Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrcnel Structured version   Visualization version   GIF version

Theorem pmtrcnel 33058
Description: Composing a permutation 𝐹 with a transposition which results in moving at least one less point. Here the set of points moved by a permutation 𝐹 is expressed as dom (𝐹 ∖ I ). (Contributed by Thierry Arnoux, 16-Nov-2023.)
Hypotheses
Ref Expression
pmtrcnel.s 𝑆 = (SymGrp‘𝐷)
pmtrcnel.t 𝑇 = (pmTrsp‘𝐷)
pmtrcnel.b 𝐵 = (Base‘𝑆)
pmtrcnel.j 𝐽 = (𝐹𝐼)
pmtrcnel.d (𝜑𝐷𝑉)
pmtrcnel.f (𝜑𝐹𝐵)
pmtrcnel.i (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
Assertion
Ref Expression
pmtrcnel (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∖ {𝐼}))

Proof of Theorem pmtrcnel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mvdco 19357 . . . . . 6 dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (𝐹 ∖ I ))
2 pmtrcnel.d . . . . . . . . 9 (𝜑𝐷𝑉)
3 difss 4083 . . . . . . . . . . . . 13 (𝐹 ∖ I ) ⊆ 𝐹
4 dmss 5841 . . . . . . . . . . . . 13 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
53, 4ax-mp 5 . . . . . . . . . . . 12 dom (𝐹 ∖ I ) ⊆ dom 𝐹
6 pmtrcnel.i . . . . . . . . . . . 12 (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
75, 6sselid 3927 . . . . . . . . . . 11 (𝜑𝐼 ∈ dom 𝐹)
8 pmtrcnel.f . . . . . . . . . . . . 13 (𝜑𝐹𝐵)
9 pmtrcnel.s . . . . . . . . . . . . . 14 𝑆 = (SymGrp‘𝐷)
10 pmtrcnel.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑆)
119, 10symgbasf1o 19287 . . . . . . . . . . . . 13 (𝐹𝐵𝐹:𝐷1-1-onto𝐷)
12 f1of 6763 . . . . . . . . . . . . 13 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷𝐷)
138, 11, 123syl 18 . . . . . . . . . . . 12 (𝜑𝐹:𝐷𝐷)
1413fdmd 6661 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝐷)
157, 14eleqtrd 2833 . . . . . . . . . 10 (𝜑𝐼𝐷)
16 pmtrcnel.j . . . . . . . . . . 11 𝐽 = (𝐹𝐼)
1713, 15ffvelcdmd 7018 . . . . . . . . . . 11 (𝜑 → (𝐹𝐼) ∈ 𝐷)
1816, 17eqeltrid 2835 . . . . . . . . . 10 (𝜑𝐽𝐷)
1915, 18prssd 4771 . . . . . . . . 9 (𝜑 → {𝐼, 𝐽} ⊆ 𝐷)
2013ffnd 6652 . . . . . . . . . . . . 13 (𝜑𝐹 Fn 𝐷)
21 fnelnfp 7111 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐷𝐼𝐷) → (𝐼 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝐼) ≠ 𝐼))
2221biimpa 476 . . . . . . . . . . . . 13 (((𝐹 Fn 𝐷𝐼𝐷) ∧ 𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ≠ 𝐼)
2320, 15, 6, 22syl21anc 837 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐼) ≠ 𝐼)
2423necomd 2983 . . . . . . . . . . 11 (𝜑𝐼 ≠ (𝐹𝐼))
2516a1i 11 . . . . . . . . . . 11 (𝜑𝐽 = (𝐹𝐼))
2624, 25neeqtrrd 3002 . . . . . . . . . 10 (𝜑𝐼𝐽)
27 enpr2 9895 . . . . . . . . . 10 ((𝐼𝐷𝐽𝐷𝐼𝐽) → {𝐼, 𝐽} ≈ 2o)
2815, 18, 26, 27syl3anc 1373 . . . . . . . . 9 (𝜑 → {𝐼, 𝐽} ≈ 2o)
29 pmtrcnel.t . . . . . . . . . 10 𝑇 = (pmTrsp‘𝐷)
3029pmtrmvd 19368 . . . . . . . . 9 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
312, 19, 28, 30syl3anc 1373 . . . . . . . 8 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
328, 11syl 17 . . . . . . . . . . . 12 (𝜑𝐹:𝐷1-1-onto𝐷)
33 f1omvdmvd 19355 . . . . . . . . . . . 12 ((𝐹:𝐷1-1-onto𝐷𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
3432, 6, 33syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐹𝐼) ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
3516, 34eqeltrid 2835 . . . . . . . . . 10 (𝜑𝐽 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
3635eldifad 3909 . . . . . . . . 9 (𝜑𝐽 ∈ dom (𝐹 ∖ I ))
376, 36prssd 4771 . . . . . . . 8 (𝜑 → {𝐼, 𝐽} ⊆ dom (𝐹 ∖ I ))
3831, 37eqsstrd 3964 . . . . . . 7 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ⊆ dom (𝐹 ∖ I ))
39 ssequn1 4133 . . . . . . 7 (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ⊆ dom (𝐹 ∖ I ) ↔ (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (𝐹 ∖ I )) = dom (𝐹 ∖ I ))
4038, 39sylib 218 . . . . . 6 (𝜑 → (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (𝐹 ∖ I )) = dom (𝐹 ∖ I ))
411, 40sseqtrid 3972 . . . . 5 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ dom (𝐹 ∖ I ))
4241sselda 3929 . . . 4 ((𝜑𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) → 𝑥 ∈ dom (𝐹 ∖ I ))
43 simpr 484 . . . . . . . 8 ((𝜑𝑥 = 𝐼) → 𝑥 = 𝐼)
44 eqid 2731 . . . . . . . . . . . . . . 15 ran 𝑇 = ran 𝑇
4529, 44pmtrrn 19369 . . . . . . . . . . . . . 14 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇)
462, 19, 28, 45syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇)
4729, 44pmtrff1o 19375 . . . . . . . . . . . . 13 ((𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇 → (𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷)
4846, 47syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷)
49 f1oco 6786 . . . . . . . . . . . 12 (((𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷𝐹:𝐷1-1-onto𝐷) → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹):𝐷1-1-onto𝐷)
5048, 32, 49syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹):𝐷1-1-onto𝐷)
51 f1ofn 6764 . . . . . . . . . . 11 (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹):𝐷1-1-onto𝐷 → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷)
5250, 51syl 17 . . . . . . . . . 10 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷)
5313, 15fvco3d 6922 . . . . . . . . . . . 12 (𝜑 → (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) = ((𝑇‘{𝐼, 𝐽})‘(𝐹𝐼)))
5425eqcomd 2737 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐼) = 𝐽)
5554fveq2d 6826 . . . . . . . . . . . 12 (𝜑 → ((𝑇‘{𝐼, 𝐽})‘(𝐹𝐼)) = ((𝑇‘{𝐼, 𝐽})‘𝐽))
5629pmtrprfv2 33057 . . . . . . . . . . . . 13 ((𝐷𝑉 ∧ (𝐼𝐷𝐽𝐷𝐼𝐽)) → ((𝑇‘{𝐼, 𝐽})‘𝐽) = 𝐼)
572, 15, 18, 26, 56syl13anc 1374 . . . . . . . . . . . 12 (𝜑 → ((𝑇‘{𝐼, 𝐽})‘𝐽) = 𝐼)
5853, 55, 573eqtrd 2770 . . . . . . . . . . 11 (𝜑 → (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) = 𝐼)
59 nne 2932 . . . . . . . . . . 11 (¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼 ↔ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) = 𝐼)
6058, 59sylibr 234 . . . . . . . . . 10 (𝜑 → ¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼)
61 fnelnfp 7111 . . . . . . . . . . . 12 ((((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷𝐼𝐷) → (𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ↔ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼))
6261notbid 318 . . . . . . . . . . 11 ((((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷𝐼𝐷) → (¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ↔ ¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼))
6362biimpar 477 . . . . . . . . . 10 (((((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷𝐼𝐷) ∧ ¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼) → ¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
6452, 15, 60, 63syl21anc 837 . . . . . . . . 9 (𝜑 → ¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
6564adantr 480 . . . . . . . 8 ((𝜑𝑥 = 𝐼) → ¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
6643, 65eqneltrd 2851 . . . . . . 7 ((𝜑𝑥 = 𝐼) → ¬ 𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
6766ex 412 . . . . . 6 (𝜑 → (𝑥 = 𝐼 → ¬ 𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )))
6867necon2ad 2943 . . . . 5 (𝜑 → (𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) → 𝑥𝐼))
6968imp 406 . . . 4 ((𝜑𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) → 𝑥𝐼)
70 eldifsn 4735 . . . 4 (𝑥 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}) ↔ (𝑥 ∈ dom (𝐹 ∖ I ) ∧ 𝑥𝐼))
7142, 69, 70sylanbrc 583 . . 3 ((𝜑𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) → 𝑥 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
7271ex 412 . 2 (𝜑 → (𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) → 𝑥 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼})))
7372ssrdv 3935 1 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∖ {𝐼}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cdif 3894  cun 3895  wss 3897  {csn 4573  {cpr 4575   class class class wbr 5089   I cid 5508  dom cdm 5614  ran crn 5615  ccom 5618   Fn wfn 6476  wf 6477  1-1-ontowf1o 6480  cfv 6481  2oc2o 8379  cen 8866  Basecbs 17120  SymGrpcsymg 19281  pmTrspcpmtr 19353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-tset 17180  df-efmnd 18777  df-symg 19282  df-pmtr 19354
This theorem is referenced by:  pmtrcnelor  33060
  Copyright terms: Public domain W3C validator