Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrcnel Structured version   Visualization version   GIF version

Theorem pmtrcnel 33102
Description: Composing a permutation 𝐹 with a transposition which results in moving at least one less point. Here the set of points moved by a permutation 𝐹 is expressed as dom (𝐹 ∖ I ). (Contributed by Thierry Arnoux, 16-Nov-2023.)
Hypotheses
Ref Expression
pmtrcnel.s 𝑆 = (SymGrp‘𝐷)
pmtrcnel.t 𝑇 = (pmTrsp‘𝐷)
pmtrcnel.b 𝐵 = (Base‘𝑆)
pmtrcnel.j 𝐽 = (𝐹𝐼)
pmtrcnel.d (𝜑𝐷𝑉)
pmtrcnel.f (𝜑𝐹𝐵)
pmtrcnel.i (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
Assertion
Ref Expression
pmtrcnel (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∖ {𝐼}))

Proof of Theorem pmtrcnel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mvdco 19507 . . . . . 6 dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (𝐹 ∖ I ))
2 pmtrcnel.d . . . . . . . . 9 (𝜑𝐷𝑉)
3 difss 4159 . . . . . . . . . . . . 13 (𝐹 ∖ I ) ⊆ 𝐹
4 dmss 5928 . . . . . . . . . . . . 13 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
53, 4ax-mp 5 . . . . . . . . . . . 12 dom (𝐹 ∖ I ) ⊆ dom 𝐹
6 pmtrcnel.i . . . . . . . . . . . 12 (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
75, 6sselid 4006 . . . . . . . . . . 11 (𝜑𝐼 ∈ dom 𝐹)
8 pmtrcnel.f . . . . . . . . . . . . 13 (𝜑𝐹𝐵)
9 pmtrcnel.s . . . . . . . . . . . . . 14 𝑆 = (SymGrp‘𝐷)
10 pmtrcnel.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑆)
119, 10symgbasf1o 19436 . . . . . . . . . . . . 13 (𝐹𝐵𝐹:𝐷1-1-onto𝐷)
12 f1of 6865 . . . . . . . . . . . . 13 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷𝐷)
138, 11, 123syl 18 . . . . . . . . . . . 12 (𝜑𝐹:𝐷𝐷)
1413fdmd 6760 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝐷)
157, 14eleqtrd 2846 . . . . . . . . . 10 (𝜑𝐼𝐷)
16 pmtrcnel.j . . . . . . . . . . 11 𝐽 = (𝐹𝐼)
1713, 15ffvelcdmd 7122 . . . . . . . . . . 11 (𝜑 → (𝐹𝐼) ∈ 𝐷)
1816, 17eqeltrid 2848 . . . . . . . . . 10 (𝜑𝐽𝐷)
1915, 18prssd 4847 . . . . . . . . 9 (𝜑 → {𝐼, 𝐽} ⊆ 𝐷)
2013ffnd 6751 . . . . . . . . . . . . 13 (𝜑𝐹 Fn 𝐷)
21 fnelnfp 7214 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐷𝐼𝐷) → (𝐼 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝐼) ≠ 𝐼))
2221biimpa 476 . . . . . . . . . . . . 13 (((𝐹 Fn 𝐷𝐼𝐷) ∧ 𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ≠ 𝐼)
2320, 15, 6, 22syl21anc 837 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐼) ≠ 𝐼)
2423necomd 3002 . . . . . . . . . . 11 (𝜑𝐼 ≠ (𝐹𝐼))
2516a1i 11 . . . . . . . . . . 11 (𝜑𝐽 = (𝐹𝐼))
2624, 25neeqtrrd 3021 . . . . . . . . . 10 (𝜑𝐼𝐽)
27 enpr2 10074 . . . . . . . . . 10 ((𝐼𝐷𝐽𝐷𝐼𝐽) → {𝐼, 𝐽} ≈ 2o)
2815, 18, 26, 27syl3anc 1371 . . . . . . . . 9 (𝜑 → {𝐼, 𝐽} ≈ 2o)
29 pmtrcnel.t . . . . . . . . . 10 𝑇 = (pmTrsp‘𝐷)
3029pmtrmvd 19518 . . . . . . . . 9 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
312, 19, 28, 30syl3anc 1371 . . . . . . . 8 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
328, 11syl 17 . . . . . . . . . . . 12 (𝜑𝐹:𝐷1-1-onto𝐷)
33 f1omvdmvd 19505 . . . . . . . . . . . 12 ((𝐹:𝐷1-1-onto𝐷𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
3432, 6, 33syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝐹𝐼) ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
3516, 34eqeltrid 2848 . . . . . . . . . 10 (𝜑𝐽 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
3635eldifad 3988 . . . . . . . . 9 (𝜑𝐽 ∈ dom (𝐹 ∖ I ))
376, 36prssd 4847 . . . . . . . 8 (𝜑 → {𝐼, 𝐽} ⊆ dom (𝐹 ∖ I ))
3831, 37eqsstrd 4047 . . . . . . 7 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ⊆ dom (𝐹 ∖ I ))
39 ssequn1 4209 . . . . . . 7 (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ⊆ dom (𝐹 ∖ I ) ↔ (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (𝐹 ∖ I )) = dom (𝐹 ∖ I ))
4038, 39sylib 218 . . . . . 6 (𝜑 → (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (𝐹 ∖ I )) = dom (𝐹 ∖ I ))
411, 40sseqtrid 4061 . . . . 5 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ dom (𝐹 ∖ I ))
4241sselda 4008 . . . 4 ((𝜑𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) → 𝑥 ∈ dom (𝐹 ∖ I ))
43 simpr 484 . . . . . . . 8 ((𝜑𝑥 = 𝐼) → 𝑥 = 𝐼)
44 eqid 2740 . . . . . . . . . . . . . . 15 ran 𝑇 = ran 𝑇
4529, 44pmtrrn 19519 . . . . . . . . . . . . . 14 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇)
462, 19, 28, 45syl3anc 1371 . . . . . . . . . . . . 13 (𝜑 → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇)
4729, 44pmtrff1o 19525 . . . . . . . . . . . . 13 ((𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇 → (𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷)
4846, 47syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷)
49 f1oco 6888 . . . . . . . . . . . 12 (((𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷𝐹:𝐷1-1-onto𝐷) → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹):𝐷1-1-onto𝐷)
5048, 32, 49syl2anc 583 . . . . . . . . . . 11 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹):𝐷1-1-onto𝐷)
51 f1ofn 6866 . . . . . . . . . . 11 (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹):𝐷1-1-onto𝐷 → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷)
5250, 51syl 17 . . . . . . . . . 10 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷)
5313, 15fvco3d 7025 . . . . . . . . . . . 12 (𝜑 → (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) = ((𝑇‘{𝐼, 𝐽})‘(𝐹𝐼)))
5425eqcomd 2746 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐼) = 𝐽)
5554fveq2d 6927 . . . . . . . . . . . 12 (𝜑 → ((𝑇‘{𝐼, 𝐽})‘(𝐹𝐼)) = ((𝑇‘{𝐼, 𝐽})‘𝐽))
5629pmtrprfv2 33101 . . . . . . . . . . . . 13 ((𝐷𝑉 ∧ (𝐼𝐷𝐽𝐷𝐼𝐽)) → ((𝑇‘{𝐼, 𝐽})‘𝐽) = 𝐼)
572, 15, 18, 26, 56syl13anc 1372 . . . . . . . . . . . 12 (𝜑 → ((𝑇‘{𝐼, 𝐽})‘𝐽) = 𝐼)
5853, 55, 573eqtrd 2784 . . . . . . . . . . 11 (𝜑 → (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) = 𝐼)
59 nne 2950 . . . . . . . . . . 11 (¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼 ↔ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) = 𝐼)
6058, 59sylibr 234 . . . . . . . . . 10 (𝜑 → ¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼)
61 fnelnfp 7214 . . . . . . . . . . . 12 ((((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷𝐼𝐷) → (𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ↔ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼))
6261notbid 318 . . . . . . . . . . 11 ((((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷𝐼𝐷) → (¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ↔ ¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼))
6362biimpar 477 . . . . . . . . . 10 (((((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷𝐼𝐷) ∧ ¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼) → ¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
6452, 15, 60, 63syl21anc 837 . . . . . . . . 9 (𝜑 → ¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
6564adantr 480 . . . . . . . 8 ((𝜑𝑥 = 𝐼) → ¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
6643, 65eqneltrd 2864 . . . . . . 7 ((𝜑𝑥 = 𝐼) → ¬ 𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
6766ex 412 . . . . . 6 (𝜑 → (𝑥 = 𝐼 → ¬ 𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )))
6867necon2ad 2961 . . . . 5 (𝜑 → (𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) → 𝑥𝐼))
6968imp 406 . . . 4 ((𝜑𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) → 𝑥𝐼)
70 eldifsn 4811 . . . 4 (𝑥 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}) ↔ (𝑥 ∈ dom (𝐹 ∖ I ) ∧ 𝑥𝐼))
7142, 69, 70sylanbrc 582 . . 3 ((𝜑𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) → 𝑥 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
7271ex 412 . 2 (𝜑 → (𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) → 𝑥 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼})))
7372ssrdv 4014 1 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∖ {𝐼}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  cdif 3973  cun 3974  wss 3976  {csn 4648  {cpr 4650   class class class wbr 5167   I cid 5593  dom cdm 5701  ran crn 5702  ccom 5705   Fn wfn 6571  wf 6572  1-1-ontowf1o 6575  cfv 6576  2oc2o 8519  cen 9003  Basecbs 17278  SymGrpcsymg 19430  pmTrspcpmtr 19503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5304  ax-sep 5318  ax-nul 5325  ax-pow 5384  ax-pr 5448  ax-un 7773  ax-cnex 11243  ax-resscn 11244  ax-1cn 11245  ax-icn 11246  ax-addcl 11247  ax-addrcl 11248  ax-mulcl 11249  ax-mulrcl 11250  ax-mulcom 11251  ax-addass 11252  ax-mulass 11253  ax-distr 11254  ax-i2m1 11255  ax-1ne0 11256  ax-1rid 11257  ax-rnegex 11258  ax-rrecex 11259  ax-cnre 11260  ax-pre-lttri 11261  ax-pre-lttrn 11262  ax-pre-ltadd 11263  ax-pre-mulgt0 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4933  df-iun 5018  df-br 5168  df-opab 5230  df-mpt 5251  df-tr 5285  df-id 5594  df-eprel 5600  df-po 5608  df-so 5609  df-fr 5653  df-we 5655  df-xp 5707  df-rel 5708  df-cnv 5709  df-co 5710  df-dm 5711  df-rn 5712  df-res 5713  df-ima 5714  df-pred 6335  df-ord 6401  df-on 6402  df-lim 6403  df-suc 6404  df-iota 6528  df-fun 6578  df-fn 6579  df-f 6580  df-f1 6581  df-fo 6582  df-f1o 6583  df-fv 6584  df-riota 7407  df-ov 7454  df-oprab 7455  df-mpo 7456  df-om 7907  df-1st 8033  df-2nd 8034  df-frecs 8325  df-wrecs 8356  df-recs 8430  df-rdg 8469  df-1o 8525  df-2o 8526  df-er 8766  df-map 8889  df-en 9007  df-dom 9008  df-sdom 9009  df-fin 9010  df-pnf 11329  df-mnf 11330  df-xr 11331  df-ltxr 11332  df-le 11333  df-sub 11526  df-neg 11527  df-nn 12299  df-2 12361  df-3 12362  df-4 12363  df-5 12364  df-6 12365  df-7 12366  df-8 12367  df-9 12368  df-n0 12559  df-z 12646  df-uz 12911  df-fz 13579  df-struct 17214  df-sets 17231  df-slot 17249  df-ndx 17261  df-base 17279  df-ress 17308  df-plusg 17344  df-tset 17350  df-efmnd 18924  df-symg 19431  df-pmtr 19504
This theorem is referenced by:  pmtrcnelor  33104
  Copyright terms: Public domain W3C validator