| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en2i | Structured version Visualization version GIF version | ||
| Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004.) |
| Ref | Expression |
|---|---|
| en2i.1 | ⊢ 𝐴 ∈ V |
| en2i.2 | ⊢ 𝐵 ∈ V |
| en2i.3 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) |
| en2i.4 | ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) |
| en2i.5 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) |
| Ref | Expression |
|---|---|
| en2i | ⊢ 𝐴 ≈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2i.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 ∈ V) |
| 3 | en2i.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 ∈ V) |
| 5 | en2i.3 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 → 𝐶 ∈ V)) |
| 7 | en2i.4 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → (𝑦 ∈ 𝐵 → 𝐷 ∈ V)) |
| 9 | en2i.5 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) |
| 11 | 2, 4, 6, 8, 10 | en2d 8959 | . 2 ⊢ (⊤ → 𝐴 ≈ 𝐵) |
| 12 | 11 | mptru 1547 | 1 ⊢ 𝐴 ≈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-en 8919 |
| This theorem is referenced by: xpsnen 9025 xpassen 9035 |
| Copyright terms: Public domain | W3C validator |