| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en3d | Structured version Visualization version GIF version | ||
| Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by AV, 4-Aug-2024.) |
| Ref | Expression |
|---|---|
| en3d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| en3d.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| en3d.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| en3d.4 | ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴)) |
| en3d.5 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶))) |
| Ref | Expression |
|---|---|
| en3d | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en3d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | en3d.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 4 | en3d.3 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
| 5 | 4 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
| 6 | en3d.4 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴)) | |
| 7 | 6 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝐴) |
| 8 | en3d.5 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶))) | |
| 9 | 8 | imp 406 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) |
| 10 | 3, 5, 7, 9 | f1o2d 7646 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1-onto→𝐵) |
| 11 | f1oen2g 8943 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
| 12 | 1, 2, 10, 11 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ↦ cmpt 5191 –1-1-onto→wf1o 6513 ≈ cen 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-en 8922 |
| This theorem is referenced by: en3i 8965 fundmen 9005 mapen 9111 mapxpen 9113 mapunen 9116 ssenen 9121 fzen 13509 hashbclem 14424 hashfacen 14426 hashf1lem1 14427 hashdvds 16752 |
| Copyright terms: Public domain | W3C validator |