| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en2d | Structured version Visualization version GIF version | ||
| Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by AV, 4-Aug-2024.) |
| Ref | Expression |
|---|---|
| en2d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| en2d.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| en2d.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑋)) |
| en2d.4 | ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝑌)) |
| en2d.5 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) |
| Ref | Expression |
|---|---|
| en2d | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | en2d.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 4 | en2d.3 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑋)) | |
| 5 | 4 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑋) |
| 6 | en2d.4 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝑌)) | |
| 7 | 6 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑌) |
| 8 | en2d.5 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) | |
| 9 | 3, 5, 7, 8 | f1od 7598 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1-onto→𝐵) |
| 10 | f1oen2g 8891 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
| 11 | 1, 2, 9, 10 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ↦ cmpt 5172 –1-1-onto→wf1o 6480 ≈ cen 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-en 8870 |
| This theorem is referenced by: en2i 8912 mapsnend 8958 snmapen 8960 gicsubgen 19189 lzenom 42802 |
| Copyright terms: Public domain | W3C validator |