![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sinaover2ne0 | Structured version Visualization version GIF version |
Description: If 𝐴 in (0, 2π) then sin(𝐴 / 2) is not 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
sinaover2ne0 | ⊢ (𝐴 ∈ (0(,)(2 · π)) → (sin‘(𝐴 / 2)) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioore 12492 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 𝐴 ∈ ℝ) | |
2 | 1 | recnd 10384 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 𝐴 ∈ ℂ) |
3 | 2cnd 11428 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 2 ∈ ℂ) | |
4 | picn 24610 | . . . . . 6 ⊢ π ∈ ℂ | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → π ∈ ℂ) |
6 | 2ne0 11461 | . . . . . 6 ⊢ 2 ≠ 0 | |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 2 ≠ 0) |
8 | pire 24609 | . . . . . . 7 ⊢ π ∈ ℝ | |
9 | pipos 24611 | . . . . . . 7 ⊢ 0 < π | |
10 | 8, 9 | gt0ne0ii 10887 | . . . . . 6 ⊢ π ≠ 0 |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → π ≠ 0) |
12 | 2, 3, 5, 7, 11 | divdiv1d 11157 | . . . 4 ⊢ (𝐴 ∈ (0(,)(2 · π)) → ((𝐴 / 2) / π) = (𝐴 / (2 · π))) |
13 | 0zd 11715 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 0 ∈ ℤ) | |
14 | 2re 11424 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
15 | 14, 8 | remulcli 10372 | . . . . . . 7 ⊢ (2 · π) ∈ ℝ |
16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℝ) |
17 | 0xr 10402 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
18 | 17 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 0 ∈ ℝ*) |
19 | 16 | rexrd 10405 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℝ*) |
20 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 𝐴 ∈ (0(,)(2 · π))) | |
21 | ioogtlb 40515 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ* ∧ 𝐴 ∈ (0(,)(2 · π))) → 0 < 𝐴) | |
22 | 18, 19, 20, 21 | syl3anc 1496 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 0 < 𝐴) |
23 | 2pos 11460 | . . . . . . . 8 ⊢ 0 < 2 | |
24 | 14, 8, 23, 9 | mulgt0ii 10488 | . . . . . . 7 ⊢ 0 < (2 · π) |
25 | 24 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 0 < (2 · π)) |
26 | 1, 16, 22, 25 | divgt0d 11288 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 0 < (𝐴 / (2 · π))) |
27 | 1rp 12115 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
28 | 27 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 1 ∈ ℝ+) |
29 | 16, 25 | elrpd 12152 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (2 · π) ∈ ℝ+) |
30 | 2 | div1d 11118 | . . . . . . . 8 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / 1) = 𝐴) |
31 | iooltub 40531 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ* ∧ 𝐴 ∈ (0(,)(2 · π))) → 𝐴 < (2 · π)) | |
32 | 18, 19, 20, 31 | syl3anc 1496 | . . . . . . . 8 ⊢ (𝐴 ∈ (0(,)(2 · π)) → 𝐴 < (2 · π)) |
33 | 30, 32 | eqbrtrd 4894 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / 1) < (2 · π)) |
34 | 1, 28, 29, 33 | ltdiv23d 12222 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / (2 · π)) < 1) |
35 | 1e0p1 11863 | . . . . . 6 ⊢ 1 = (0 + 1) | |
36 | 34, 35 | syl6breq 4913 | . . . . 5 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / (2 · π)) < (0 + 1)) |
37 | btwnnz 11780 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ 0 < (𝐴 / (2 · π)) ∧ (𝐴 / (2 · π)) < (0 + 1)) → ¬ (𝐴 / (2 · π)) ∈ ℤ) | |
38 | 13, 26, 36, 37 | syl3anc 1496 | . . . 4 ⊢ (𝐴 ∈ (0(,)(2 · π)) → ¬ (𝐴 / (2 · π)) ∈ ℤ) |
39 | 12, 38 | eqneltrd 2924 | . . 3 ⊢ (𝐴 ∈ (0(,)(2 · π)) → ¬ ((𝐴 / 2) / π) ∈ ℤ) |
40 | 2 | halfcld 11602 | . . . 4 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (𝐴 / 2) ∈ ℂ) |
41 | sineq0 24672 | . . . 4 ⊢ ((𝐴 / 2) ∈ ℂ → ((sin‘(𝐴 / 2)) = 0 ↔ ((𝐴 / 2) / π) ∈ ℤ)) | |
42 | 40, 41 | syl 17 | . . 3 ⊢ (𝐴 ∈ (0(,)(2 · π)) → ((sin‘(𝐴 / 2)) = 0 ↔ ((𝐴 / 2) / π) ∈ ℤ)) |
43 | 39, 42 | mtbird 317 | . 2 ⊢ (𝐴 ∈ (0(,)(2 · π)) → ¬ (sin‘(𝐴 / 2)) = 0) |
44 | 43 | neqned 3005 | 1 ⊢ (𝐴 ∈ (0(,)(2 · π)) → (sin‘(𝐴 / 2)) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 = wceq 1658 ∈ wcel 2166 ≠ wne 2998 class class class wbr 4872 ‘cfv 6122 (class class class)co 6904 ℂcc 10249 ℝcr 10250 0cc0 10251 1c1 10252 + caddc 10254 · cmul 10256 ℝ*cxr 10389 < clt 10390 / cdiv 11008 2c2 11405 ℤcz 11703 ℝ+crp 12111 (,)cioo 12462 sincsin 15165 πcpi 15168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-inf2 8814 ax-cnex 10307 ax-resscn 10308 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-addrcl 10312 ax-mulcl 10313 ax-mulrcl 10314 ax-mulcom 10315 ax-addass 10316 ax-mulass 10317 ax-distr 10318 ax-i2m1 10319 ax-1ne0 10320 ax-1rid 10321 ax-rnegex 10322 ax-rrecex 10323 ax-cnre 10324 ax-pre-lttri 10325 ax-pre-lttrn 10326 ax-pre-ltadd 10327 ax-pre-mulgt0 10328 ax-pre-sup 10329 ax-addf 10330 ax-mulf 10331 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-reu 3123 df-rmo 3124 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-int 4697 df-iun 4741 df-iin 4742 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-se 5301 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-isom 6131 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-of 7156 df-om 7326 df-1st 7427 df-2nd 7428 df-supp 7559 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-1o 7825 df-2o 7826 df-oadd 7829 df-er 8008 df-map 8123 df-pm 8124 df-ixp 8175 df-en 8222 df-dom 8223 df-sdom 8224 df-fin 8225 df-fsupp 8544 df-fi 8585 df-sup 8616 df-inf 8617 df-oi 8683 df-card 9077 df-cda 9304 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-sub 10586 df-neg 10587 df-div 11009 df-nn 11350 df-2 11413 df-3 11414 df-4 11415 df-5 11416 df-6 11417 df-7 11418 df-8 11419 df-9 11420 df-n0 11618 df-z 11704 df-dec 11821 df-uz 11968 df-q 12071 df-rp 12112 df-xneg 12231 df-xadd 12232 df-xmul 12233 df-ioo 12466 df-ioc 12467 df-ico 12468 df-icc 12469 df-fz 12619 df-fzo 12760 df-fl 12887 df-mod 12963 df-seq 13095 df-exp 13154 df-fac 13353 df-bc 13382 df-hash 13410 df-shft 14183 df-cj 14215 df-re 14216 df-im 14217 df-sqrt 14351 df-abs 14352 df-limsup 14578 df-clim 14595 df-rlim 14596 df-sum 14793 df-ef 15169 df-sin 15171 df-cos 15172 df-pi 15174 df-struct 16223 df-ndx 16224 df-slot 16225 df-base 16227 df-sets 16228 df-ress 16229 df-plusg 16317 df-mulr 16318 df-starv 16319 df-sca 16320 df-vsca 16321 df-ip 16322 df-tset 16323 df-ple 16324 df-ds 16326 df-unif 16327 df-hom 16328 df-cco 16329 df-rest 16435 df-topn 16436 df-0g 16454 df-gsum 16455 df-topgen 16456 df-pt 16457 df-prds 16460 df-xrs 16514 df-qtop 16519 df-imas 16520 df-xps 16522 df-mre 16598 df-mrc 16599 df-acs 16601 df-mgm 17594 df-sgrp 17636 df-mnd 17647 df-submnd 17688 df-mulg 17894 df-cntz 18099 df-cmn 18547 df-psmet 20097 df-xmet 20098 df-met 20099 df-bl 20100 df-mopn 20101 df-fbas 20102 df-fg 20103 df-cnfld 20106 df-top 21068 df-topon 21085 df-topsp 21107 df-bases 21120 df-cld 21193 df-ntr 21194 df-cls 21195 df-nei 21272 df-lp 21310 df-perf 21311 df-cn 21401 df-cnp 21402 df-haus 21489 df-tx 21735 df-hmeo 21928 df-fil 22019 df-fm 22111 df-flim 22112 df-flf 22113 df-xms 22494 df-ms 22495 df-tms 22496 df-cncf 23050 df-limc 24028 df-dv 24029 |
This theorem is referenced by: fourierdlem43 41160 fourierdlem44 41161 |
Copyright terms: Public domain | W3C validator |