Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > en2i | Structured version Visualization version GIF version |
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004.) |
Ref | Expression |
---|---|
en2i.1 | ⊢ 𝐴 ∈ V |
en2i.2 | ⊢ 𝐵 ∈ V |
en2i.3 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) |
en2i.4 | ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) |
en2i.5 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) |
Ref | Expression |
---|---|
en2i | ⊢ 𝐴 ≈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2i.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 ∈ V) |
3 | en2i.2 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 ∈ V) |
5 | en2i.3 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 → 𝐶 ∈ V)) |
7 | en2i.4 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) | |
8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → (𝑦 ∈ 𝐵 → 𝐷 ∈ V)) |
9 | en2i.5 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) | |
10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) |
11 | 2, 4, 6, 8, 10 | en2d 8849 | . 2 ⊢ (⊤ → 𝐴 ≈ 𝐵) |
12 | 11 | mptru 1547 | 1 ⊢ 𝐴 ≈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ⊤wtru 1541 ∈ wcel 2105 Vcvv 3441 class class class wbr 5092 ≈ cen 8801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-en 8805 |
This theorem is referenced by: xpsnen 8920 xpassen 8931 |
Copyright terms: Public domain | W3C validator |