![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islln2a | Structured version Visualization version GIF version |
Description: The predicate "is a lattice line" in terms of atoms. (Contributed by NM, 15-Jul-2012.) |
Ref | Expression |
---|---|
islln2a.j | ⊢ ∨ = (join‘𝐾) |
islln2a.a | ⊢ 𝐴 = (Atoms‘𝐾) |
islln2a.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
islln2a | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ∨ 𝑄) ∈ 𝑁 ↔ 𝑃 ≠ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7419 | . . . . . 6 ⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑄)) | |
2 | islln2a.j | . . . . . . . 8 ⊢ ∨ = (join‘𝐾) | |
3 | islln2a.a | . . . . . . . 8 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | hlatjidm 38703 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑄 ∨ 𝑄) = 𝑄) |
5 | 4 | 3adant2 1130 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑄 ∨ 𝑄) = 𝑄) |
6 | 1, 5 | sylan9eqr 2793 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 = 𝑄) → (𝑃 ∨ 𝑄) = 𝑄) |
7 | islln2a.n | . . . . . . . . . . 11 ⊢ 𝑁 = (LLines‘𝐾) | |
8 | 3, 7 | llnneat 38849 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝑁) → ¬ 𝑄 ∈ 𝐴) |
9 | 8 | adantlr 712 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ 𝑄 ∈ 𝑁) → ¬ 𝑄 ∈ 𝐴) |
10 | 9 | ex 412 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑄 ∈ 𝑁 → ¬ 𝑄 ∈ 𝐴)) |
11 | 10 | con2d 134 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑄 ∈ 𝐴 → ¬ 𝑄 ∈ 𝑁)) |
12 | 11 | 3impia 1116 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑄 ∈ 𝑁) |
13 | 12 | adantr 480 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 = 𝑄) → ¬ 𝑄 ∈ 𝑁) |
14 | 6, 13 | eqneltrd 2852 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 = 𝑄) → ¬ (𝑃 ∨ 𝑄) ∈ 𝑁) |
15 | 14 | ex 412 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 = 𝑄 → ¬ (𝑃 ∨ 𝑄) ∈ 𝑁)) |
16 | 15 | necon2ad 2954 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ∨ 𝑄) ∈ 𝑁 → 𝑃 ≠ 𝑄)) |
17 | 2, 3, 7 | llni2 38847 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ 𝑁) |
18 | 17 | ex 412 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 → (𝑃 ∨ 𝑄) ∈ 𝑁)) |
19 | 16, 18 | impbid 211 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ∨ 𝑄) ∈ 𝑁 ↔ 𝑃 ≠ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ‘cfv 6543 (class class class)co 7412 joincjn 18274 Atomscatm 38597 HLchlt 38684 LLinesclln 38826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-p0 18388 df-lat 18395 df-clat 18462 df-oposet 38510 df-ol 38512 df-oml 38513 df-covers 38600 df-ats 38601 df-atl 38632 df-cvlat 38656 df-hlat 38685 df-llines 38833 |
This theorem is referenced by: cdleme16d 39616 |
Copyright terms: Public domain | W3C validator |