Step | Hyp | Ref
| Expression |
1 | | mvdco 18640 |
. . . . . 6
⊢ dom
(((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (𝐹 ∖ I )) |
2 | | pmtrcnel.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
3 | | difss 4037 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∖ I ) ⊆ 𝐹 |
4 | | dmss 5742 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹) |
5 | 3, 4 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ dom
(𝐹 ∖ I ) ⊆ dom
𝐹 |
6 | | pmtrcnel.i |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼 ∈ dom (𝐹 ∖ I )) |
7 | 5, 6 | sseldi 3890 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐼 ∈ dom 𝐹) |
8 | | pmtrcnel.f |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
9 | | pmtrcnel.s |
. . . . . . . . . . . . . 14
⊢ 𝑆 = (SymGrp‘𝐷) |
10 | | pmtrcnel.b |
. . . . . . . . . . . . . 14
⊢ 𝐵 = (Base‘𝑆) |
11 | 9, 10 | symgbasf1o 18570 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ 𝐵 → 𝐹:𝐷–1-1-onto→𝐷) |
12 | | f1of 6602 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐷–1-1-onto→𝐷 → 𝐹:𝐷⟶𝐷) |
13 | 8, 11, 12 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐷⟶𝐷) |
14 | 13 | fdmd 6508 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐹 = 𝐷) |
15 | 7, 14 | eleqtrd 2854 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ 𝐷) |
16 | | pmtrcnel.j |
. . . . . . . . . . 11
⊢ 𝐽 = (𝐹‘𝐼) |
17 | 13, 15 | ffvelrnd 6843 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝐼) ∈ 𝐷) |
18 | 16, 17 | eqeltrid 2856 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ 𝐷) |
19 | 15, 18 | prssd 4712 |
. . . . . . . . 9
⊢ (𝜑 → {𝐼, 𝐽} ⊆ 𝐷) |
20 | 13 | ffnd 6499 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 Fn 𝐷) |
21 | | fnelnfp 6930 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Fn 𝐷 ∧ 𝐼 ∈ 𝐷) → (𝐼 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝐼) ≠ 𝐼)) |
22 | 21 | biimpa 480 |
. . . . . . . . . . . . 13
⊢ (((𝐹 Fn 𝐷 ∧ 𝐼 ∈ 𝐷) ∧ 𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹‘𝐼) ≠ 𝐼) |
23 | 20, 15, 6, 22 | syl21anc 836 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹‘𝐼) ≠ 𝐼) |
24 | 23 | necomd 3006 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐼 ≠ (𝐹‘𝐼)) |
25 | 16 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 = (𝐹‘𝐼)) |
26 | 24, 25 | neeqtrrd 3025 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ≠ 𝐽) |
27 | | pr2nelem 9464 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷 ∧ 𝐼 ≠ 𝐽) → {𝐼, 𝐽} ≈ 2o) |
28 | 15, 18, 26, 27 | syl3anc 1368 |
. . . . . . . . 9
⊢ (𝜑 → {𝐼, 𝐽} ≈ 2o) |
29 | | pmtrcnel.t |
. . . . . . . . . 10
⊢ 𝑇 = (pmTrsp‘𝐷) |
30 | 29 | pmtrmvd 18651 |
. . . . . . . . 9
⊢ ((𝐷 ∈ 𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽}) |
31 | 2, 19, 28, 30 | syl3anc 1368 |
. . . . . . . 8
⊢ (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽}) |
32 | 8, 11 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐷–1-1-onto→𝐷) |
33 | | f1omvdmvd 18638 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐷–1-1-onto→𝐷 ∧ 𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹‘𝐼) ∈ (dom (𝐹 ∖ I ) ∖ {𝐼})) |
34 | 32, 6, 33 | syl2anc 587 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝐼) ∈ (dom (𝐹 ∖ I ) ∖ {𝐼})) |
35 | 16, 34 | eqeltrid 2856 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼})) |
36 | 35 | eldifad 3870 |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ dom (𝐹 ∖ I )) |
37 | 6, 36 | prssd 4712 |
. . . . . . . 8
⊢ (𝜑 → {𝐼, 𝐽} ⊆ dom (𝐹 ∖ I )) |
38 | 31, 37 | eqsstrd 3930 |
. . . . . . 7
⊢ (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ⊆ dom (𝐹 ∖ I )) |
39 | | ssequn1 4085 |
. . . . . . 7
⊢ (dom
((𝑇‘{𝐼, 𝐽}) ∖ I ) ⊆ dom (𝐹 ∖ I ) ↔ (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (𝐹 ∖ I )) = dom (𝐹 ∖ I )) |
40 | 38, 39 | sylib 221 |
. . . . . 6
⊢ (𝜑 → (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (𝐹 ∖ I )) = dom (𝐹 ∖ I )) |
41 | 1, 40 | sseqtrid 3944 |
. . . . 5
⊢ (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ dom (𝐹 ∖ I )) |
42 | 41 | sselda 3892 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) → 𝑥 ∈ dom (𝐹 ∖ I )) |
43 | | simpr 488 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝐼) → 𝑥 = 𝐼) |
44 | | eqid 2758 |
. . . . . . . . . . . . . . 15
⊢ ran 𝑇 = ran 𝑇 |
45 | 29, 44 | pmtrrn 18652 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ 𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇) |
46 | 2, 19, 28, 45 | syl3anc 1368 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇) |
47 | 29, 44 | pmtrff1o 18658 |
. . . . . . . . . . . . 13
⊢ ((𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇 → (𝑇‘{𝐼, 𝐽}):𝐷–1-1-onto→𝐷) |
48 | 46, 47 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑇‘{𝐼, 𝐽}):𝐷–1-1-onto→𝐷) |
49 | | f1oco 6624 |
. . . . . . . . . . . 12
⊢ (((𝑇‘{𝐼, 𝐽}):𝐷–1-1-onto→𝐷 ∧ 𝐹:𝐷–1-1-onto→𝐷) → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹):𝐷–1-1-onto→𝐷) |
50 | 48, 32, 49 | syl2anc 587 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹):𝐷–1-1-onto→𝐷) |
51 | | f1ofn 6603 |
. . . . . . . . . . 11
⊢ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹):𝐷–1-1-onto→𝐷 → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷) |
52 | 50, 51 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷) |
53 | 13, 15 | fvco3d 6752 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) = ((𝑇‘{𝐼, 𝐽})‘(𝐹‘𝐼))) |
54 | 25 | eqcomd 2764 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹‘𝐼) = 𝐽) |
55 | 54 | fveq2d 6662 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑇‘{𝐼, 𝐽})‘(𝐹‘𝐼)) = ((𝑇‘{𝐼, 𝐽})‘𝐽)) |
56 | 29 | pmtrprfv2 30883 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ 𝑉 ∧ (𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷 ∧ 𝐼 ≠ 𝐽)) → ((𝑇‘{𝐼, 𝐽})‘𝐽) = 𝐼) |
57 | 2, 15, 18, 26, 56 | syl13anc 1369 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑇‘{𝐼, 𝐽})‘𝐽) = 𝐼) |
58 | 53, 55, 57 | 3eqtrd 2797 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) = 𝐼) |
59 | | nne 2955 |
. . . . . . . . . . 11
⊢ (¬
(((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼 ↔ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) = 𝐼) |
60 | 58, 59 | sylibr 237 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼) |
61 | | fnelnfp 6930 |
. . . . . . . . . . . 12
⊢ ((((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷 ∧ 𝐼 ∈ 𝐷) → (𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ↔ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼)) |
62 | 61 | notbid 321 |
. . . . . . . . . . 11
⊢ ((((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷 ∧ 𝐼 ∈ 𝐷) → (¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ↔ ¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼)) |
63 | 62 | biimpar 481 |
. . . . . . . . . 10
⊢
(((((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷 ∧ 𝐼 ∈ 𝐷) ∧ ¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼) → ¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) |
64 | 52, 15, 60, 63 | syl21anc 836 |
. . . . . . . . 9
⊢ (𝜑 → ¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) |
65 | 64 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝐼) → ¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) |
66 | 43, 65 | eqneltrd 2871 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐼) → ¬ 𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) |
67 | 66 | ex 416 |
. . . . . 6
⊢ (𝜑 → (𝑥 = 𝐼 → ¬ 𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))) |
68 | 67 | necon2ad 2966 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) → 𝑥 ≠ 𝐼)) |
69 | 68 | imp 410 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) → 𝑥 ≠ 𝐼) |
70 | | eldifsn 4677 |
. . . 4
⊢ (𝑥 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}) ↔ (𝑥 ∈ dom (𝐹 ∖ I ) ∧ 𝑥 ≠ 𝐼)) |
71 | 42, 69, 70 | sylanbrc 586 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) → 𝑥 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼})) |
72 | 71 | ex 416 |
. 2
⊢ (𝜑 → (𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) → 𝑥 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))) |
73 | 72 | ssrdv 3898 |
1
⊢ (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∖ {𝐼})) |