![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islln2a | Structured version Visualization version GIF version |
Description: The predicate "is a lattice line" in terms of atoms. (Contributed by NM, 15-Jul-2012.) |
Ref | Expression |
---|---|
islln2a.j | β’ β¨ = (joinβπΎ) |
islln2a.a | β’ π΄ = (AtomsβπΎ) |
islln2a.n | β’ π = (LLinesβπΎ) |
Ref | Expression |
---|---|
islln2a | β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β ((π β¨ π) β π β π β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7416 | . . . . . 6 β’ (π = π β (π β¨ π) = (π β¨ π)) | |
2 | islln2a.j | . . . . . . . 8 β’ β¨ = (joinβπΎ) | |
3 | islln2a.a | . . . . . . . 8 β’ π΄ = (AtomsβπΎ) | |
4 | 2, 3 | hlatjidm 38239 | . . . . . . 7 β’ ((πΎ β HL β§ π β π΄) β (π β¨ π) = π) |
5 | 4 | 3adant2 1132 | . . . . . 6 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) = π) |
6 | 1, 5 | sylan9eqr 2795 | . . . . 5 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ π = π) β (π β¨ π) = π) |
7 | islln2a.n | . . . . . . . . . . 11 β’ π = (LLinesβπΎ) | |
8 | 3, 7 | llnneat 38385 | . . . . . . . . . 10 β’ ((πΎ β HL β§ π β π) β Β¬ π β π΄) |
9 | 8 | adantlr 714 | . . . . . . . . 9 β’ (((πΎ β HL β§ π β π΄) β§ π β π) β Β¬ π β π΄) |
10 | 9 | ex 414 | . . . . . . . 8 β’ ((πΎ β HL β§ π β π΄) β (π β π β Β¬ π β π΄)) |
11 | 10 | con2d 134 | . . . . . . 7 β’ ((πΎ β HL β§ π β π΄) β (π β π΄ β Β¬ π β π)) |
12 | 11 | 3impia 1118 | . . . . . 6 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β Β¬ π β π) |
13 | 12 | adantr 482 | . . . . 5 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ π = π) β Β¬ π β π) |
14 | 6, 13 | eqneltrd 2854 | . . . 4 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ π = π) β Β¬ (π β¨ π) β π) |
15 | 14 | ex 414 | . . 3 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π = π β Β¬ (π β¨ π) β π)) |
16 | 15 | necon2ad 2956 | . 2 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β ((π β¨ π) β π β π β π)) |
17 | 2, 3, 7 | llni2 38383 | . . 3 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ π β π) β (π β¨ π) β π) |
18 | 17 | ex 414 | . 2 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β π β (π β¨ π) β π)) |
19 | 16, 18 | impbid 211 | 1 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β ((π β¨ π) β π β π β π)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 β wne 2941 βcfv 6544 (class class class)co 7409 joincjn 18264 Atomscatm 38133 HLchlt 38220 LLinesclln 38362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-proset 18248 df-poset 18266 df-plt 18283 df-lub 18299 df-glb 18300 df-join 18301 df-meet 18302 df-p0 18378 df-lat 18385 df-clat 18452 df-oposet 38046 df-ol 38048 df-oml 38049 df-covers 38136 df-ats 38137 df-atl 38168 df-cvlat 38192 df-hlat 38221 df-llines 38369 |
This theorem is referenced by: cdleme16d 39152 |
Copyright terms: Public domain | W3C validator |