Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrcnel Structured version   Visualization version   GIF version

Theorem pmtrcnel 31884
Description: Composing a permutation 𝐹 with a transposition which results in moving at least one less point. Here the set of points moved by a permutation 𝐹 is expressed as dom (𝐹 ∖ I ). (Contributed by Thierry Arnoux, 16-Nov-2023.)
Hypotheses
Ref Expression
pmtrcnel.s 𝑆 = (SymGrp‘𝐷)
pmtrcnel.t 𝑇 = (pmTrsp‘𝐷)
pmtrcnel.b 𝐵 = (Base‘𝑆)
pmtrcnel.j 𝐽 = (𝐹𝐼)
pmtrcnel.d (𝜑𝐷𝑉)
pmtrcnel.f (𝜑𝐹𝐵)
pmtrcnel.i (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
Assertion
Ref Expression
pmtrcnel (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∖ {𝐼}))

Proof of Theorem pmtrcnel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mvdco 19225 . . . . . 6 dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (𝐹 ∖ I ))
2 pmtrcnel.d . . . . . . . . 9 (𝜑𝐷𝑉)
3 difss 4091 . . . . . . . . . . . . 13 (𝐹 ∖ I ) ⊆ 𝐹
4 dmss 5858 . . . . . . . . . . . . 13 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
53, 4ax-mp 5 . . . . . . . . . . . 12 dom (𝐹 ∖ I ) ⊆ dom 𝐹
6 pmtrcnel.i . . . . . . . . . . . 12 (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
75, 6sselid 3942 . . . . . . . . . . 11 (𝜑𝐼 ∈ dom 𝐹)
8 pmtrcnel.f . . . . . . . . . . . . 13 (𝜑𝐹𝐵)
9 pmtrcnel.s . . . . . . . . . . . . . 14 𝑆 = (SymGrp‘𝐷)
10 pmtrcnel.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑆)
119, 10symgbasf1o 19154 . . . . . . . . . . . . 13 (𝐹𝐵𝐹:𝐷1-1-onto𝐷)
12 f1of 6784 . . . . . . . . . . . . 13 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷𝐷)
138, 11, 123syl 18 . . . . . . . . . . . 12 (𝜑𝐹:𝐷𝐷)
1413fdmd 6679 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝐷)
157, 14eleqtrd 2840 . . . . . . . . . 10 (𝜑𝐼𝐷)
16 pmtrcnel.j . . . . . . . . . . 11 𝐽 = (𝐹𝐼)
1713, 15ffvelcdmd 7035 . . . . . . . . . . 11 (𝜑 → (𝐹𝐼) ∈ 𝐷)
1816, 17eqeltrid 2842 . . . . . . . . . 10 (𝜑𝐽𝐷)
1915, 18prssd 4782 . . . . . . . . 9 (𝜑 → {𝐼, 𝐽} ⊆ 𝐷)
2013ffnd 6669 . . . . . . . . . . . . 13 (𝜑𝐹 Fn 𝐷)
21 fnelnfp 7122 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐷𝐼𝐷) → (𝐼 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝐼) ≠ 𝐼))
2221biimpa 477 . . . . . . . . . . . . 13 (((𝐹 Fn 𝐷𝐼𝐷) ∧ 𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ≠ 𝐼)
2320, 15, 6, 22syl21anc 836 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐼) ≠ 𝐼)
2423necomd 2999 . . . . . . . . . . 11 (𝜑𝐼 ≠ (𝐹𝐼))
2516a1i 11 . . . . . . . . . . 11 (𝜑𝐽 = (𝐹𝐼))
2624, 25neeqtrrd 3018 . . . . . . . . . 10 (𝜑𝐼𝐽)
27 enpr2 9937 . . . . . . . . . 10 ((𝐼𝐷𝐽𝐷𝐼𝐽) → {𝐼, 𝐽} ≈ 2o)
2815, 18, 26, 27syl3anc 1371 . . . . . . . . 9 (𝜑 → {𝐼, 𝐽} ≈ 2o)
29 pmtrcnel.t . . . . . . . . . 10 𝑇 = (pmTrsp‘𝐷)
3029pmtrmvd 19236 . . . . . . . . 9 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
312, 19, 28, 30syl3anc 1371 . . . . . . . 8 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
328, 11syl 17 . . . . . . . . . . . 12 (𝜑𝐹:𝐷1-1-onto𝐷)
33 f1omvdmvd 19223 . . . . . . . . . . . 12 ((𝐹:𝐷1-1-onto𝐷𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
3432, 6, 33syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐹𝐼) ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
3516, 34eqeltrid 2842 . . . . . . . . . 10 (𝜑𝐽 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
3635eldifad 3922 . . . . . . . . 9 (𝜑𝐽 ∈ dom (𝐹 ∖ I ))
376, 36prssd 4782 . . . . . . . 8 (𝜑 → {𝐼, 𝐽} ⊆ dom (𝐹 ∖ I ))
3831, 37eqsstrd 3982 . . . . . . 7 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ⊆ dom (𝐹 ∖ I ))
39 ssequn1 4140 . . . . . . 7 (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ⊆ dom (𝐹 ∖ I ) ↔ (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (𝐹 ∖ I )) = dom (𝐹 ∖ I ))
4038, 39sylib 217 . . . . . 6 (𝜑 → (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (𝐹 ∖ I )) = dom (𝐹 ∖ I ))
411, 40sseqtrid 3996 . . . . 5 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ dom (𝐹 ∖ I ))
4241sselda 3944 . . . 4 ((𝜑𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) → 𝑥 ∈ dom (𝐹 ∖ I ))
43 simpr 485 . . . . . . . 8 ((𝜑𝑥 = 𝐼) → 𝑥 = 𝐼)
44 eqid 2736 . . . . . . . . . . . . . . 15 ran 𝑇 = ran 𝑇
4529, 44pmtrrn 19237 . . . . . . . . . . . . . 14 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇)
462, 19, 28, 45syl3anc 1371 . . . . . . . . . . . . 13 (𝜑 → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇)
4729, 44pmtrff1o 19243 . . . . . . . . . . . . 13 ((𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇 → (𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷)
4846, 47syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷)
49 f1oco 6807 . . . . . . . . . . . 12 (((𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷𝐹:𝐷1-1-onto𝐷) → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹):𝐷1-1-onto𝐷)
5048, 32, 49syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹):𝐷1-1-onto𝐷)
51 f1ofn 6785 . . . . . . . . . . 11 (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹):𝐷1-1-onto𝐷 → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷)
5250, 51syl 17 . . . . . . . . . 10 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷)
5313, 15fvco3d 6941 . . . . . . . . . . . 12 (𝜑 → (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) = ((𝑇‘{𝐼, 𝐽})‘(𝐹𝐼)))
5425eqcomd 2742 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐼) = 𝐽)
5554fveq2d 6846 . . . . . . . . . . . 12 (𝜑 → ((𝑇‘{𝐼, 𝐽})‘(𝐹𝐼)) = ((𝑇‘{𝐼, 𝐽})‘𝐽))
5629pmtrprfv2 31883 . . . . . . . . . . . . 13 ((𝐷𝑉 ∧ (𝐼𝐷𝐽𝐷𝐼𝐽)) → ((𝑇‘{𝐼, 𝐽})‘𝐽) = 𝐼)
572, 15, 18, 26, 56syl13anc 1372 . . . . . . . . . . . 12 (𝜑 → ((𝑇‘{𝐼, 𝐽})‘𝐽) = 𝐼)
5853, 55, 573eqtrd 2780 . . . . . . . . . . 11 (𝜑 → (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) = 𝐼)
59 nne 2947 . . . . . . . . . . 11 (¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼 ↔ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) = 𝐼)
6058, 59sylibr 233 . . . . . . . . . 10 (𝜑 → ¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼)
61 fnelnfp 7122 . . . . . . . . . . . 12 ((((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷𝐼𝐷) → (𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ↔ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼))
6261notbid 317 . . . . . . . . . . 11 ((((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷𝐼𝐷) → (¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ↔ ¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼))
6362biimpar 478 . . . . . . . . . 10 (((((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷𝐼𝐷) ∧ ¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼) → ¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
6452, 15, 60, 63syl21anc 836 . . . . . . . . 9 (𝜑 → ¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
6564adantr 481 . . . . . . . 8 ((𝜑𝑥 = 𝐼) → ¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
6643, 65eqneltrd 2857 . . . . . . 7 ((𝜑𝑥 = 𝐼) → ¬ 𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
6766ex 413 . . . . . 6 (𝜑 → (𝑥 = 𝐼 → ¬ 𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )))
6867necon2ad 2958 . . . . 5 (𝜑 → (𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) → 𝑥𝐼))
6968imp 407 . . . 4 ((𝜑𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) → 𝑥𝐼)
70 eldifsn 4747 . . . 4 (𝑥 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}) ↔ (𝑥 ∈ dom (𝐹 ∖ I ) ∧ 𝑥𝐼))
7142, 69, 70sylanbrc 583 . . 3 ((𝜑𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) → 𝑥 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
7271ex 413 . 2 (𝜑 → (𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) → 𝑥 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼})))
7372ssrdv 3950 1 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∖ {𝐼}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  cdif 3907  cun 3908  wss 3910  {csn 4586  {cpr 4588   class class class wbr 5105   I cid 5530  dom cdm 5633  ran crn 5634  ccom 5637   Fn wfn 6491  wf 6492  1-1-ontowf1o 6495  cfv 6496  2oc2o 8405  cen 8879  Basecbs 17082  SymGrpcsymg 19146  pmTrspcpmtr 19221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7671  ax-cnex 11106  ax-resscn 11107  ax-1cn 11108  ax-icn 11109  ax-addcl 11110  ax-addrcl 11111  ax-mulcl 11112  ax-mulrcl 11113  ax-mulcom 11114  ax-addass 11115  ax-mulass 11116  ax-distr 11117  ax-i2m1 11118  ax-1ne0 11119  ax-1rid 11120  ax-rnegex 11121  ax-rrecex 11122  ax-cnre 11123  ax-pre-lttri 11124  ax-pre-lttrn 11125  ax-pre-ltadd 11126  ax-pre-mulgt0 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7312  df-ov 7359  df-oprab 7360  df-mpo 7361  df-om 7802  df-1st 7920  df-2nd 7921  df-frecs 8211  df-wrecs 8242  df-recs 8316  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8647  df-map 8766  df-en 8883  df-dom 8884  df-sdom 8885  df-fin 8886  df-pnf 11190  df-mnf 11191  df-xr 11192  df-ltxr 11193  df-le 11194  df-sub 11386  df-neg 11387  df-nn 12153  df-2 12215  df-3 12216  df-4 12217  df-5 12218  df-6 12219  df-7 12220  df-8 12221  df-9 12222  df-n0 12413  df-z 12499  df-uz 12763  df-fz 13424  df-struct 17018  df-sets 17035  df-slot 17053  df-ndx 17065  df-base 17083  df-ress 17112  df-plusg 17145  df-tset 17151  df-efmnd 18678  df-symg 19147  df-pmtr 19222
This theorem is referenced by:  pmtrcnelor  31886
  Copyright terms: Public domain W3C validator