| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islln2a | Structured version Visualization version GIF version | ||
| Description: The predicate "is a lattice line" in terms of atoms. (Contributed by NM, 15-Jul-2012.) |
| Ref | Expression |
|---|---|
| islln2a.j | ⊢ ∨ = (join‘𝐾) |
| islln2a.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| islln2a.n | ⊢ 𝑁 = (LLines‘𝐾) |
| Ref | Expression |
|---|---|
| islln2a | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ∨ 𝑄) ∈ 𝑁 ↔ 𝑃 ≠ 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7348 | . . . . . 6 ⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑄)) | |
| 2 | islln2a.j | . . . . . . . 8 ⊢ ∨ = (join‘𝐾) | |
| 3 | islln2a.a | . . . . . . . 8 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2, 3 | hlatjidm 39387 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑄 ∨ 𝑄) = 𝑄) |
| 5 | 4 | 3adant2 1131 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑄 ∨ 𝑄) = 𝑄) |
| 6 | 1, 5 | sylan9eqr 2787 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 = 𝑄) → (𝑃 ∨ 𝑄) = 𝑄) |
| 7 | islln2a.n | . . . . . . . . . . 11 ⊢ 𝑁 = (LLines‘𝐾) | |
| 8 | 3, 7 | llnneat 39532 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝑁) → ¬ 𝑄 ∈ 𝐴) |
| 9 | 8 | adantlr 715 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ 𝑄 ∈ 𝑁) → ¬ 𝑄 ∈ 𝐴) |
| 10 | 9 | ex 412 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑄 ∈ 𝑁 → ¬ 𝑄 ∈ 𝐴)) |
| 11 | 10 | con2d 134 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑄 ∈ 𝐴 → ¬ 𝑄 ∈ 𝑁)) |
| 12 | 11 | 3impia 1117 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑄 ∈ 𝑁) |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 = 𝑄) → ¬ 𝑄 ∈ 𝑁) |
| 14 | 6, 13 | eqneltrd 2849 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 = 𝑄) → ¬ (𝑃 ∨ 𝑄) ∈ 𝑁) |
| 15 | 14 | ex 412 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 = 𝑄 → ¬ (𝑃 ∨ 𝑄) ∈ 𝑁)) |
| 16 | 15 | necon2ad 2941 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ∨ 𝑄) ∈ 𝑁 → 𝑃 ≠ 𝑄)) |
| 17 | 2, 3, 7 | llni2 39530 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ 𝑁) |
| 18 | 17 | ex 412 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 → (𝑃 ∨ 𝑄) ∈ 𝑁)) |
| 19 | 16, 18 | impbid 212 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ∨ 𝑄) ∈ 𝑁 ↔ 𝑃 ≠ 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ‘cfv 6477 (class class class)co 7341 joincjn 18209 Atomscatm 39281 HLchlt 39368 LLinesclln 39509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-proset 18192 df-poset 18211 df-plt 18226 df-lub 18242 df-glb 18243 df-join 18244 df-meet 18245 df-p0 18321 df-lat 18330 df-clat 18397 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-llines 39516 |
| This theorem is referenced by: cdleme16d 40299 |
| Copyright terms: Public domain | W3C validator |