Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > en2i | Structured version Visualization version GIF version |
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004.) |
Ref | Expression |
---|---|
en2i.1 | ⊢ 𝐴 ∈ V |
en2i.2 | ⊢ 𝐵 ∈ V |
en2i.3 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) |
en2i.4 | ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) |
en2i.5 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) |
Ref | Expression |
---|---|
en2i | ⊢ 𝐴 ≈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2i.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 ∈ V) |
3 | en2i.2 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 ∈ V) |
5 | en2i.3 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 → 𝐶 ∈ V)) |
7 | en2i.4 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) | |
8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → (𝑦 ∈ 𝐵 → 𝐷 ∈ V)) |
9 | en2i.5 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) | |
10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) |
11 | 2, 4, 6, 8, 10 | en2d 8747 | . 2 ⊢ (⊤ → 𝐴 ≈ 𝐵) |
12 | 11 | mptru 1548 | 1 ⊢ 𝐴 ≈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2109 Vcvv 3430 class class class wbr 5078 ≈ cen 8704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-en 8708 |
This theorem is referenced by: xpsnen 8812 xpassen 8822 |
Copyright terms: Public domain | W3C validator |