MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en3i Structured version   Visualization version   GIF version

Theorem en3i 8913
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 19-Jul-2004.)
Hypotheses
Ref Expression
en3i.1 𝐴 ∈ V
en3i.2 𝐵 ∈ V
en3i.3 (𝑥𝐴𝐶𝐵)
en3i.4 (𝑦𝐵𝐷𝐴)
en3i.5 ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶))
Assertion
Ref Expression
en3i 𝐴𝐵
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem en3i
StepHypRef Expression
1 en3i.1 . . . 4 𝐴 ∈ V
21a1i 11 . . 3 (⊤ → 𝐴 ∈ V)
3 en3i.2 . . . 4 𝐵 ∈ V
43a1i 11 . . 3 (⊤ → 𝐵 ∈ V)
5 en3i.3 . . . 4 (𝑥𝐴𝐶𝐵)
65a1i 11 . . 3 (⊤ → (𝑥𝐴𝐶𝐵))
7 en3i.4 . . . 4 (𝑦𝐵𝐷𝐴)
87a1i 11 . . 3 (⊤ → (𝑦𝐵𝐷𝐴))
9 en3i.5 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶))
109a1i 11 . . 3 (⊤ → ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶)))
112, 4, 6, 8, 10en3d 8911 . 2 (⊤ → 𝐴𝐵)
1211mptru 1548 1 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2111  Vcvv 3436   class class class wbr 5089  cen 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-en 8870
This theorem is referenced by:  xpmapenlem  9057  nn0ennn  13886
  Copyright terms: Public domain W3C validator