoval 13633 . . . . . . . . . . . . . . . . . . . . . 22 ((β™―β€˜π‘ƒ) ∈ β„€ β†’ (0..^(β™―β€˜π‘ƒ)) = (0...((β™―β€˜π‘ƒ) βˆ’ 1)))
3634, 35syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((β™―β€˜π‘ƒ) ∈ β„• β†’ (0..^(β™―β€˜π‘ƒ)) = (0...((β™―β€˜π‘ƒ) βˆ’ 1)))
3736adantr 482 . . . . . . . . . . . . . . . . . . . 20 (((β™―β€˜π‘ƒ) ∈ β„• ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ (0..^(β™―β€˜π‘ƒ)) = (0...((β™―β€˜π‘ƒ) βˆ’ 1)))
38 nnm1nn0 12513 . . . . . . . . . . . . . . . . . . . . . . 23 ((β™―β€˜π‘ƒ) ∈ β„• β†’ ((β™―β€˜π‘ƒ) βˆ’ 1) ∈ β„•0)
39 fnfzo0hash 14409 . . . . . . . . . . . . . . . . . . . . . . 23 ((((β™―β€˜π‘ƒ) βˆ’ 1) ∈ β„•0 ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ (β™―β€˜π‘“) = ((β™―β€˜π‘ƒ) βˆ’ 1))
4038, 39sylan 581 . . . . . . . . . . . . . . . . . . . . . 22 (((β™―β€˜π‘ƒ) ∈ β„• ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ (β™―β€˜π‘“) = ((β™―β€˜π‘ƒ) βˆ’ 1))
4140eqcomd 2739 . . . . . . . . . . . . . . . . . . . . 21 (((β™―β€˜π‘ƒ) ∈ β„• ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ ((β™―β€˜π‘ƒ) βˆ’ 1) = (β™―β€˜π‘“))
4241oveq2d 7425 . . . . . . . . . . . . . . . . . . . 20 (((β™―β€˜π‘ƒ) ∈ β„• ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ (0...((β™―β€˜π‘ƒ) βˆ’ 1)) = (0...(β™―β€˜π‘“)))
4337, 42eqtrd 2773 . . . . . . . . . . . . . . . . . . 19 (((β™―β€˜π‘ƒ) ∈ β„• ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ (0..^(β™―β€˜π‘ƒ)) = (0...(β™―β€˜π‘“)))
4443feq2d 6704 . . . . . . . . . . . . . . . . . 18 (((β™―β€˜π‘ƒ) ∈ β„• ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ (𝑃:(0..^(β™―β€˜π‘ƒ))⟢(Vtxβ€˜πΊ) ↔ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ)))
4544biimpcd 248 . . . . . . . . . . . . . . . . 17 (𝑃:(0..^(β™―β€˜π‘ƒ))⟢(Vtxβ€˜πΊ) β†’ (((β™―β€˜π‘ƒ) ∈ β„• ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ)))
4645expd 417 . . . . . . . . . . . . . . . 16 (𝑃:(0..^(β™―β€˜π‘ƒ))⟢(Vtxβ€˜πΊ) β†’ ((β™―β€˜π‘ƒ) ∈ β„• β†’ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ))))
4733, 46syl 17 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word (Vtxβ€˜πΊ) β†’ ((β™―β€˜π‘ƒ) ∈ β„• β†’ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ))))
4847adantl 483 . . . . . . . . . . . . . 14 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ ((β™―β€˜π‘ƒ) ∈ β„• β†’ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ))))
4932, 48mpd 15 . . . . . . . . . . . . 13 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ)))
50493adant3 1133 . . . . . . . . . . . 12 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) β†’ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ)))
5150adantl 483 . . . . . . . . . . 11 ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ)))
5251com12 32 . . . . . . . . . 10 (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ)))
5352adantr 482 . . . . . . . . 9 ((𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) β†’ ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ)))
5453impcom 409 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})) β†’ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ))
55 simpr 486 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) β†’ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})
5632, 40sylan 581 . . . . . . . . . . . . . . . . 17 (((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ (β™―β€˜π‘“) = ((β™―β€˜π‘ƒ) βˆ’ 1))
5756oveq2d 7425 . . . . . . . . . . . . . . . 16 (((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ (0..^(β™―β€˜π‘“)) = (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))
5857ex 414 . . . . . . . . . . . . . . 15 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ)) β†’ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ (0..^(β™―β€˜π‘“)) = (0..^((β™―β€˜π‘ƒ) βˆ’ 1))))
59583adant3 1133 . . . . . . . . . . . . . 14 ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) β†’ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ (0..^(β™―β€˜π‘“)) = (0..^((β™―β€˜π‘ƒ) βˆ’ 1))))
6059adantl 483 . . . . . . . . . . . . 13 ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) β†’ (0..^(β™―β€˜π‘“)) = (0..^((β™―β€˜π‘ƒ) βˆ’ 1))))
6160imp 408 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) β†’ (0..^(β™―β€˜π‘“)) = (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))
6261adantr 482 . . . . . . . . . . 11 ((((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) β†’ (0..^(β™―β€˜π‘“)) = (0..^((β™―β€˜π‘ƒ) βˆ’ 1)))
6362raleqdv 3326 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) β†’ (βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ↔ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
6455, 63mpbird 257 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ 𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ)) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) β†’ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})
6564anasss 468 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})) β†’ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})
6630, 54, 653jca 1129 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) ∧ (𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})) β†’ (𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
6766ex 414 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ ((𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) β†’ (𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
6867eximdv 1921 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ (βˆƒπ‘“(𝑓:(0..^((β™―β€˜π‘ƒ) βˆ’ 1))⟢dom (iEdgβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) β†’ βˆƒπ‘“(𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
6927, 68mpd 15 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ βˆƒπ‘“(𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}))
701, 7upgriswlk 28898 . . . . . 6 (𝐺 ∈ UPGraph β†’ (𝑓(Walksβ€˜πΊ)𝑃 ↔ (𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
7170adantr 482 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ (𝑓(Walksβ€˜πΊ)𝑃 ↔ (𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
7271exbidv 1925 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ (βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃 ↔ βˆƒπ‘“(𝑓 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜πΊ)β€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})))
7369, 72mpbird 257 . . 3 ((𝐺 ∈ UPGraph ∧ (𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃)
7473ex 414 . 2 (𝐺 ∈ UPGraph β†’ ((𝑃 β‰  βˆ… ∧ 𝑃 ∈ Word (Vtxβ€˜πΊ) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘ƒ) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃))
753, 74biimtrid 241 1 (𝐺 ∈ UPGraph β†’ (𝑃 ∈ (WWalksβ€˜πΊ) β†’ βˆƒπ‘“ 𝑓(Walksβ€˜πΊ)𝑃))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107   β‰  wne 2941  βˆ€wral 3062  βˆƒwrex 3071  βˆ…c0 4323  {cpr 4631   class class class wbr 5149  dom cdm 5677  ran crn 5678  Fun wfun 6538  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  0cc0 11110  1c1 11111   + caddc 11113   βˆ’ cmin 11444  β„•cn 12212  β„•0cn0 12472  β„€cz 12558  ...cfz 13484  ..^cfzo 13627  β™―chash 14290  Word cword 14464  Vtxcvtx 28256  iEdgciedg 28257  Edgcedg 28307  UHGraphcuhgr 28316  UPGraphcupgr 28340  Walkscwlks 28853  WWalkscwwlks 29079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-ac2 10458  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-dju 9896  df-card 9934  df-ac 10111  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-xnn0 12545  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-edg 28308  df-uhgr 28318  df-upgr 28342  df-wlks 28856  df-wwlks 29084
This theorem is referenced by:  wlkiswwlkupgr  29132  wlklnwwlklnupgr2  29139
  Copyright terms: Public domain W3C validator