MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en3i Structured version   Visualization version   GIF version

Theorem en3i 8939
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 19-Jul-2004.)
Hypotheses
Ref Expression
en3i.1 𝐴 ∈ V
en3i.2 𝐵 ∈ V
en3i.3 (𝑥𝐴𝐶𝐵)
en3i.4 (𝑦𝐵𝐷𝐴)
en3i.5 ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶))
Assertion
Ref Expression
en3i 𝐴𝐵
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem en3i
StepHypRef Expression
1 en3i.1 . . . 4 𝐴 ∈ V
21a1i 11 . . 3 (⊤ → 𝐴 ∈ V)
3 en3i.2 . . . 4 𝐵 ∈ V
43a1i 11 . . 3 (⊤ → 𝐵 ∈ V)
5 en3i.3 . . . 4 (𝑥𝐴𝐶𝐵)
65a1i 11 . . 3 (⊤ → (𝑥𝐴𝐶𝐵))
7 en3i.4 . . . 4 (𝑦𝐵𝐷𝐴)
87a1i 11 . . 3 (⊤ → (𝑦𝐵𝐷𝐴))
9 en3i.5 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶))
109a1i 11 . . 3 (⊤ → ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶)))
112, 4, 6, 8, 10en3d 8937 . 2 (⊤ → 𝐴𝐵)
1211mptru 1547 1 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  Vcvv 3444   class class class wbr 5102  cen 8892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-en 8896
This theorem is referenced by:  xpmapenlem  9085  nn0ennn  13920
  Copyright terms: Public domain W3C validator