MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en3i Structured version   Visualization version   GIF version

Theorem en3i 8734
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 19-Jul-2004.)
Hypotheses
Ref Expression
en3i.1 𝐴 ∈ V
en3i.2 𝐵 ∈ V
en3i.3 (𝑥𝐴𝐶𝐵)
en3i.4 (𝑦𝐵𝐷𝐴)
en3i.5 ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶))
Assertion
Ref Expression
en3i 𝐴𝐵
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem en3i
StepHypRef Expression
1 en3i.1 . . . 4 𝐴 ∈ V
21a1i 11 . . 3 (⊤ → 𝐴 ∈ V)
3 en3i.2 . . . 4 𝐵 ∈ V
43a1i 11 . . 3 (⊤ → 𝐵 ∈ V)
5 en3i.3 . . . 4 (𝑥𝐴𝐶𝐵)
65a1i 11 . . 3 (⊤ → (𝑥𝐴𝐶𝐵))
7 en3i.4 . . . 4 (𝑦𝐵𝐷𝐴)
87a1i 11 . . 3 (⊤ → (𝑦𝐵𝐷𝐴))
9 en3i.5 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶))
109a1i 11 . . 3 (⊤ → ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶)))
112, 4, 6, 8, 10en3d 8732 . 2 (⊤ → 𝐴𝐵)
1211mptru 1546 1 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wtru 1540  wcel 2108  Vcvv 3422   class class class wbr 5070  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-en 8692
This theorem is referenced by:  xpmapenlem  8880  nn0ennn  13627
  Copyright terms: Public domain W3C validator