Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrcnel Structured version   Visualization version   GIF version

Theorem pmtrcnel 30884
Description: Composing a permutation 𝐹 with a transposition which results in moving at least one less point. Here the set of points moved by a permutation 𝐹 is expressed as dom (𝐹 ∖ I ). (Contributed by Thierry Arnoux, 16-Nov-2023.)
Hypotheses
Ref Expression
pmtrcnel.s 𝑆 = (SymGrp‘𝐷)
pmtrcnel.t 𝑇 = (pmTrsp‘𝐷)
pmtrcnel.b 𝐵 = (Base‘𝑆)
pmtrcnel.j 𝐽 = (𝐹𝐼)
pmtrcnel.d (𝜑𝐷𝑉)
pmtrcnel.f (𝜑𝐹𝐵)
pmtrcnel.i (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
Assertion
Ref Expression
pmtrcnel (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∖ {𝐼}))

Proof of Theorem pmtrcnel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mvdco 18640 . . . . . 6 dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (𝐹 ∖ I ))
2 pmtrcnel.d . . . . . . . . 9 (𝜑𝐷𝑉)
3 difss 4037 . . . . . . . . . . . . 13 (𝐹 ∖ I ) ⊆ 𝐹
4 dmss 5742 . . . . . . . . . . . . 13 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
53, 4ax-mp 5 . . . . . . . . . . . 12 dom (𝐹 ∖ I ) ⊆ dom 𝐹
6 pmtrcnel.i . . . . . . . . . . . 12 (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
75, 6sseldi 3890 . . . . . . . . . . 11 (𝜑𝐼 ∈ dom 𝐹)
8 pmtrcnel.f . . . . . . . . . . . . 13 (𝜑𝐹𝐵)
9 pmtrcnel.s . . . . . . . . . . . . . 14 𝑆 = (SymGrp‘𝐷)
10 pmtrcnel.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑆)
119, 10symgbasf1o 18570 . . . . . . . . . . . . 13 (𝐹𝐵𝐹:𝐷1-1-onto𝐷)
12 f1of 6602 . . . . . . . . . . . . 13 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷𝐷)
138, 11, 123syl 18 . . . . . . . . . . . 12 (𝜑𝐹:𝐷𝐷)
1413fdmd 6508 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝐷)
157, 14eleqtrd 2854 . . . . . . . . . 10 (𝜑𝐼𝐷)
16 pmtrcnel.j . . . . . . . . . . 11 𝐽 = (𝐹𝐼)
1713, 15ffvelrnd 6843 . . . . . . . . . . 11 (𝜑 → (𝐹𝐼) ∈ 𝐷)
1816, 17eqeltrid 2856 . . . . . . . . . 10 (𝜑𝐽𝐷)
1915, 18prssd 4712 . . . . . . . . 9 (𝜑 → {𝐼, 𝐽} ⊆ 𝐷)
2013ffnd 6499 . . . . . . . . . . . . 13 (𝜑𝐹 Fn 𝐷)
21 fnelnfp 6930 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐷𝐼𝐷) → (𝐼 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝐼) ≠ 𝐼))
2221biimpa 480 . . . . . . . . . . . . 13 (((𝐹 Fn 𝐷𝐼𝐷) ∧ 𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ≠ 𝐼)
2320, 15, 6, 22syl21anc 836 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐼) ≠ 𝐼)
2423necomd 3006 . . . . . . . . . . 11 (𝜑𝐼 ≠ (𝐹𝐼))
2516a1i 11 . . . . . . . . . . 11 (𝜑𝐽 = (𝐹𝐼))
2624, 25neeqtrrd 3025 . . . . . . . . . 10 (𝜑𝐼𝐽)
27 pr2nelem 9464 . . . . . . . . . 10 ((𝐼𝐷𝐽𝐷𝐼𝐽) → {𝐼, 𝐽} ≈ 2o)
2815, 18, 26, 27syl3anc 1368 . . . . . . . . 9 (𝜑 → {𝐼, 𝐽} ≈ 2o)
29 pmtrcnel.t . . . . . . . . . 10 𝑇 = (pmTrsp‘𝐷)
3029pmtrmvd 18651 . . . . . . . . 9 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
312, 19, 28, 30syl3anc 1368 . . . . . . . 8 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
328, 11syl 17 . . . . . . . . . . . 12 (𝜑𝐹:𝐷1-1-onto𝐷)
33 f1omvdmvd 18638 . . . . . . . . . . . 12 ((𝐹:𝐷1-1-onto𝐷𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
3432, 6, 33syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝐹𝐼) ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
3516, 34eqeltrid 2856 . . . . . . . . . 10 (𝜑𝐽 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
3635eldifad 3870 . . . . . . . . 9 (𝜑𝐽 ∈ dom (𝐹 ∖ I ))
376, 36prssd 4712 . . . . . . . 8 (𝜑 → {𝐼, 𝐽} ⊆ dom (𝐹 ∖ I ))
3831, 37eqsstrd 3930 . . . . . . 7 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ⊆ dom (𝐹 ∖ I ))
39 ssequn1 4085 . . . . . . 7 (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ⊆ dom (𝐹 ∖ I ) ↔ (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (𝐹 ∖ I )) = dom (𝐹 ∖ I ))
4038, 39sylib 221 . . . . . 6 (𝜑 → (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (𝐹 ∖ I )) = dom (𝐹 ∖ I ))
411, 40sseqtrid 3944 . . . . 5 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ dom (𝐹 ∖ I ))
4241sselda 3892 . . . 4 ((𝜑𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) → 𝑥 ∈ dom (𝐹 ∖ I ))
43 simpr 488 . . . . . . . 8 ((𝜑𝑥 = 𝐼) → 𝑥 = 𝐼)
44 eqid 2758 . . . . . . . . . . . . . . 15 ran 𝑇 = ran 𝑇
4529, 44pmtrrn 18652 . . . . . . . . . . . . . 14 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇)
462, 19, 28, 45syl3anc 1368 . . . . . . . . . . . . 13 (𝜑 → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇)
4729, 44pmtrff1o 18658 . . . . . . . . . . . . 13 ((𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇 → (𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷)
4846, 47syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷)
49 f1oco 6624 . . . . . . . . . . . 12 (((𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷𝐹:𝐷1-1-onto𝐷) → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹):𝐷1-1-onto𝐷)
5048, 32, 49syl2anc 587 . . . . . . . . . . 11 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹):𝐷1-1-onto𝐷)
51 f1ofn 6603 . . . . . . . . . . 11 (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹):𝐷1-1-onto𝐷 → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷)
5250, 51syl 17 . . . . . . . . . 10 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷)
5313, 15fvco3d 6752 . . . . . . . . . . . 12 (𝜑 → (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) = ((𝑇‘{𝐼, 𝐽})‘(𝐹𝐼)))
5425eqcomd 2764 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐼) = 𝐽)
5554fveq2d 6662 . . . . . . . . . . . 12 (𝜑 → ((𝑇‘{𝐼, 𝐽})‘(𝐹𝐼)) = ((𝑇‘{𝐼, 𝐽})‘𝐽))
5629pmtrprfv2 30883 . . . . . . . . . . . . 13 ((𝐷𝑉 ∧ (𝐼𝐷𝐽𝐷𝐼𝐽)) → ((𝑇‘{𝐼, 𝐽})‘𝐽) = 𝐼)
572, 15, 18, 26, 56syl13anc 1369 . . . . . . . . . . . 12 (𝜑 → ((𝑇‘{𝐼, 𝐽})‘𝐽) = 𝐼)
5853, 55, 573eqtrd 2797 . . . . . . . . . . 11 (𝜑 → (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) = 𝐼)
59 nne 2955 . . . . . . . . . . 11 (¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼 ↔ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) = 𝐼)
6058, 59sylibr 237 . . . . . . . . . 10 (𝜑 → ¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼)
61 fnelnfp 6930 . . . . . . . . . . . 12 ((((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷𝐼𝐷) → (𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ↔ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼))
6261notbid 321 . . . . . . . . . . 11 ((((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷𝐼𝐷) → (¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ↔ ¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼))
6362biimpar 481 . . . . . . . . . 10 (((((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷𝐼𝐷) ∧ ¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼) → ¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
6452, 15, 60, 63syl21anc 836 . . . . . . . . 9 (𝜑 → ¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
6564adantr 484 . . . . . . . 8 ((𝜑𝑥 = 𝐼) → ¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
6643, 65eqneltrd 2871 . . . . . . 7 ((𝜑𝑥 = 𝐼) → ¬ 𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
6766ex 416 . . . . . 6 (𝜑 → (𝑥 = 𝐼 → ¬ 𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )))
6867necon2ad 2966 . . . . 5 (𝜑 → (𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) → 𝑥𝐼))
6968imp 410 . . . 4 ((𝜑𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) → 𝑥𝐼)
70 eldifsn 4677 . . . 4 (𝑥 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}) ↔ (𝑥 ∈ dom (𝐹 ∖ I ) ∧ 𝑥𝐼))
7142, 69, 70sylanbrc 586 . . 3 ((𝜑𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) → 𝑥 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
7271ex 416 . 2 (𝜑 → (𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) → 𝑥 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼})))
7372ssrdv 3898 1 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∖ {𝐼}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2951  cdif 3855  cun 3856  wss 3858  {csn 4522  {cpr 4524   class class class wbr 5032   I cid 5429  dom cdm 5524  ran crn 5525  ccom 5528   Fn wfn 6330  wf 6331  1-1-ontowf1o 6334  cfv 6335  2oc2o 8106  cen 8524  Basecbs 16541  SymGrpcsymg 18562  pmTrspcpmtr 18636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-tset 16642  df-efmnd 18100  df-symg 18563  df-pmtr 18637
This theorem is referenced by:  pmtrcnelor  30886
  Copyright terms: Public domain W3C validator