Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sinaover2ne0 | Structured version Visualization version GIF version |
Description: If 𝐴 in (0, 2π) then sin(𝐴 / 2) is not 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
sinaover2ne0 | ⊢ (𝐴 ∈ (0(,)(2 · π)) → (sin‘(𝐴 / 2)) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioore 12851 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 𝐴 ∈ ℝ) | |
2 | 1 | recnd 10747 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 𝐴 ∈ ℂ) |
3 | 2cnd 11794 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 2 ∈ ℂ) | |
4 | picn 25204 | . . . . . 6 ⊢ π ∈ ℂ | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → π ∈ ℂ) |
6 | 2ne0 11820 | . . . . . 6 ⊢ 2 ≠ 0 | |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 2 ≠ 0) |
8 | pire 25203 | . . . . . . 7 ⊢ π ∈ ℝ | |
9 | pipos 25205 | . . . . . . 7 ⊢ 0 < π | |
10 | 8, 9 | gt0ne0ii 11254 | . . . . . 6 ⊢ π ≠ 0 |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → π ≠ 0) |
12 | 2, 3, 5, 7, 11 | divdiv1d 11525 | . . . 4 ⊢ (𝐴 ∈ (0(,)(2 · π)) → ((𝐴 / 2) / π) = (𝐴 / (2 · π))) |
13 | 0zd 12074 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 0 ∈ ℤ) | |
14 | 2re 11790 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
15 | 14, 8 | remulcli 10735 | . . . . . . 7 ⊢ (2 · π) ∈ ℝ |
16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℝ) |
17 | 0xr 10766 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
18 | 17 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 0 ∈ ℝ*) |
19 | 16 | rexrd 10769 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℝ*) |
20 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 𝐴 ∈ (0(,)(2 · π))) | |
21 | ioogtlb 42573 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ* ∧ 𝐴 ∈ (0(,)(2 · π))) → 0 < 𝐴) | |
22 | 18, 19, 20, 21 | syl3anc 1372 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 0 < 𝐴) |
23 | 2pos 11819 | . . . . . . . 8 ⊢ 0 < 2 | |
24 | 14, 8, 23, 9 | mulgt0ii 10851 | . . . . . . 7 ⊢ 0 < (2 · π) |
25 | 24 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 0 < (2 · π)) |
26 | 1, 16, 22, 25 | divgt0d 11653 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 0 < (𝐴 / (2 · π))) |
27 | 1rp 12476 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
28 | 27 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 1 ∈ ℝ+) |
29 | 16, 25 | elrpd 12511 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℝ+) |
30 | 2 | div1d 11486 | . . . . . . . 8 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / 1) = 𝐴) |
31 | iooltub 42588 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ* ∧ 𝐴 ∈ (0(,)(2 · π))) → 𝐴 < (2 · π)) | |
32 | 18, 19, 20, 31 | syl3anc 1372 | . . . . . . . 8 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 𝐴 < (2 · π)) |
33 | 30, 32 | eqbrtrd 5052 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / 1) < (2 · π)) |
34 | 1, 28, 29, 33 | ltdiv23d 12581 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / (2 · π)) < 1) |
35 | 1e0p1 12221 | . . . . . 6 ⊢ 1 = (0 + 1) | |
36 | 34, 35 | breqtrdi 5071 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / (2 · π)) < (0 + 1)) |
37 | btwnnz 12139 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ 0 < (𝐴 / (2 · π)) ∧ (𝐴 / (2 · π)) < (0 + 1)) → ¬ (𝐴 / (2 · π)) ∈ ℤ) | |
38 | 13, 26, 36, 37 | syl3anc 1372 | . . . 4 ⊢ (𝐴 ∈ (0(,)(2 · π)) → ¬ (𝐴 / (2 · π)) ∈ ℤ) |
39 | 12, 38 | eqneltrd 2852 | . . 3 ⊢ (𝐴 ∈ (0(,)(2 · π)) → ¬ ((𝐴 / 2) / π) ∈ ℤ) |
40 | 2 | halfcld 11961 | . . . 4 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / 2) ∈ ℂ) |
41 | sineq0 25268 | . . . 4 ⊢ ((𝐴 / 2) ∈ ℂ → ((sin‘(𝐴 / 2)) = 0 ↔ ((𝐴 / 2) / π) ∈ ℤ)) | |
42 | 40, 41 | syl 17 | . . 3 ⊢ (𝐴 ∈ (0(,)(2 · π)) → ((sin‘(𝐴 / 2)) = 0 ↔ ((𝐴 / 2) / π) ∈ ℤ)) |
43 | 39, 42 | mtbird 328 | . 2 ⊢ (𝐴 ∈ (0(,)(2 · π)) → ¬ (sin‘(𝐴 / 2)) = 0) |
44 | 43 | neqned 2941 | 1 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (sin‘(𝐴 / 2)) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 class class class wbr 5030 ‘cfv 6339 (class class class)co 7170 ℂcc 10613 ℝcr 10614 0cc0 10615 1c1 10616 + caddc 10618 · cmul 10620 ℝ*cxr 10752 < clt 10753 / cdiv 11375 2c2 11771 ℤcz 12062 ℝ+crp 12472 (,)cioo 12821 sincsin 15509 πcpi 15512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 ax-addf 10694 ax-mulf 10695 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-of 7425 df-om 7600 df-1st 7714 df-2nd 7715 df-supp 7857 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-2o 8132 df-er 8320 df-map 8439 df-pm 8440 df-ixp 8508 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-fsupp 8907 df-fi 8948 df-sup 8979 df-inf 8980 df-oi 9047 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-q 12431 df-rp 12473 df-xneg 12590 df-xadd 12591 df-xmul 12592 df-ioo 12825 df-ioc 12826 df-ico 12827 df-icc 12828 df-fz 12982 df-fzo 13125 df-fl 13253 df-mod 13329 df-seq 13461 df-exp 13522 df-fac 13726 df-bc 13755 df-hash 13783 df-shft 14516 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-limsup 14918 df-clim 14935 df-rlim 14936 df-sum 15136 df-ef 15513 df-sin 15515 df-cos 15516 df-pi 15518 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-starv 16683 df-sca 16684 df-vsca 16685 df-ip 16686 df-tset 16687 df-ple 16688 df-ds 16690 df-unif 16691 df-hom 16692 df-cco 16693 df-rest 16799 df-topn 16800 df-0g 16818 df-gsum 16819 df-topgen 16820 df-pt 16821 df-prds 16824 df-xrs 16878 df-qtop 16883 df-imas 16884 df-xps 16886 df-mre 16960 df-mrc 16961 df-acs 16963 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-submnd 18073 df-mulg 18343 df-cntz 18565 df-cmn 19026 df-psmet 20209 df-xmet 20210 df-met 20211 df-bl 20212 df-mopn 20213 df-fbas 20214 df-fg 20215 df-cnfld 20218 df-top 21645 df-topon 21662 df-topsp 21684 df-bases 21697 df-cld 21770 df-ntr 21771 df-cls 21772 df-nei 21849 df-lp 21887 df-perf 21888 df-cn 21978 df-cnp 21979 df-haus 22066 df-tx 22313 df-hmeo 22506 df-fil 22597 df-fm 22689 df-flim 22690 df-flf 22691 df-xms 23073 df-ms 23074 df-tms 23075 df-cncf 23630 df-limc 24618 df-dv 24619 |
This theorem is referenced by: fourierdlem43 43233 fourierdlem44 43234 |
Copyright terms: Public domain | W3C validator |