| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en2i | Structured version Visualization version GIF version | ||
| Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004.) |
| Ref | Expression |
|---|---|
| en2i.1 | ⊢ 𝐴 ∈ V |
| en2i.2 | ⊢ 𝐵 ∈ V |
| en2i.3 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) |
| en2i.4 | ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) |
| en2i.5 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) |
| Ref | Expression |
|---|---|
| en2i | ⊢ 𝐴 ≈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2i.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 ∈ V) |
| 3 | en2i.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 ∈ V) |
| 5 | en2i.3 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ V) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 → 𝐶 ∈ V)) |
| 7 | en2i.4 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ V) | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → (𝑦 ∈ 𝐵 → 𝐷 ∈ V)) |
| 9 | en2i.5 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) |
| 11 | 2, 4, 6, 8, 10 | en2d 9009 | . 2 ⊢ (⊤ → 𝐴 ≈ 𝐵) |
| 12 | 11 | mptru 1546 | 1 ⊢ 𝐴 ≈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 Vcvv 3463 class class class wbr 5123 ≈ cen 8963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-en 8967 |
| This theorem is referenced by: xpsnen 9076 xpassen 9087 |
| Copyright terms: Public domain | W3C validator |