MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en3d Structured version   Visualization version   GIF version

Theorem en3d 8963
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by AV, 4-Aug-2024.)
Hypotheses
Ref Expression
en3d.1 (𝜑𝐴𝑉)
en3d.2 (𝜑𝐵𝑊)
en3d.3 (𝜑 → (𝑥𝐴𝐶𝐵))
en3d.4 (𝜑 → (𝑦𝐵𝐷𝐴))
en3d.5 (𝜑 → ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶)))
Assertion
Ref Expression
en3d (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem en3d
StepHypRef Expression
1 en3d.1 . 2 (𝜑𝐴𝑉)
2 en3d.2 . 2 (𝜑𝐵𝑊)
3 eqid 2730 . . 3 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
4 en3d.3 . . . 4 (𝜑 → (𝑥𝐴𝐶𝐵))
54imp 406 . . 3 ((𝜑𝑥𝐴) → 𝐶𝐵)
6 en3d.4 . . . 4 (𝜑 → (𝑦𝐵𝐷𝐴))
76imp 406 . . 3 ((𝜑𝑦𝐵) → 𝐷𝐴)
8 en3d.5 . . . 4 (𝜑 → ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶)))
98imp 406 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
103, 5, 7, 9f1o2d 7646 . 2 (𝜑 → (𝑥𝐴𝐶):𝐴1-1-onto𝐵)
11 f1oen2g 8943 . 2 ((𝐴𝑉𝐵𝑊 ∧ (𝑥𝐴𝐶):𝐴1-1-onto𝐵) → 𝐴𝐵)
121, 2, 10, 11syl3anc 1373 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  cmpt 5191  1-1-ontowf1o 6513  cen 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-en 8922
This theorem is referenced by:  en3i  8965  fundmen  9005  mapen  9111  mapxpen  9113  mapunen  9116  ssenen  9121  fzen  13509  hashbclem  14424  hashfacen  14426  hashf1lem1  14427  hashdvds  16752
  Copyright terms: Public domain W3C validator