Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islln2a Structured version   Visualization version   GIF version

Theorem islln2a 37531
Description: The predicate "is a lattice line" in terms of atoms. (Contributed by NM, 15-Jul-2012.)
Hypotheses
Ref Expression
islln2a.j = (join‘𝐾)
islln2a.a 𝐴 = (Atoms‘𝐾)
islln2a.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
islln2a ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃 𝑄) ∈ 𝑁𝑃𝑄))

Proof of Theorem islln2a
StepHypRef Expression
1 oveq1 7282 . . . . . 6 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
2 islln2a.j . . . . . . . 8 = (join‘𝐾)
3 islln2a.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
42, 3hlatjidm 37383 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
543adant2 1130 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑄 𝑄) = 𝑄)
61, 5sylan9eqr 2800 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃 = 𝑄) → (𝑃 𝑄) = 𝑄)
7 islln2a.n . . . . . . . . . . 11 𝑁 = (LLines‘𝐾)
83, 7llnneat 37528 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝑁) → ¬ 𝑄𝐴)
98adantlr 712 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑄𝑁) → ¬ 𝑄𝐴)
109ex 413 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑄𝑁 → ¬ 𝑄𝐴))
1110con2d 134 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑄𝐴 → ¬ 𝑄𝑁))
12113impia 1116 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ¬ 𝑄𝑁)
1312adantr 481 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃 = 𝑄) → ¬ 𝑄𝑁)
146, 13eqneltrd 2858 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃 = 𝑄) → ¬ (𝑃 𝑄) ∈ 𝑁)
1514ex 413 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 = 𝑄 → ¬ (𝑃 𝑄) ∈ 𝑁))
1615necon2ad 2958 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃 𝑄) ∈ 𝑁𝑃𝑄))
172, 3, 7llni2 37526 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ 𝑁)
1817ex 413 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 → (𝑃 𝑄) ∈ 𝑁))
1916, 18impbid 211 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃 𝑄) ∈ 𝑁𝑃𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  cfv 6433  (class class class)co 7275  joincjn 18029  Atomscatm 37277  HLchlt 37364  LLinesclln 37505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512
This theorem is referenced by:  cdleme16d  38295
  Copyright terms: Public domain W3C validator