MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en3d Structured version   Visualization version   GIF version

Theorem en3d 8230
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
en3d.1 (𝜑𝐴 ∈ V)
en3d.2 (𝜑𝐵 ∈ V)
en3d.3 (𝜑 → (𝑥𝐴𝐶𝐵))
en3d.4 (𝜑 → (𝑦𝐵𝐷𝐴))
en3d.5 (𝜑 → ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶)))
Assertion
Ref Expression
en3d (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem en3d
StepHypRef Expression
1 en3d.1 . 2 (𝜑𝐴 ∈ V)
2 en3d.2 . 2 (𝜑𝐵 ∈ V)
3 eqid 2797 . . 3 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
4 en3d.3 . . . 4 (𝜑 → (𝑥𝐴𝐶𝐵))
54imp 396 . . 3 ((𝜑𝑥𝐴) → 𝐶𝐵)
6 en3d.4 . . . 4 (𝜑 → (𝑦𝐵𝐷𝐴))
76imp 396 . . 3 ((𝜑𝑦𝐵) → 𝐷𝐴)
8 en3d.5 . . . 4 (𝜑 → ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶)))
98imp 396 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
103, 5, 7, 9f1o2d 7119 . 2 (𝜑 → (𝑥𝐴𝐶):𝐴1-1-onto𝐵)
11 f1oen2g 8210 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ (𝑥𝐴𝐶):𝐴1-1-onto𝐵) → 𝐴𝐵)
121, 2, 10, 11syl3anc 1491 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  Vcvv 3383   class class class wbr 4841  cmpt 4920  1-1-ontowf1o 6098  cen 8190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-en 8194
This theorem is referenced by:  en3i  8232  fundmen  8267  mapen  8364  mapxpen  8366  mapunen  8369  ssenen  8374  fzen  12608  hashbclem  13481  hashfacen  13483  hashf1lem1  13484  hashdvds  15810  sylow2a  18344  lsmhash  18428  subfacp1lem3  31673  subfacp1lem5  31675
  Copyright terms: Public domain W3C validator