MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2i Structured version   Visualization version   GIF version

Theorem en2i 9052
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004.)
Hypotheses
Ref Expression
en2i.1 𝐴 ∈ V
en2i.2 𝐵 ∈ V
en2i.3 (𝑥𝐴𝐶 ∈ V)
en2i.4 (𝑦𝐵𝐷 ∈ V)
en2i.5 ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷))
Assertion
Ref Expression
en2i 𝐴𝐵
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem en2i
StepHypRef Expression
1 en2i.1 . . . 4 𝐴 ∈ V
21a1i 11 . . 3 (⊤ → 𝐴 ∈ V)
3 en2i.2 . . . 4 𝐵 ∈ V
43a1i 11 . . 3 (⊤ → 𝐵 ∈ V)
5 en2i.3 . . . 4 (𝑥𝐴𝐶 ∈ V)
65a1i 11 . . 3 (⊤ → (𝑥𝐴𝐶 ∈ V))
7 en2i.4 . . . 4 (𝑦𝐵𝐷 ∈ V)
87a1i 11 . . 3 (⊤ → (𝑦𝐵𝐷 ∈ V))
9 en2i.5 . . . 4 ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷))
109a1i 11 . . 3 (⊤ → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
112, 4, 6, 8, 10en2d 9050 . 2 (⊤ → 𝐴𝐵)
1211mptru 1544 1 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2108  Vcvv 3488   class class class wbr 5166  cen 9002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-en 9006
This theorem is referenced by:  xpsnen  9123  xpassen  9134
  Copyright terms: Public domain W3C validator