![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en2i | Structured version Visualization version GIF version |
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004.) |
Ref | Expression |
---|---|
en2i.1 | ⊢ 𝐴 ∈ V |
en2i.2 | ⊢ 𝐵 ∈ V |
en2i.3 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) |
en2i.4 | ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) |
en2i.5 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) |
Ref | Expression |
---|---|
en2i | ⊢ 𝐴 ≈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2i.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 ∈ V) |
3 | en2i.2 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 ∈ V) |
5 | en2i.3 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 → 𝐶 ∈ V)) |
7 | en2i.4 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) | |
8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → (𝑦 ∈ 𝐵 → 𝐷 ∈ V)) |
9 | en2i.5 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) | |
10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) |
11 | 2, 4, 6, 8, 10 | en2d 8988 | . 2 ⊢ (⊤ → 𝐴 ≈ 𝐵) |
12 | 11 | mptru 1546 | 1 ⊢ 𝐴 ≈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ⊤wtru 1540 ∈ wcel 2104 Vcvv 3472 class class class wbr 5149 ≈ cen 8940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-en 8944 |
This theorem is referenced by: xpsnen 9059 xpassen 9070 |
Copyright terms: Public domain | W3C validator |