| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sinaover2ne0 | Structured version Visualization version GIF version | ||
| Description: If 𝐴 in (0, 2π) then sin(𝐴 / 2) is not 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| sinaover2ne0 | ⊢ (𝐴 ∈ (0(,)(2 · π)) → (sin‘(𝐴 / 2)) ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore 13275 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 𝐴 ∈ ℝ) | |
| 2 | 1 | recnd 11140 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 𝐴 ∈ ℂ) |
| 3 | 2cnd 12203 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 2 ∈ ℂ) | |
| 4 | picn 26394 | . . . . . 6 ⊢ π ∈ ℂ | |
| 5 | 4 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → π ∈ ℂ) |
| 6 | 2ne0 12229 | . . . . . 6 ⊢ 2 ≠ 0 | |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 2 ≠ 0) |
| 8 | pire 26393 | . . . . . . 7 ⊢ π ∈ ℝ | |
| 9 | pipos 26395 | . . . . . . 7 ⊢ 0 < π | |
| 10 | 8, 9 | gt0ne0ii 11653 | . . . . . 6 ⊢ π ≠ 0 |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → π ≠ 0) |
| 12 | 2, 3, 5, 7, 11 | divdiv1d 11928 | . . . 4 ⊢ (𝐴 ∈ (0(,)(2 · π)) → ((𝐴 / 2) / π) = (𝐴 / (2 · π))) |
| 13 | 0zd 12480 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 0 ∈ ℤ) | |
| 14 | 2re 12199 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 15 | 14, 8 | remulcli 11128 | . . . . . . 7 ⊢ (2 · π) ∈ ℝ |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℝ) |
| 17 | 0xr 11159 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
| 18 | 17 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 0 ∈ ℝ*) |
| 19 | 16 | rexrd 11162 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℝ*) |
| 20 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 𝐴 ∈ (0(,)(2 · π))) | |
| 21 | ioogtlb 45594 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ* ∧ 𝐴 ∈ (0(,)(2 · π))) → 0 < 𝐴) | |
| 22 | 18, 19, 20, 21 | syl3anc 1373 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 0 < 𝐴) |
| 23 | 2pos 12228 | . . . . . . . 8 ⊢ 0 < 2 | |
| 24 | 14, 8, 23, 9 | mulgt0ii 11246 | . . . . . . 7 ⊢ 0 < (2 · π) |
| 25 | 24 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 0 < (2 · π)) |
| 26 | 1, 16, 22, 25 | divgt0d 12057 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 0 < (𝐴 / (2 · π))) |
| 27 | 1rp 12894 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
| 28 | 27 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 1 ∈ ℝ+) |
| 29 | 16, 25 | elrpd 12931 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℝ+) |
| 30 | 2 | div1d 11889 | . . . . . . . 8 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / 1) = 𝐴) |
| 31 | iooltub 45609 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ* ∧ 𝐴 ∈ (0(,)(2 · π))) → 𝐴 < (2 · π)) | |
| 32 | 18, 19, 20, 31 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 𝐴 < (2 · π)) |
| 33 | 30, 32 | eqbrtrd 5111 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / 1) < (2 · π)) |
| 34 | 1, 28, 29, 33 | ltdiv23d 13001 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / (2 · π)) < 1) |
| 35 | 1e0p1 12630 | . . . . . 6 ⊢ 1 = (0 + 1) | |
| 36 | 34, 35 | breqtrdi 5130 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / (2 · π)) < (0 + 1)) |
| 37 | btwnnz 12549 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ 0 < (𝐴 / (2 · π)) ∧ (𝐴 / (2 · π)) < (0 + 1)) → ¬ (𝐴 / (2 · π)) ∈ ℤ) | |
| 38 | 13, 26, 36, 37 | syl3anc 1373 | . . . 4 ⊢ (𝐴 ∈ (0(,)(2 · π)) → ¬ (𝐴 / (2 · π)) ∈ ℤ) |
| 39 | 12, 38 | eqneltrd 2851 | . . 3 ⊢ (𝐴 ∈ (0(,)(2 · π)) → ¬ ((𝐴 / 2) / π) ∈ ℤ) |
| 40 | 2 | halfcld 12366 | . . . 4 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / 2) ∈ ℂ) |
| 41 | sineq0 26460 | . . . 4 ⊢ ((𝐴 / 2) ∈ ℂ → ((sin‘(𝐴 / 2)) = 0 ↔ ((𝐴 / 2) / π) ∈ ℤ)) | |
| 42 | 40, 41 | syl 17 | . . 3 ⊢ (𝐴 ∈ (0(,)(2 · π)) → ((sin‘(𝐴 / 2)) = 0 ↔ ((𝐴 / 2) / π) ∈ ℤ)) |
| 43 | 39, 42 | mtbird 325 | . 2 ⊢ (𝐴 ∈ (0(,)(2 · π)) → ¬ (sin‘(𝐴 / 2)) = 0) |
| 44 | 43 | neqned 2935 | 1 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (sin‘(𝐴 / 2)) ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 ℝ*cxr 11145 < clt 11146 / cdiv 11774 2c2 12180 ℤcz 12468 ℝ+crp 12890 (,)cioo 13245 sincsin 15970 πcpi 15973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-tms 24237 df-cncf 24798 df-limc 25794 df-dv 25795 |
| This theorem is referenced by: fourierdlem43 46247 fourierdlem44 46248 |
| Copyright terms: Public domain | W3C validator |