| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en3i | Structured version Visualization version GIF version | ||
| Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 19-Jul-2004.) |
| Ref | Expression |
|---|---|
| en3i.1 | ⊢ 𝐴 ∈ V |
| en3i.2 | ⊢ 𝐵 ∈ V |
| en3i.3 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
| en3i.4 | ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴) |
| en3i.5 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) |
| Ref | Expression |
|---|---|
| en3i | ⊢ 𝐴 ≈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en3i.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 ∈ V) |
| 3 | en3i.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 ∈ V) |
| 5 | en3i.3 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| 7 | en3i.4 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴) | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → (𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴)) |
| 9 | en3i.5 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶))) |
| 11 | 2, 4, 6, 8, 10 | en3d 8966 | . 2 ⊢ (⊤ → 𝐴 ≈ 𝐵) |
| 12 | 11 | mptru 1547 | 1 ⊢ 𝐴 ≈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3455 class class class wbr 5115 ≈ cen 8919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-en 8923 |
| This theorem is referenced by: xpmapenlem 9121 nn0ennn 13954 |
| Copyright terms: Public domain | W3C validator |