![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en2i | Structured version Visualization version GIF version |
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004.) |
Ref | Expression |
---|---|
en2i.1 | ⊢ 𝐴 ∈ V |
en2i.2 | ⊢ 𝐵 ∈ V |
en2i.3 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) |
en2i.4 | ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) |
en2i.5 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) |
Ref | Expression |
---|---|
en2i | ⊢ 𝐴 ≈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2i.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 ∈ V) |
3 | en2i.2 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 ∈ V) |
5 | en2i.3 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 → 𝐶 ∈ V)) |
7 | en2i.4 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) | |
8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → (𝑦 ∈ 𝐵 → 𝐷 ∈ V)) |
9 | en2i.5 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) | |
10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) |
11 | 2, 4, 6, 8, 10 | en2d 9036 | . 2 ⊢ (⊤ → 𝐴 ≈ 𝐵) |
12 | 11 | mptru 1546 | 1 ⊢ 𝐴 ≈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 Vcvv 3481 class class class wbr 5151 ≈ cen 8990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-en 8994 |
This theorem is referenced by: xpsnen 9103 xpassen 9114 |
Copyright terms: Public domain | W3C validator |