Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islln2a | Structured version Visualization version GIF version |
Description: The predicate "is a lattice line" in terms of atoms. (Contributed by NM, 15-Jul-2012.) |
Ref | Expression |
---|---|
islln2a.j | ⊢ ∨ = (join‘𝐾) |
islln2a.a | ⊢ 𝐴 = (Atoms‘𝐾) |
islln2a.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
islln2a | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ∨ 𝑄) ∈ 𝑁 ↔ 𝑃 ≠ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7278 | . . . . . 6 ⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑄)) | |
2 | islln2a.j | . . . . . . . 8 ⊢ ∨ = (join‘𝐾) | |
3 | islln2a.a | . . . . . . . 8 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | hlatjidm 37379 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑄 ∨ 𝑄) = 𝑄) |
5 | 4 | 3adant2 1130 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑄 ∨ 𝑄) = 𝑄) |
6 | 1, 5 | sylan9eqr 2802 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 = 𝑄) → (𝑃 ∨ 𝑄) = 𝑄) |
7 | islln2a.n | . . . . . . . . . . 11 ⊢ 𝑁 = (LLines‘𝐾) | |
8 | 3, 7 | llnneat 37524 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝑁) → ¬ 𝑄 ∈ 𝐴) |
9 | 8 | adantlr 712 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ 𝑄 ∈ 𝑁) → ¬ 𝑄 ∈ 𝐴) |
10 | 9 | ex 413 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑄 ∈ 𝑁 → ¬ 𝑄 ∈ 𝐴)) |
11 | 10 | con2d 134 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑄 ∈ 𝐴 → ¬ 𝑄 ∈ 𝑁)) |
12 | 11 | 3impia 1116 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑄 ∈ 𝑁) |
13 | 12 | adantr 481 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 = 𝑄) → ¬ 𝑄 ∈ 𝑁) |
14 | 6, 13 | eqneltrd 2860 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 = 𝑄) → ¬ (𝑃 ∨ 𝑄) ∈ 𝑁) |
15 | 14 | ex 413 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 = 𝑄 → ¬ (𝑃 ∨ 𝑄) ∈ 𝑁)) |
16 | 15 | necon2ad 2960 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ∨ 𝑄) ∈ 𝑁 → 𝑃 ≠ 𝑄)) |
17 | 2, 3, 7 | llni2 37522 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ 𝑁) |
18 | 17 | ex 413 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 → (𝑃 ∨ 𝑄) ∈ 𝑁)) |
19 | 16, 18 | impbid 211 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ∨ 𝑄) ∈ 𝑁 ↔ 𝑃 ≠ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ‘cfv 6432 (class class class)co 7271 joincjn 18027 Atomscatm 37273 HLchlt 37360 LLinesclln 37501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-proset 18011 df-poset 18029 df-plt 18046 df-lub 18062 df-glb 18063 df-join 18064 df-meet 18065 df-p0 18141 df-lat 18148 df-clat 18215 df-oposet 37186 df-ol 37188 df-oml 37189 df-covers 37276 df-ats 37277 df-atl 37308 df-cvlat 37332 df-hlat 37361 df-llines 37508 |
This theorem is referenced by: cdleme16d 38291 |
Copyright terms: Public domain | W3C validator |