Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islln2a Structured version   Visualization version   GIF version

Theorem islln2a 37458
Description: The predicate "is a lattice line" in terms of atoms. (Contributed by NM, 15-Jul-2012.)
Hypotheses
Ref Expression
islln2a.j = (join‘𝐾)
islln2a.a 𝐴 = (Atoms‘𝐾)
islln2a.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
islln2a ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃 𝑄) ∈ 𝑁𝑃𝑄))

Proof of Theorem islln2a
StepHypRef Expression
1 oveq1 7262 . . . . . 6 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
2 islln2a.j . . . . . . . 8 = (join‘𝐾)
3 islln2a.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
42, 3hlatjidm 37310 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
543adant2 1129 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑄 𝑄) = 𝑄)
61, 5sylan9eqr 2801 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃 = 𝑄) → (𝑃 𝑄) = 𝑄)
7 islln2a.n . . . . . . . . . . 11 𝑁 = (LLines‘𝐾)
83, 7llnneat 37455 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝑁) → ¬ 𝑄𝐴)
98adantlr 711 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑄𝑁) → ¬ 𝑄𝐴)
109ex 412 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑄𝑁 → ¬ 𝑄𝐴))
1110con2d 134 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑄𝐴 → ¬ 𝑄𝑁))
12113impia 1115 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ¬ 𝑄𝑁)
1312adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃 = 𝑄) → ¬ 𝑄𝑁)
146, 13eqneltrd 2858 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃 = 𝑄) → ¬ (𝑃 𝑄) ∈ 𝑁)
1514ex 412 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 = 𝑄 → ¬ (𝑃 𝑄) ∈ 𝑁))
1615necon2ad 2957 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃 𝑄) ∈ 𝑁𝑃𝑄))
172, 3, 7llni2 37453 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ 𝑁)
1817ex 412 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 → (𝑃 𝑄) ∈ 𝑁))
1916, 18impbid 211 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃 𝑄) ∈ 𝑁𝑃𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  joincjn 17944  Atomscatm 37204  HLchlt 37291  LLinesclln 37432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439
This theorem is referenced by:  cdleme16d  38222
  Copyright terms: Public domain W3C validator