Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrcnel Structured version   Visualization version   GIF version

Theorem pmtrcnel 33053
Description: Composing a permutation 𝐹 with a transposition which results in moving at least one less point. Here the set of points moved by a permutation 𝐹 is expressed as dom (𝐹 ∖ I ). (Contributed by Thierry Arnoux, 16-Nov-2023.)
Hypotheses
Ref Expression
pmtrcnel.s 𝑆 = (SymGrp‘𝐷)
pmtrcnel.t 𝑇 = (pmTrsp‘𝐷)
pmtrcnel.b 𝐵 = (Base‘𝑆)
pmtrcnel.j 𝐽 = (𝐹𝐼)
pmtrcnel.d (𝜑𝐷𝑉)
pmtrcnel.f (𝜑𝐹𝐵)
pmtrcnel.i (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
Assertion
Ref Expression
pmtrcnel (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∖ {𝐼}))

Proof of Theorem pmtrcnel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mvdco 19432 . . . . . 6 dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (𝐹 ∖ I ))
2 pmtrcnel.d . . . . . . . . 9 (𝜑𝐷𝑉)
3 difss 4116 . . . . . . . . . . . . 13 (𝐹 ∖ I ) ⊆ 𝐹
4 dmss 5893 . . . . . . . . . . . . 13 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
53, 4ax-mp 5 . . . . . . . . . . . 12 dom (𝐹 ∖ I ) ⊆ dom 𝐹
6 pmtrcnel.i . . . . . . . . . . . 12 (𝜑𝐼 ∈ dom (𝐹 ∖ I ))
75, 6sselid 3961 . . . . . . . . . . 11 (𝜑𝐼 ∈ dom 𝐹)
8 pmtrcnel.f . . . . . . . . . . . . 13 (𝜑𝐹𝐵)
9 pmtrcnel.s . . . . . . . . . . . . . 14 𝑆 = (SymGrp‘𝐷)
10 pmtrcnel.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝑆)
119, 10symgbasf1o 19361 . . . . . . . . . . . . 13 (𝐹𝐵𝐹:𝐷1-1-onto𝐷)
12 f1of 6828 . . . . . . . . . . . . 13 (𝐹:𝐷1-1-onto𝐷𝐹:𝐷𝐷)
138, 11, 123syl 18 . . . . . . . . . . . 12 (𝜑𝐹:𝐷𝐷)
1413fdmd 6726 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝐷)
157, 14eleqtrd 2835 . . . . . . . . . 10 (𝜑𝐼𝐷)
16 pmtrcnel.j . . . . . . . . . . 11 𝐽 = (𝐹𝐼)
1713, 15ffvelcdmd 7085 . . . . . . . . . . 11 (𝜑 → (𝐹𝐼) ∈ 𝐷)
1816, 17eqeltrid 2837 . . . . . . . . . 10 (𝜑𝐽𝐷)
1915, 18prssd 4802 . . . . . . . . 9 (𝜑 → {𝐼, 𝐽} ⊆ 𝐷)
2013ffnd 6717 . . . . . . . . . . . . 13 (𝜑𝐹 Fn 𝐷)
21 fnelnfp 7179 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐷𝐼𝐷) → (𝐼 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝐼) ≠ 𝐼))
2221biimpa 476 . . . . . . . . . . . . 13 (((𝐹 Fn 𝐷𝐼𝐷) ∧ 𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ≠ 𝐼)
2320, 15, 6, 22syl21anc 837 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐼) ≠ 𝐼)
2423necomd 2986 . . . . . . . . . . 11 (𝜑𝐼 ≠ (𝐹𝐼))
2516a1i 11 . . . . . . . . . . 11 (𝜑𝐽 = (𝐹𝐼))
2624, 25neeqtrrd 3005 . . . . . . . . . 10 (𝜑𝐼𝐽)
27 enpr2 10024 . . . . . . . . . 10 ((𝐼𝐷𝐽𝐷𝐼𝐽) → {𝐼, 𝐽} ≈ 2o)
2815, 18, 26, 27syl3anc 1372 . . . . . . . . 9 (𝜑 → {𝐼, 𝐽} ≈ 2o)
29 pmtrcnel.t . . . . . . . . . 10 𝑇 = (pmTrsp‘𝐷)
3029pmtrmvd 19443 . . . . . . . . 9 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
312, 19, 28, 30syl3anc 1372 . . . . . . . 8 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) = {𝐼, 𝐽})
328, 11syl 17 . . . . . . . . . . . 12 (𝜑𝐹:𝐷1-1-onto𝐷)
33 f1omvdmvd 19430 . . . . . . . . . . . 12 ((𝐹:𝐷1-1-onto𝐷𝐼 ∈ dom (𝐹 ∖ I )) → (𝐹𝐼) ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
3432, 6, 33syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐹𝐼) ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
3516, 34eqeltrid 2837 . . . . . . . . . 10 (𝜑𝐽 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
3635eldifad 3943 . . . . . . . . 9 (𝜑𝐽 ∈ dom (𝐹 ∖ I ))
376, 36prssd 4802 . . . . . . . 8 (𝜑 → {𝐼, 𝐽} ⊆ dom (𝐹 ∖ I ))
3831, 37eqsstrd 3998 . . . . . . 7 (𝜑 → dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ⊆ dom (𝐹 ∖ I ))
39 ssequn1 4166 . . . . . . 7 (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ⊆ dom (𝐹 ∖ I ) ↔ (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (𝐹 ∖ I )) = dom (𝐹 ∖ I ))
4038, 39sylib 218 . . . . . 6 (𝜑 → (dom ((𝑇‘{𝐼, 𝐽}) ∖ I ) ∪ dom (𝐹 ∖ I )) = dom (𝐹 ∖ I ))
411, 40sseqtrid 4006 . . . . 5 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ dom (𝐹 ∖ I ))
4241sselda 3963 . . . 4 ((𝜑𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) → 𝑥 ∈ dom (𝐹 ∖ I ))
43 simpr 484 . . . . . . . 8 ((𝜑𝑥 = 𝐼) → 𝑥 = 𝐼)
44 eqid 2734 . . . . . . . . . . . . . . 15 ran 𝑇 = ran 𝑇
4529, 44pmtrrn 19444 . . . . . . . . . . . . . 14 ((𝐷𝑉 ∧ {𝐼, 𝐽} ⊆ 𝐷 ∧ {𝐼, 𝐽} ≈ 2o) → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇)
462, 19, 28, 45syl3anc 1372 . . . . . . . . . . . . 13 (𝜑 → (𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇)
4729, 44pmtrff1o 19450 . . . . . . . . . . . . 13 ((𝑇‘{𝐼, 𝐽}) ∈ ran 𝑇 → (𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷)
4846, 47syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷)
49 f1oco 6851 . . . . . . . . . . . 12 (((𝑇‘{𝐼, 𝐽}):𝐷1-1-onto𝐷𝐹:𝐷1-1-onto𝐷) → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹):𝐷1-1-onto𝐷)
5048, 32, 49syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹):𝐷1-1-onto𝐷)
51 f1ofn 6829 . . . . . . . . . . 11 (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹):𝐷1-1-onto𝐷 → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷)
5250, 51syl 17 . . . . . . . . . 10 (𝜑 → ((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷)
5313, 15fvco3d 6989 . . . . . . . . . . . 12 (𝜑 → (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) = ((𝑇‘{𝐼, 𝐽})‘(𝐹𝐼)))
5425eqcomd 2740 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐼) = 𝐽)
5554fveq2d 6890 . . . . . . . . . . . 12 (𝜑 → ((𝑇‘{𝐼, 𝐽})‘(𝐹𝐼)) = ((𝑇‘{𝐼, 𝐽})‘𝐽))
5629pmtrprfv2 33052 . . . . . . . . . . . . 13 ((𝐷𝑉 ∧ (𝐼𝐷𝐽𝐷𝐼𝐽)) → ((𝑇‘{𝐼, 𝐽})‘𝐽) = 𝐼)
572, 15, 18, 26, 56syl13anc 1373 . . . . . . . . . . . 12 (𝜑 → ((𝑇‘{𝐼, 𝐽})‘𝐽) = 𝐼)
5853, 55, 573eqtrd 2773 . . . . . . . . . . 11 (𝜑 → (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) = 𝐼)
59 nne 2935 . . . . . . . . . . 11 (¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼 ↔ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) = 𝐼)
6058, 59sylibr 234 . . . . . . . . . 10 (𝜑 → ¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼)
61 fnelnfp 7179 . . . . . . . . . . . 12 ((((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷𝐼𝐷) → (𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ↔ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼))
6261notbid 318 . . . . . . . . . . 11 ((((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷𝐼𝐷) → (¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ↔ ¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼))
6362biimpar 477 . . . . . . . . . 10 (((((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) Fn 𝐷𝐼𝐷) ∧ ¬ (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹)‘𝐼) ≠ 𝐼) → ¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
6452, 15, 60, 63syl21anc 837 . . . . . . . . 9 (𝜑 → ¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
6564adantr 480 . . . . . . . 8 ((𝜑𝑥 = 𝐼) → ¬ 𝐼 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
6643, 65eqneltrd 2853 . . . . . . 7 ((𝜑𝑥 = 𝐼) → ¬ 𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ))
6766ex 412 . . . . . 6 (𝜑 → (𝑥 = 𝐼 → ¬ 𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )))
6867necon2ad 2946 . . . . 5 (𝜑 → (𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) → 𝑥𝐼))
6968imp 406 . . . 4 ((𝜑𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) → 𝑥𝐼)
70 eldifsn 4766 . . . 4 (𝑥 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}) ↔ (𝑥 ∈ dom (𝐹 ∖ I ) ∧ 𝑥𝐼))
7142, 69, 70sylanbrc 583 . . 3 ((𝜑𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I )) → 𝑥 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼}))
7271ex 412 . 2 (𝜑 → (𝑥 ∈ dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) → 𝑥 ∈ (dom (𝐹 ∖ I ) ∖ {𝐼})))
7372ssrdv 3969 1 (𝜑 → dom (((𝑇‘{𝐼, 𝐽}) ∘ 𝐹) ∖ I ) ⊆ (dom (𝐹 ∖ I ) ∖ {𝐼}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  cdif 3928  cun 3929  wss 3931  {csn 4606  {cpr 4608   class class class wbr 5123   I cid 5557  dom cdm 5665  ran crn 5666  ccom 5669   Fn wfn 6536  wf 6537  1-1-ontowf1o 6540  cfv 6541  2oc2o 8482  cen 8964  Basecbs 17230  SymGrpcsymg 19355  pmTrspcpmtr 19428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-tset 17293  df-efmnd 18852  df-symg 19356  df-pmtr 19429
This theorem is referenced by:  pmtrcnelor  33055
  Copyright terms: Public domain W3C validator