Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkercncflem4 Structured version   Visualization version   GIF version

Theorem dirkercncflem4 46111
Description: The Dirichlet Kernel is continuos at points that are not multiple of 2 π . This is the easier condition, for the proof of the continuity of the Dirichlet kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkercncflem4.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
dirkercncflem4.n (𝜑𝑁 ∈ ℕ)
dirkercncflem4.y (𝜑𝑌 ∈ ℝ)
dirkercncflem4.ymod0 (𝜑 → (𝑌 mod (2 · π)) ≠ 0)
dirkercncflem4.a 𝐴 = (⌊‘(𝑌 / (2 · π)))
dirkercncflem4.b 𝐵 = (𝐴 + 1)
dirkercncflem4.c 𝐶 = (𝐴 · (2 · π))
dirkercncflem4.e 𝐸 = (𝐵 · (2 · π))
Assertion
Ref Expression
dirkercncflem4 (𝜑 → (𝐷𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌))
Distinct variable groups:   𝑦,𝐶   𝑦,𝐷   𝑦,𝐸   𝑦,𝑁   𝑦,𝑌   𝑦,𝑛   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑦,𝑛)   𝐵(𝑦,𝑛)   𝐶(𝑛)   𝐷(𝑛)   𝐸(𝑛)   𝑁(𝑛)   𝑌(𝑛)

Proof of Theorem dirkercncflem4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sincn 26361 . . . . . . . . . . 11 sin ∈ (ℂ–cn→ℂ)
21a1i 11 . . . . . . . . . 10 (𝜑 → sin ∈ (ℂ–cn→ℂ))
3 ioosscn 13376 . . . . . . . . . . . . 13 (𝐶(,)𝐸) ⊆ ℂ
43a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐶(,)𝐸) ⊆ ℂ)
5 dirkercncflem4.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
65nncnd 12209 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
7 1cnd 11176 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
87halfcld 12434 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℂ)
96, 8addcld 11200 . . . . . . . . . . . 12 (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ)
10 ssid 3972 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
1110a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
124, 9, 11constcncfg 45877 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑁 + (1 / 2))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
134, 11idcncfg 45878 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ 𝑦) ∈ ((𝐶(,)𝐸)–cn→ℂ))
1412, 13mulcncf 25353 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((𝑁 + (1 / 2)) · 𝑦)) ∈ ((𝐶(,)𝐸)–cn→ℂ))
152, 14cncfmpt1f 24814 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
16 2cnd 12271 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 2 ∈ ℂ)
17 pirp 26377 . . . . . . . . . . . . . . . 16 π ∈ ℝ+
1817a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → π ∈ ℝ+)
1918rpcnd 13004 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → π ∈ ℂ)
2016, 19mulcld 11201 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ∈ ℂ)
21 ioossre 13375 . . . . . . . . . . . . . . . . . 18 (𝐶(,)𝐸) ⊆ ℝ
2221a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐶(,)𝐸) ⊆ ℝ)
2322sselda 3949 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑦 ∈ ℝ)
2423recnd 11209 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑦 ∈ ℂ)
2524halfcld 12434 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / 2) ∈ ℂ)
2625sincld 16105 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (sin‘(𝑦 / 2)) ∈ ℂ)
2720, 26mulcld 11201 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ)
28 2rp 12963 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ+
2928a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 2 ∈ ℝ+)
3029rpne0d 13007 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 2 ≠ 0)
3118rpne0d 13007 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → π ≠ 0)
3216, 19, 30, 31mulne0d 11837 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ≠ 0)
3324, 16, 19, 30, 31divdiv1d 11996 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((𝑦 / 2) / π) = (𝑦 / (2 · π)))
34 dirkercncflem4.c . . . . . . . . . . . . . . . . . . . . . . . 24 𝐶 = (𝐴 · (2 · π))
35 dirkercncflem4.a . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐴 = (⌊‘(𝑌 / (2 · π)))
3635oveq1i 7400 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 · (2 · π)) = ((⌊‘(𝑌 / (2 · π))) · (2 · π))
3734, 36eqtri 2753 . . . . . . . . . . . . . . . . . . . . . . 23 𝐶 = ((⌊‘(𝑌 / (2 · π))) · (2 · π))
3837oveq1i 7400 . . . . . . . . . . . . . . . . . . . . . 22 (𝐶 / (2 · π)) = (((⌊‘(𝑌 / (2 · π))) · (2 · π)) / (2 · π))
39 dirkercncflem4.y . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑌 ∈ ℝ)
40 2re 12267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ∈ ℝ
41 pire 26373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 π ∈ ℝ
4240, 41remulcli 11197 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (2 · π) ∈ ℝ
4342a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (2 · π) ∈ ℝ)
44 0re 11183 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 ∈ ℝ
45 2pos 12296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 < 2
46 pipos 26375 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 < π
4740, 41, 45, 46mulgt0ii 11314 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 < (2 · π)
4844, 47gtneii 11293 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (2 · π) ≠ 0
4948a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (2 · π) ≠ 0)
5039, 43, 49redivcld 12017 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑌 / (2 · π)) ∈ ℝ)
5150flcld 13767 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (⌊‘(𝑌 / (2 · π))) ∈ ℤ)
5251zred 12645 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (⌊‘(𝑌 / (2 · π))) ∈ ℝ)
5352recnd 11209 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (⌊‘(𝑌 / (2 · π))) ∈ ℂ)
5443recnd 11209 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (2 · π) ∈ ℂ)
5553, 54, 49divcan4d 11971 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((⌊‘(𝑌 / (2 · π))) · (2 · π)) / (2 · π)) = (⌊‘(𝑌 / (2 · π))))
5638, 55eqtrid 2777 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐶 / (2 · π)) = (⌊‘(𝑌 / (2 · π))))
5756, 51eqeltrd 2829 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐶 / (2 · π)) ∈ ℤ)
5857adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝐶 / (2 · π)) ∈ ℤ)
5952, 43remulcld 11211 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((⌊‘(𝑌 / (2 · π))) · (2 · π)) ∈ ℝ)
6037, 59eqeltrid 2833 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ ℝ)
6160adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐶 ∈ ℝ)
6229, 18rpmulcld 13018 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ∈ ℝ+)
63 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑦 ∈ (𝐶(,)𝐸))
6460rexrd 11231 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐶 ∈ ℝ*)
6564adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐶 ∈ ℝ*)
6635eqcomi 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⌊‘(𝑌 / (2 · π))) = 𝐴
6766oveq1i 7400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((⌊‘(𝑌 / (2 · π))) + 1) = (𝐴 + 1)
68 dirkercncflem4.b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝐵 = (𝐴 + 1)
6967, 68eqtr4i 2756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((⌊‘(𝑌 / (2 · π))) + 1) = 𝐵
7069oveq1i 7400 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)) = (𝐵 · (2 · π))
71 dirkercncflem4.e . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐸 = (𝐵 · (2 · π))
7270, 71eqtr4i 2756 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)) = 𝐸
7372a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)) = 𝐸)
74 1red 11182 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → 1 ∈ ℝ)
7552, 74readdcld 11210 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((⌊‘(𝑌 / (2 · π))) + 1) ∈ ℝ)
7675, 43remulcld 11211 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)) ∈ ℝ)
7773, 76eqeltrrd 2830 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐸 ∈ ℝ)
7877rexrd 11231 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐸 ∈ ℝ*)
7978adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐸 ∈ ℝ*)
80 elioo2 13354 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ∈ ℝ*𝐸 ∈ ℝ*) → (𝑦 ∈ (𝐶(,)𝐸) ↔ (𝑦 ∈ ℝ ∧ 𝐶 < 𝑦𝑦 < 𝐸)))
8165, 79, 80syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 ∈ (𝐶(,)𝐸) ↔ (𝑦 ∈ ℝ ∧ 𝐶 < 𝑦𝑦 < 𝐸)))
8263, 81mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 ∈ ℝ ∧ 𝐶 < 𝑦𝑦 < 𝐸))
8382simp2d 1143 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐶 < 𝑦)
8461, 23, 62, 83ltdiv1dd 13059 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝐶 / (2 · π)) < (𝑦 / (2 · π)))
8577adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐸 ∈ ℝ)
8682simp3d 1144 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑦 < 𝐸)
8723, 85, 62, 86ltdiv1dd 13059 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / (2 · π)) < (𝐸 / (2 · π)))
8834a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐶 = (𝐴 · (2 · π)))
8988oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐶 / (2 · π)) = ((𝐴 · (2 · π)) / (2 · π)))
9089oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝐶 / (2 · π)) + 1) = (((𝐴 · (2 · π)) / (2 · π)) + 1))
9135, 53eqeltrid 2833 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐴 ∈ ℂ)
9291, 54, 49divcan4d 11971 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 · (2 · π)) / (2 · π)) = 𝐴)
9392oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐴 · (2 · π)) / (2 · π)) + 1) = (𝐴 + 1))
9468oveq1i 7400 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐵 · (2 · π)) = ((𝐴 + 1) · (2 · π))
9571, 94eqtri 2753 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐸 = ((𝐴 + 1) · (2 · π))
9695a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐸 = ((𝐴 + 1) · (2 · π)))
9796oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐸 / (2 · π)) = (((𝐴 + 1) · (2 · π)) / (2 · π)))
9891, 7addcld 11200 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 + 1) ∈ ℂ)
9998, 54, 49divcan4d 11971 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝐴 + 1) · (2 · π)) / (2 · π)) = (𝐴 + 1))
10097, 99eqtr2d 2766 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 + 1) = (𝐸 / (2 · π)))
10190, 93, 1003eqtrrd 2770 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸 / (2 · π)) = ((𝐶 / (2 · π)) + 1))
102101adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝐸 / (2 · π)) = ((𝐶 / (2 · π)) + 1))
10387, 102breqtrd 5136 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / (2 · π)) < ((𝐶 / (2 · π)) + 1))
104 btwnnz 12617 . . . . . . . . . . . . . . . . . . 19 (((𝐶 / (2 · π)) ∈ ℤ ∧ (𝐶 / (2 · π)) < (𝑦 / (2 · π)) ∧ (𝑦 / (2 · π)) < ((𝐶 / (2 · π)) + 1)) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
10558, 84, 103, 104syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
10633, 105eqneltrd 2849 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ ((𝑦 / 2) / π) ∈ ℤ)
107 sineq0 26440 . . . . . . . . . . . . . . . . . 18 ((𝑦 / 2) ∈ ℂ → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
10825, 107syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
109106, 108mtbird 325 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ (sin‘(𝑦 / 2)) = 0)
110109neqned 2933 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (sin‘(𝑦 / 2)) ≠ 0)
11120, 26, 32, 110mulne0d 11837 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((2 · π) · (sin‘(𝑦 / 2))) ≠ 0)
112111neneqd 2931 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ ((2 · π) · (sin‘(𝑦 / 2))) = 0)
11340a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 2 ∈ ℝ)
11441a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → π ∈ ℝ)
115113, 114remulcld 11211 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ∈ ℝ)
11623rehalfcld 12436 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / 2) ∈ ℝ)
117116resincld 16118 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (sin‘(𝑦 / 2)) ∈ ℝ)
118115, 117remulcld 11211 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℝ)
119 elsng 4606 . . . . . . . . . . . . . 14 (((2 · π) · (sin‘(𝑦 / 2))) ∈ ℝ → (((2 · π) · (sin‘(𝑦 / 2))) ∈ {0} ↔ ((2 · π) · (sin‘(𝑦 / 2))) = 0))
120118, 119syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (((2 · π) · (sin‘(𝑦 / 2))) ∈ {0} ↔ ((2 · π) · (sin‘(𝑦 / 2))) = 0))
121112, 120mtbird 325 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ ((2 · π) · (sin‘(𝑦 / 2))) ∈ {0})
12227, 121eldifd 3928 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ (ℂ ∖ {0}))
123 eqidd 2731 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))))
124 eqidd 2731 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)))
125 oveq2 7398 . . . . . . . . . . 11 (𝑥 = ((2 · π) · (sin‘(𝑦 / 2))) → (1 / 𝑥) = (1 / ((2 · π) · (sin‘(𝑦 / 2)))))
126122, 123, 124, 125fmptco 7104 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (𝑦 ∈ (𝐶(,)𝐸) ↦ (1 / ((2 · π) · (sin‘(𝑦 / 2))))))
127 eqid 2730 . . . . . . . . . . . 12 (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
128 2cnd 12271 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
1294, 128, 11constcncfg 45877 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ 2) ∈ ((𝐶(,)𝐸)–cn→ℂ))
13017a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → π ∈ ℝ+)
131130rpcnd 13004 . . . . . . . . . . . . . . 15 (𝜑 → π ∈ ℂ)
1324, 131, 11constcncfg 45877 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ π) ∈ ((𝐶(,)𝐸)–cn→ℂ))
133129, 132mulcncf 25353 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (2 · π)) ∈ ((𝐶(,)𝐸)–cn→ℂ))
13424, 16, 30divrecd 11968 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / 2) = (𝑦 · (1 / 2)))
135134mpteq2dva 5203 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑦 / 2)) = (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑦 · (1 / 2))))
1364, 8, 11constcncfg 45877 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (1 / 2)) ∈ ((𝐶(,)𝐸)–cn→ℂ))
13713, 136mulcncf 25353 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑦 · (1 / 2))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
138135, 137eqeltrd 2829 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑦 / 2)) ∈ ((𝐶(,)𝐸)–cn→ℂ))
1392, 138cncfmpt1f 24814 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (sin‘(𝑦 / 2))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
140133, 139mulcncf 25353 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
141 ssid 3972 . . . . . . . . . . . . 13 (𝐶(,)𝐸) ⊆ (𝐶(,)𝐸)
142141a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐶(,)𝐸) ⊆ (𝐶(,)𝐸))
143 difssd 4103 . . . . . . . . . . . 12 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
144127, 140, 142, 143, 122cncfmptssg 45876 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ∈ ((𝐶(,)𝐸)–cn→(ℂ ∖ {0})))
145 ax-1cn 11133 . . . . . . . . . . . 12 1 ∈ ℂ
146 eqid 2730 . . . . . . . . . . . . 13 (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))
147146cdivcncf 24821 . . . . . . . . . . . 12 (1 ∈ ℂ → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ ((ℂ ∖ {0})–cn→ℂ))
148145, 147mp1i 13 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ ((ℂ ∖ {0})–cn→ℂ))
149144, 148cncfco 24807 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
150126, 149eqeltrrd 2830 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (1 / ((2 · π) · (sin‘(𝑦 / 2))))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
15115, 150mulcncf 25353 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2)))))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
152 dirkercncflem4.d . . . . . . . . . . . 12 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
153152dirkerval 46096 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
1545, 153syl 17 . . . . . . . . . 10 (𝜑 → (𝐷𝑁) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
155154reseq1d 5952 . . . . . . . . 9 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) = ((𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) ↾ (𝐶(,)𝐸)))
15622resmptd 6014 . . . . . . . . 9 (𝜑 → ((𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) ↾ (𝐶(,)𝐸)) = (𝑦 ∈ (𝐶(,)𝐸) ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
15728a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ+)
158157, 130rpmulcld 13018 . . . . . . . . . . . . . . 15 (𝜑 → (2 · π) ∈ ℝ+)
159158adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ∈ ℝ+)
160 mod0 13845 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
16123, 159, 160syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
162105, 161mtbird 325 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ (𝑦 mod (2 · π)) = 0)
163162iffalsed 4502 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
1646adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑁 ∈ ℂ)
165 1cnd 11176 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 1 ∈ ℂ)
166165halfcld 12434 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (1 / 2) ∈ ℂ)
167164, 166addcld 11200 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑁 + (1 / 2)) ∈ ℂ)
168167, 24mulcld 11201 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
169168sincld 16105 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
170169, 27, 111divrecd 11968 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2))))))
171163, 170eqtrd 2765 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2))))))
172171mpteq2dva 5203 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑦 ∈ (𝐶(,)𝐸) ↦ ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2)))))))
173155, 156, 1723eqtrrd 2770 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2)))))) = ((𝐷𝑁) ↾ (𝐶(,)𝐸)))
174 eqid 2730 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
175 tgioo4 24700 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
176175oveq1i 7400 . . . . . . . . . . 11 ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐶(,)𝐸))
177174cnfldtop 24678 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ Top
178 reex 11166 . . . . . . . . . . . 12 ℝ ∈ V
179 restabs 23059 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐶(,)𝐸)) = ((TopOpen‘ℂfld) ↾t (𝐶(,)𝐸)))
180177, 21, 178, 179mp3an 1463 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐶(,)𝐸)) = ((TopOpen‘ℂfld) ↾t (𝐶(,)𝐸))
181176, 180eqtri 2753 . . . . . . . . . 10 ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) = ((TopOpen‘ℂfld) ↾t (𝐶(,)𝐸))
182 unicntop 24680 . . . . . . . . . . . . 13 ℂ = (TopOpen‘ℂfld)
183182restid 17403 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
184177, 183ax-mp 5 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
185184eqcomi 2739 . . . . . . . . . 10 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
186174, 181, 185cncfcn 24810 . . . . . . . . 9 (((𝐶(,)𝐸) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐶(,)𝐸)–cn→ℂ) = (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)))
1874, 11, 186syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐶(,)𝐸)–cn→ℂ) = (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)))
188151, 173, 1873eltr3d 2843 . . . . . . 7 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)))
189 retopon 24658 . . . . . . . . . 10 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
190189a1i 11 . . . . . . . . 9 (𝜑 → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
191 resttopon 23055 . . . . . . . . 9 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (𝐶(,)𝐸) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) ∈ (TopOn‘(𝐶(,)𝐸)))
192190, 22, 191syl2anc 584 . . . . . . . 8 (𝜑 → ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) ∈ (TopOn‘(𝐶(,)𝐸)))
193174cnfldtopon 24677 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
194193a1i 11 . . . . . . . 8 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
195 cncnp 23174 . . . . . . . 8 ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) ∈ (TopOn‘(𝐶(,)𝐸)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)) ↔ (((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℂ ∧ ∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦))))
196192, 194, 195syl2anc 584 . . . . . . 7 (𝜑 → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)) ↔ (((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℂ ∧ ∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦))))
197188, 196mpbid 232 . . . . . 6 (𝜑 → (((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℂ ∧ ∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦)))
198197simprd 495 . . . . 5 (𝜑 → ∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦))
199 dirkercncflem4.ymod0 . . . . . . . . . . . 12 (𝜑 → (𝑌 mod (2 · π)) ≠ 0)
200199neneqd 2931 . . . . . . . . . . 11 (𝜑 → ¬ (𝑌 mod (2 · π)) = 0)
201 mod0 13845 . . . . . . . . . . . 12 ((𝑌 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
20239, 158, 201syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
203200, 202mtbid 324 . . . . . . . . . 10 (𝜑 → ¬ (𝑌 / (2 · π)) ∈ ℤ)
204 flltnz 13780 . . . . . . . . . 10 (((𝑌 / (2 · π)) ∈ ℝ ∧ ¬ (𝑌 / (2 · π)) ∈ ℤ) → (⌊‘(𝑌 / (2 · π))) < (𝑌 / (2 · π)))
20550, 203, 204syl2anc 584 . . . . . . . . 9 (𝜑 → (⌊‘(𝑌 / (2 · π))) < (𝑌 / (2 · π)))
20652, 50, 158, 205ltmul1dd 13057 . . . . . . . 8 (𝜑 → ((⌊‘(𝑌 / (2 · π))) · (2 · π)) < ((𝑌 / (2 · π)) · (2 · π)))
20739recnd 11209 . . . . . . . . 9 (𝜑𝑌 ∈ ℂ)
208207, 54, 49divcan1d 11966 . . . . . . . 8 (𝜑 → ((𝑌 / (2 · π)) · (2 · π)) = 𝑌)
209206, 208breqtrd 5136 . . . . . . 7 (𝜑 → ((⌊‘(𝑌 / (2 · π))) · (2 · π)) < 𝑌)
21037, 209eqbrtrid 5145 . . . . . 6 (𝜑𝐶 < 𝑌)
211 fllelt 13766 . . . . . . . . . 10 ((𝑌 / (2 · π)) ∈ ℝ → ((⌊‘(𝑌 / (2 · π))) ≤ (𝑌 / (2 · π)) ∧ (𝑌 / (2 · π)) < ((⌊‘(𝑌 / (2 · π))) + 1)))
21250, 211syl 17 . . . . . . . . 9 (𝜑 → ((⌊‘(𝑌 / (2 · π))) ≤ (𝑌 / (2 · π)) ∧ (𝑌 / (2 · π)) < ((⌊‘(𝑌 / (2 · π))) + 1)))
213212simprd 495 . . . . . . . 8 (𝜑 → (𝑌 / (2 · π)) < ((⌊‘(𝑌 / (2 · π))) + 1))
21450, 75, 158, 213ltmul1dd 13057 . . . . . . 7 (𝜑 → ((𝑌 / (2 · π)) · (2 · π)) < (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)))
215214, 208, 733brtr3d 5141 . . . . . 6 (𝜑𝑌 < 𝐸)
21664, 78, 39, 210, 215eliood 45503 . . . . 5 (𝜑𝑌 ∈ (𝐶(,)𝐸))
217 fveq2 6861 . . . . . . 7 (𝑦 = 𝑌 → ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦) = ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌))
218217eleq2d 2815 . . . . . 6 (𝑦 = 𝑌 → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌)))
219218rspccva 3590 . . . . 5 ((∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦) ∧ 𝑌 ∈ (𝐶(,)𝐸)) → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌))
220198, 216, 219syl2anc 584 . . . 4 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌))
221177a1i 11 . . . . 5 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
222152dirkerf 46102 . . . . . . 7 (𝑁 ∈ ℕ → (𝐷𝑁):ℝ⟶ℝ)
2235, 222syl 17 . . . . . 6 (𝜑 → (𝐷𝑁):ℝ⟶ℝ)
224223, 22fssresd 6730 . . . . 5 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℝ)
225 ax-resscn 11132 . . . . . 6 ℝ ⊆ ℂ
226225a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
227 retop 24656 . . . . . . 7 (topGen‘ran (,)) ∈ Top
228 uniretop 24657 . . . . . . . 8 ℝ = (topGen‘ran (,))
229228restuni 23056 . . . . . . 7 (((topGen‘ran (,)) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ) → (𝐶(,)𝐸) = ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)))
230227, 21, 229mp2an 692 . . . . . 6 (𝐶(,)𝐸) = ((topGen‘ran (,)) ↾t (𝐶(,)𝐸))
231230, 182cnprest2 23184 . . . . 5 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℝ ∧ ℝ ⊆ ℂ) → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑌)))
232221, 224, 226, 231syl3anc 1373 . . . 4 (𝜑 → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑌)))
233220, 232mpbid 232 . . 3 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑌))
234175eqcomi 2739 . . . . . 6 ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,))
235234a1i 11 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,)))
236235oveq2d 7406 . . . 4 (𝜑 → (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ)) = (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,))))
237236fveq1d 6863 . . 3 (𝜑 → ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑌) = ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,)))‘𝑌))
238233, 237eleqtrd 2831 . 2 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,)))‘𝑌))
239227a1i 11 . . 3 (𝜑 → (topGen‘ran (,)) ∈ Top)
240 iooretop 24660 . . . . . . 7 (𝐶(,)𝐸) ∈ (topGen‘ran (,))
241228isopn3 22960 . . . . . . 7 (((topGen‘ran (,)) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ) → ((𝐶(,)𝐸) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)) = (𝐶(,)𝐸)))
242240, 241mpbii 233 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)) = (𝐶(,)𝐸))
243239, 22, 242syl2anc 584 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)) = (𝐶(,)𝐸))
244243eqcomd 2736 . . . 4 (𝜑 → (𝐶(,)𝐸) = ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)))
245216, 244eleqtrd 2831 . . 3 (𝜑𝑌 ∈ ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)))
246228, 228cnprest 23183 . . 3 ((((topGen‘ran (,)) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ) ∧ (𝑌 ∈ ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)) ∧ (𝐷𝑁):ℝ⟶ℝ)) → ((𝐷𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,)))‘𝑌)))
247239, 22, 245, 223, 246syl22anc 838 . 2 (𝜑 → ((𝐷𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,)))‘𝑌)))
248238, 247mpbird 257 1 (𝜑 → (𝐷𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  cdif 3914  wss 3917  ifcif 4491  {csn 4592   cuni 4874   class class class wbr 5110  cmpt 5191  ran crn 5642  cres 5643  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cle 11216   / cdiv 11842  cn 12193  2c2 12248  cz 12536  +crp 12958  (,)cioo 13313  cfl 13759   mod cmo 13838  sincsin 16036  πcpi 16039  t crest 17390  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271  Topctop 22787  TopOnctopon 22804  intcnt 22911   Cn ccn 23118   CnP ccnp 23119  cnccncf 24776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  dirkercncf  46112
  Copyright terms: Public domain W3C validator