Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sinaover2ne0 Structured version   Visualization version   GIF version

Theorem sinaover2ne0 45897
Description: If 𝐴 in (0, 2π) then sin(𝐴 / 2) is not 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
sinaover2ne0 (𝐴 ∈ (0(,)(2 · π)) → (sin‘(𝐴 / 2)) ≠ 0)

Proof of Theorem sinaover2ne0
StepHypRef Expression
1 elioore 13392 . . . . . 6 (𝐴 ∈ (0(,)(2 · π)) → 𝐴 ∈ ℝ)
21recnd 11263 . . . . 5 (𝐴 ∈ (0(,)(2 · π)) → 𝐴 ∈ ℂ)
3 2cnd 12318 . . . . 5 (𝐴 ∈ (0(,)(2 · π)) → 2 ∈ ℂ)
4 picn 26419 . . . . . 6 π ∈ ℂ
54a1i 11 . . . . 5 (𝐴 ∈ (0(,)(2 · π)) → π ∈ ℂ)
6 2ne0 12344 . . . . . 6 2 ≠ 0
76a1i 11 . . . . 5 (𝐴 ∈ (0(,)(2 · π)) → 2 ≠ 0)
8 pire 26418 . . . . . . 7 π ∈ ℝ
9 pipos 26420 . . . . . . 7 0 < π
108, 9gt0ne0ii 11773 . . . . . 6 π ≠ 0
1110a1i 11 . . . . 5 (𝐴 ∈ (0(,)(2 · π)) → π ≠ 0)
122, 3, 5, 7, 11divdiv1d 12048 . . . 4 (𝐴 ∈ (0(,)(2 · π)) → ((𝐴 / 2) / π) = (𝐴 / (2 · π)))
13 0zd 12600 . . . . 5 (𝐴 ∈ (0(,)(2 · π)) → 0 ∈ ℤ)
14 2re 12314 . . . . . . . 8 2 ∈ ℝ
1514, 8remulcli 11251 . . . . . . 7 (2 · π) ∈ ℝ
1615a1i 11 . . . . . 6 (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℝ)
17 0xr 11282 . . . . . . . 8 0 ∈ ℝ*
1817a1i 11 . . . . . . 7 (𝐴 ∈ (0(,)(2 · π)) → 0 ∈ ℝ*)
1916rexrd 11285 . . . . . . 7 (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℝ*)
20 id 22 . . . . . . 7 (𝐴 ∈ (0(,)(2 · π)) → 𝐴 ∈ (0(,)(2 · π)))
21 ioogtlb 45524 . . . . . . 7 ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ*𝐴 ∈ (0(,)(2 · π))) → 0 < 𝐴)
2218, 19, 20, 21syl3anc 1373 . . . . . 6 (𝐴 ∈ (0(,)(2 · π)) → 0 < 𝐴)
23 2pos 12343 . . . . . . . 8 0 < 2
2414, 8, 23, 9mulgt0ii 11368 . . . . . . 7 0 < (2 · π)
2524a1i 11 . . . . . 6 (𝐴 ∈ (0(,)(2 · π)) → 0 < (2 · π))
261, 16, 22, 25divgt0d 12177 . . . . 5 (𝐴 ∈ (0(,)(2 · π)) → 0 < (𝐴 / (2 · π)))
27 1rp 13012 . . . . . . . 8 1 ∈ ℝ+
2827a1i 11 . . . . . . 7 (𝐴 ∈ (0(,)(2 · π)) → 1 ∈ ℝ+)
2916, 25elrpd 13048 . . . . . . 7 (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℝ+)
302div1d 12009 . . . . . . . 8 (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / 1) = 𝐴)
31 iooltub 45539 . . . . . . . . 9 ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ*𝐴 ∈ (0(,)(2 · π))) → 𝐴 < (2 · π))
3218, 19, 20, 31syl3anc 1373 . . . . . . . 8 (𝐴 ∈ (0(,)(2 · π)) → 𝐴 < (2 · π))
3330, 32eqbrtrd 5141 . . . . . . 7 (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / 1) < (2 · π))
341, 28, 29, 33ltdiv23d 13118 . . . . . 6 (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / (2 · π)) < 1)
35 1e0p1 12750 . . . . . 6 1 = (0 + 1)
3634, 35breqtrdi 5160 . . . . 5 (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / (2 · π)) < (0 + 1))
37 btwnnz 12669 . . . . 5 ((0 ∈ ℤ ∧ 0 < (𝐴 / (2 · π)) ∧ (𝐴 / (2 · π)) < (0 + 1)) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
3813, 26, 36, 37syl3anc 1373 . . . 4 (𝐴 ∈ (0(,)(2 · π)) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
3912, 38eqneltrd 2854 . . 3 (𝐴 ∈ (0(,)(2 · π)) → ¬ ((𝐴 / 2) / π) ∈ ℤ)
402halfcld 12486 . . . 4 (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / 2) ∈ ℂ)
41 sineq0 26485 . . . 4 ((𝐴 / 2) ∈ ℂ → ((sin‘(𝐴 / 2)) = 0 ↔ ((𝐴 / 2) / π) ∈ ℤ))
4240, 41syl 17 . . 3 (𝐴 ∈ (0(,)(2 · π)) → ((sin‘(𝐴 / 2)) = 0 ↔ ((𝐴 / 2) / π) ∈ ℤ))
4339, 42mtbird 325 . 2 (𝐴 ∈ (0(,)(2 · π)) → ¬ (sin‘(𝐴 / 2)) = 0)
4443neqned 2939 1 (𝐴 ∈ (0(,)(2 · π)) → (sin‘(𝐴 / 2)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  *cxr 11268   < clt 11269   / cdiv 11894  2c2 12295  cz 12588  +crp 13008  (,)cioo 13362  sincsin 16079  πcpi 16082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820
This theorem is referenced by:  fourierdlem43  46179  fourierdlem44  46180
  Copyright terms: Public domain W3C validator