MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2i Structured version   Visualization version   GIF version

Theorem en2i 8992
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004.)
Hypotheses
Ref Expression
en2i.1 𝐴 ∈ V
en2i.2 𝐵 ∈ V
en2i.3 (𝑥𝐴𝐶 ∈ V)
en2i.4 (𝑦𝐵𝐷 ∈ V)
en2i.5 ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷))
Assertion
Ref Expression
en2i 𝐴𝐵
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem en2i
StepHypRef Expression
1 en2i.1 . . . 4 𝐴 ∈ V
21a1i 11 . . 3 (⊤ → 𝐴 ∈ V)
3 en2i.2 . . . 4 𝐵 ∈ V
43a1i 11 . . 3 (⊤ → 𝐵 ∈ V)
5 en2i.3 . . . 4 (𝑥𝐴𝐶 ∈ V)
65a1i 11 . . 3 (⊤ → (𝑥𝐴𝐶 ∈ V))
7 en2i.4 . . . 4 (𝑦𝐵𝐷 ∈ V)
87a1i 11 . . 3 (⊤ → (𝑦𝐵𝐷 ∈ V))
9 en2i.5 . . . 4 ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷))
109a1i 11 . . 3 (⊤ → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
112, 4, 6, 8, 10en2d 8990 . 2 (⊤ → 𝐴𝐵)
1211mptru 1547 1 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wtru 1541  wcel 2105  Vcvv 3473   class class class wbr 5148  cen 8942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-en 8946
This theorem is referenced by:  xpsnen  9061  xpassen  9072
  Copyright terms: Public domain W3C validator