MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2i Structured version   Visualization version   GIF version

Theorem en2i 8851
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004.)
Hypotheses
Ref Expression
en2i.1 𝐴 ∈ V
en2i.2 𝐵 ∈ V
en2i.3 (𝑥𝐴𝐶 ∈ V)
en2i.4 (𝑦𝐵𝐷 ∈ V)
en2i.5 ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷))
Assertion
Ref Expression
en2i 𝐴𝐵
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem en2i
StepHypRef Expression
1 en2i.1 . . . 4 𝐴 ∈ V
21a1i 11 . . 3 (⊤ → 𝐴 ∈ V)
3 en2i.2 . . . 4 𝐵 ∈ V
43a1i 11 . . 3 (⊤ → 𝐵 ∈ V)
5 en2i.3 . . . 4 (𝑥𝐴𝐶 ∈ V)
65a1i 11 . . 3 (⊤ → (𝑥𝐴𝐶 ∈ V))
7 en2i.4 . . . 4 (𝑦𝐵𝐷 ∈ V)
87a1i 11 . . 3 (⊤ → (𝑦𝐵𝐷 ∈ V))
9 en2i.5 . . . 4 ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷))
109a1i 11 . . 3 (⊤ → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
112, 4, 6, 8, 10en2d 8849 . 2 (⊤ → 𝐴𝐵)
1211mptru 1547 1 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wtru 1541  wcel 2105  Vcvv 3441   class class class wbr 5092  cen 8801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-en 8805
This theorem is referenced by:  xpsnen  8920  xpassen  8931
  Copyright terms: Public domain W3C validator