MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2d Structured version   Visualization version   GIF version

Theorem en2d 8990
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by AV, 4-Aug-2024.)
Hypotheses
Ref Expression
en2d.1 (𝜑𝐴𝑉)
en2d.2 (𝜑𝐵𝑊)
en2d.3 (𝜑 → (𝑥𝐴𝐶𝑋))
en2d.4 (𝜑 → (𝑦𝐵𝐷𝑌))
en2d.5 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
Assertion
Ref Expression
en2d (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem en2d
StepHypRef Expression
1 en2d.1 . 2 (𝜑𝐴𝑉)
2 en2d.2 . 2 (𝜑𝐵𝑊)
3 eqid 2731 . . 3 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
4 en2d.3 . . . 4 (𝜑 → (𝑥𝐴𝐶𝑋))
54imp 406 . . 3 ((𝜑𝑥𝐴) → 𝐶𝑋)
6 en2d.4 . . . 4 (𝜑 → (𝑦𝐵𝐷𝑌))
76imp 406 . . 3 ((𝜑𝑦𝐵) → 𝐷𝑌)
8 en2d.5 . . 3 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
93, 5, 7, 8f1od 7662 . 2 (𝜑 → (𝑥𝐴𝐶):𝐴1-1-onto𝐵)
10 f1oen2g 8970 . 2 ((𝐴𝑉𝐵𝑊 ∧ (𝑥𝐴𝐶):𝐴1-1-onto𝐵) → 𝐴𝐵)
111, 2, 9, 10syl3anc 1370 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105   class class class wbr 5148  cmpt 5231  1-1-ontowf1o 6542  cen 8942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-en 8946
This theorem is referenced by:  en2i  8992  mapsnend  9042  snmapen  9044  gicsubgen  19200  lzenom  41971
  Copyright terms: Public domain W3C validator