![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islln2a | Structured version Visualization version GIF version |
Description: The predicate "is a lattice line" in terms of atoms. (Contributed by NM, 15-Jul-2012.) |
Ref | Expression |
---|---|
islln2a.j | β’ β¨ = (joinβπΎ) |
islln2a.a | β’ π΄ = (AtomsβπΎ) |
islln2a.n | β’ π = (LLinesβπΎ) |
Ref | Expression |
---|---|
islln2a | β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β ((π β¨ π) β π β π β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7411 | . . . . . 6 β’ (π = π β (π β¨ π) = (π β¨ π)) | |
2 | islln2a.j | . . . . . . . 8 β’ β¨ = (joinβπΎ) | |
3 | islln2a.a | . . . . . . . 8 β’ π΄ = (AtomsβπΎ) | |
4 | 2, 3 | hlatjidm 38750 | . . . . . . 7 β’ ((πΎ β HL β§ π β π΄) β (π β¨ π) = π) |
5 | 4 | 3adant2 1128 | . . . . . 6 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) = π) |
6 | 1, 5 | sylan9eqr 2788 | . . . . 5 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ π = π) β (π β¨ π) = π) |
7 | islln2a.n | . . . . . . . . . . 11 β’ π = (LLinesβπΎ) | |
8 | 3, 7 | llnneat 38896 | . . . . . . . . . 10 β’ ((πΎ β HL β§ π β π) β Β¬ π β π΄) |
9 | 8 | adantlr 712 | . . . . . . . . 9 β’ (((πΎ β HL β§ π β π΄) β§ π β π) β Β¬ π β π΄) |
10 | 9 | ex 412 | . . . . . . . 8 β’ ((πΎ β HL β§ π β π΄) β (π β π β Β¬ π β π΄)) |
11 | 10 | con2d 134 | . . . . . . 7 β’ ((πΎ β HL β§ π β π΄) β (π β π΄ β Β¬ π β π)) |
12 | 11 | 3impia 1114 | . . . . . 6 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β Β¬ π β π) |
13 | 12 | adantr 480 | . . . . 5 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ π = π) β Β¬ π β π) |
14 | 6, 13 | eqneltrd 2847 | . . . 4 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ π = π) β Β¬ (π β¨ π) β π) |
15 | 14 | ex 412 | . . 3 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π = π β Β¬ (π β¨ π) β π)) |
16 | 15 | necon2ad 2949 | . 2 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β ((π β¨ π) β π β π β π)) |
17 | 2, 3, 7 | llni2 38894 | . . 3 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ π β π) β (π β¨ π) β π) |
18 | 17 | ex 412 | . 2 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β π β (π β¨ π) β π)) |
19 | 16, 18 | impbid 211 | 1 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β ((π β¨ π) β π β π β π)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2934 βcfv 6536 (class class class)co 7404 joincjn 18274 Atomscatm 38644 HLchlt 38731 LLinesclln 38873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-p0 18388 df-lat 18395 df-clat 18462 df-oposet 38557 df-ol 38559 df-oml 38560 df-covers 38647 df-ats 38648 df-atl 38679 df-cvlat 38703 df-hlat 38732 df-llines 38880 |
This theorem is referenced by: cdleme16d 39663 |
Copyright terms: Public domain | W3C validator |