Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elunirn2 Structured version   Visualization version   GIF version

Theorem elunirn2 30890
Description: Condition for the membership in the union of the range of a function. (Contributed by Thierry Arnoux, 13-Nov-2016.)
Assertion
Ref Expression
elunirn2 ((Fun 𝐹𝐵 ∈ (𝐹𝐴)) → 𝐵 ran 𝐹)

Proof of Theorem elunirn2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6788 . . . 4 (𝐵 ∈ (𝐹𝐴) → 𝐴 ∈ dom 𝐹)
2 fveq2 6756 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
32eleq2d 2824 . . . . 5 (𝑥 = 𝐴 → (𝐵 ∈ (𝐹𝑥) ↔ 𝐵 ∈ (𝐹𝐴)))
43rspcev 3552 . . . 4 ((𝐴 ∈ dom 𝐹𝐵 ∈ (𝐹𝐴)) → ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹𝑥))
51, 4mpancom 684 . . 3 (𝐵 ∈ (𝐹𝐴) → ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹𝑥))
65adantl 481 . 2 ((Fun 𝐹𝐵 ∈ (𝐹𝐴)) → ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹𝑥))
7 elunirn 7106 . . 3 (Fun 𝐹 → (𝐵 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹𝑥)))
87adantr 480 . 2 ((Fun 𝐹𝐵 ∈ (𝐹𝐴)) → (𝐵 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐵 ∈ (𝐹𝑥)))
96, 8mpbird 256 1 ((Fun 𝐹𝐵 ∈ (𝐹𝐴)) → 𝐵 ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064   cuni 4836  dom cdm 5580  ran crn 5581  Fun wfun 6412  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  measbasedom  32070  sxbrsigalem0  32138
  Copyright terms: Public domain W3C validator