Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sinaover2ne0 Structured version   Visualization version   GIF version

Theorem sinaover2ne0 45869
Description: If 𝐴 in (0, 2π) then sin(𝐴 / 2) is not 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
sinaover2ne0 (𝐴 ∈ (0(,)(2 · π)) → (sin‘(𝐴 / 2)) ≠ 0)

Proof of Theorem sinaover2ne0
StepHypRef Expression
1 elioore 13278 . . . . . 6 (𝐴 ∈ (0(,)(2 · π)) → 𝐴 ∈ ℝ)
21recnd 11143 . . . . 5 (𝐴 ∈ (0(,)(2 · π)) → 𝐴 ∈ ℂ)
3 2cnd 12206 . . . . 5 (𝐴 ∈ (0(,)(2 · π)) → 2 ∈ ℂ)
4 picn 26365 . . . . . 6 π ∈ ℂ
54a1i 11 . . . . 5 (𝐴 ∈ (0(,)(2 · π)) → π ∈ ℂ)
6 2ne0 12232 . . . . . 6 2 ≠ 0
76a1i 11 . . . . 5 (𝐴 ∈ (0(,)(2 · π)) → 2 ≠ 0)
8 pire 26364 . . . . . . 7 π ∈ ℝ
9 pipos 26366 . . . . . . 7 0 < π
108, 9gt0ne0ii 11656 . . . . . 6 π ≠ 0
1110a1i 11 . . . . 5 (𝐴 ∈ (0(,)(2 · π)) → π ≠ 0)
122, 3, 5, 7, 11divdiv1d 11931 . . . 4 (𝐴 ∈ (0(,)(2 · π)) → ((𝐴 / 2) / π) = (𝐴 / (2 · π)))
13 0zd 12483 . . . . 5 (𝐴 ∈ (0(,)(2 · π)) → 0 ∈ ℤ)
14 2re 12202 . . . . . . . 8 2 ∈ ℝ
1514, 8remulcli 11131 . . . . . . 7 (2 · π) ∈ ℝ
1615a1i 11 . . . . . 6 (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℝ)
17 0xr 11162 . . . . . . . 8 0 ∈ ℝ*
1817a1i 11 . . . . . . 7 (𝐴 ∈ (0(,)(2 · π)) → 0 ∈ ℝ*)
1916rexrd 11165 . . . . . . 7 (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℝ*)
20 id 22 . . . . . . 7 (𝐴 ∈ (0(,)(2 · π)) → 𝐴 ∈ (0(,)(2 · π)))
21 ioogtlb 45496 . . . . . . 7 ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ*𝐴 ∈ (0(,)(2 · π))) → 0 < 𝐴)
2218, 19, 20, 21syl3anc 1373 . . . . . 6 (𝐴 ∈ (0(,)(2 · π)) → 0 < 𝐴)
23 2pos 12231 . . . . . . . 8 0 < 2
2414, 8, 23, 9mulgt0ii 11249 . . . . . . 7 0 < (2 · π)
2524a1i 11 . . . . . 6 (𝐴 ∈ (0(,)(2 · π)) → 0 < (2 · π))
261, 16, 22, 25divgt0d 12060 . . . . 5 (𝐴 ∈ (0(,)(2 · π)) → 0 < (𝐴 / (2 · π)))
27 1rp 12897 . . . . . . . 8 1 ∈ ℝ+
2827a1i 11 . . . . . . 7 (𝐴 ∈ (0(,)(2 · π)) → 1 ∈ ℝ+)
2916, 25elrpd 12934 . . . . . . 7 (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℝ+)
302div1d 11892 . . . . . . . 8 (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / 1) = 𝐴)
31 iooltub 45511 . . . . . . . . 9 ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ*𝐴 ∈ (0(,)(2 · π))) → 𝐴 < (2 · π))
3218, 19, 20, 31syl3anc 1373 . . . . . . . 8 (𝐴 ∈ (0(,)(2 · π)) → 𝐴 < (2 · π))
3330, 32eqbrtrd 5114 . . . . . . 7 (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / 1) < (2 · π))
341, 28, 29, 33ltdiv23d 13004 . . . . . 6 (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / (2 · π)) < 1)
35 1e0p1 12633 . . . . . 6 1 = (0 + 1)
3634, 35breqtrdi 5133 . . . . 5 (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / (2 · π)) < (0 + 1))
37 btwnnz 12552 . . . . 5 ((0 ∈ ℤ ∧ 0 < (𝐴 / (2 · π)) ∧ (𝐴 / (2 · π)) < (0 + 1)) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
3813, 26, 36, 37syl3anc 1373 . . . 4 (𝐴 ∈ (0(,)(2 · π)) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
3912, 38eqneltrd 2848 . . 3 (𝐴 ∈ (0(,)(2 · π)) → ¬ ((𝐴 / 2) / π) ∈ ℤ)
402halfcld 12369 . . . 4 (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / 2) ∈ ℂ)
41 sineq0 26431 . . . 4 ((𝐴 / 2) ∈ ℂ → ((sin‘(𝐴 / 2)) = 0 ↔ ((𝐴 / 2) / π) ∈ ℤ))
4240, 41syl 17 . . 3 (𝐴 ∈ (0(,)(2 · π)) → ((sin‘(𝐴 / 2)) = 0 ↔ ((𝐴 / 2) / π) ∈ ℤ))
4339, 42mtbird 325 . 2 (𝐴 ∈ (0(,)(2 · π)) → ¬ (sin‘(𝐴 / 2)) = 0)
4443neqned 2932 1 (𝐴 ∈ (0(,)(2 · π)) → (sin‘(𝐴 / 2)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  *cxr 11148   < clt 11149   / cdiv 11777  2c2 12183  cz 12471  +crp 12893  (,)cioo 13248  sincsin 15970  πcpi 15973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766
This theorem is referenced by:  fourierdlem43  46151  fourierdlem44  46152
  Copyright terms: Public domain W3C validator