Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islln2a Structured version   Visualization version   GIF version

Theorem islln2a 39519
Description: The predicate "is a lattice line" in terms of atoms. (Contributed by NM, 15-Jul-2012.)
Hypotheses
Ref Expression
islln2a.j = (join‘𝐾)
islln2a.a 𝐴 = (Atoms‘𝐾)
islln2a.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
islln2a ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃 𝑄) ∈ 𝑁𝑃𝑄))

Proof of Theorem islln2a
StepHypRef Expression
1 oveq1 7438 . . . . . 6 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
2 islln2a.j . . . . . . . 8 = (join‘𝐾)
3 islln2a.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
42, 3hlatjidm 39370 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
543adant2 1132 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑄 𝑄) = 𝑄)
61, 5sylan9eqr 2799 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃 = 𝑄) → (𝑃 𝑄) = 𝑄)
7 islln2a.n . . . . . . . . . . 11 𝑁 = (LLines‘𝐾)
83, 7llnneat 39516 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝑁) → ¬ 𝑄𝐴)
98adantlr 715 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑄𝑁) → ¬ 𝑄𝐴)
109ex 412 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑄𝑁 → ¬ 𝑄𝐴))
1110con2d 134 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑄𝐴 → ¬ 𝑄𝑁))
12113impia 1118 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ¬ 𝑄𝑁)
1312adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃 = 𝑄) → ¬ 𝑄𝑁)
146, 13eqneltrd 2861 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃 = 𝑄) → ¬ (𝑃 𝑄) ∈ 𝑁)
1514ex 412 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 = 𝑄 → ¬ (𝑃 𝑄) ∈ 𝑁))
1615necon2ad 2955 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃 𝑄) ∈ 𝑁𝑃𝑄))
172, 3, 7llni2 39514 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ 𝑁)
1817ex 412 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 → (𝑃 𝑄) ∈ 𝑁))
1916, 18impbid 212 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃 𝑄) ∈ 𝑁𝑃𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  cfv 6561  (class class class)co 7431  joincjn 18357  Atomscatm 39264  HLchlt 39351  LLinesclln 39493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500
This theorem is referenced by:  cdleme16d  40283
  Copyright terms: Public domain W3C validator