Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkercncflem4 Structured version   Visualization version   GIF version

Theorem dirkercncflem4 44337
Description: The Dirichlet Kernel is continuos at points that are not multiple of 2 π . This is the easier condition, for the proof of the continuity of the Dirichlet kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkercncflem4.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
dirkercncflem4.n (𝜑𝑁 ∈ ℕ)
dirkercncflem4.y (𝜑𝑌 ∈ ℝ)
dirkercncflem4.ymod0 (𝜑 → (𝑌 mod (2 · π)) ≠ 0)
dirkercncflem4.a 𝐴 = (⌊‘(𝑌 / (2 · π)))
dirkercncflem4.b 𝐵 = (𝐴 + 1)
dirkercncflem4.c 𝐶 = (𝐴 · (2 · π))
dirkercncflem4.e 𝐸 = (𝐵 · (2 · π))
Assertion
Ref Expression
dirkercncflem4 (𝜑 → (𝐷𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌))
Distinct variable groups:   𝑦,𝐶   𝑦,𝐷   𝑦,𝐸   𝑦,𝑁   𝑦,𝑌   𝑦,𝑛   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑦,𝑛)   𝐵(𝑦,𝑛)   𝐶(𝑛)   𝐷(𝑛)   𝐸(𝑛)   𝑁(𝑛)   𝑌(𝑛)

Proof of Theorem dirkercncflem4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sincn 25803 . . . . . . . . . . 11 sin ∈ (ℂ–cn→ℂ)
21a1i 11 . . . . . . . . . 10 (𝜑 → sin ∈ (ℂ–cn→ℂ))
3 ioosscn 13326 . . . . . . . . . . . . 13 (𝐶(,)𝐸) ⊆ ℂ
43a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐶(,)𝐸) ⊆ ℂ)
5 dirkercncflem4.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
65nncnd 12169 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
7 1cnd 11150 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
87halfcld 12398 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℂ)
96, 8addcld 11174 . . . . . . . . . . . 12 (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ)
10 ssid 3966 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
1110a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
124, 9, 11constcncfg 44103 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑁 + (1 / 2))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
134, 11idcncfg 44104 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ 𝑦) ∈ ((𝐶(,)𝐸)–cn→ℂ))
1412, 13mulcncf 24810 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((𝑁 + (1 / 2)) · 𝑦)) ∈ ((𝐶(,)𝐸)–cn→ℂ))
152, 14cncfmpt1f 24277 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
16 2cnd 12231 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 2 ∈ ℂ)
17 pirp 25818 . . . . . . . . . . . . . . . 16 π ∈ ℝ+
1817a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → π ∈ ℝ+)
1918rpcnd 12959 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → π ∈ ℂ)
2016, 19mulcld 11175 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ∈ ℂ)
21 ioossre 13325 . . . . . . . . . . . . . . . . . 18 (𝐶(,)𝐸) ⊆ ℝ
2221a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐶(,)𝐸) ⊆ ℝ)
2322sselda 3944 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑦 ∈ ℝ)
2423recnd 11183 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑦 ∈ ℂ)
2524halfcld 12398 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / 2) ∈ ℂ)
2625sincld 16012 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (sin‘(𝑦 / 2)) ∈ ℂ)
2720, 26mulcld 11175 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ)
28 2rp 12920 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ+
2928a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 2 ∈ ℝ+)
3029rpne0d 12962 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 2 ≠ 0)
3118rpne0d 12962 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → π ≠ 0)
3216, 19, 30, 31mulne0d 11807 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ≠ 0)
3324, 16, 19, 30, 31divdiv1d 11962 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((𝑦 / 2) / π) = (𝑦 / (2 · π)))
34 dirkercncflem4.c . . . . . . . . . . . . . . . . . . . . . . . 24 𝐶 = (𝐴 · (2 · π))
35 dirkercncflem4.a . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐴 = (⌊‘(𝑌 / (2 · π)))
3635oveq1i 7367 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 · (2 · π)) = ((⌊‘(𝑌 / (2 · π))) · (2 · π))
3734, 36eqtri 2764 . . . . . . . . . . . . . . . . . . . . . . 23 𝐶 = ((⌊‘(𝑌 / (2 · π))) · (2 · π))
3837oveq1i 7367 . . . . . . . . . . . . . . . . . . . . . 22 (𝐶 / (2 · π)) = (((⌊‘(𝑌 / (2 · π))) · (2 · π)) / (2 · π))
39 dirkercncflem4.y . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑌 ∈ ℝ)
40 2re 12227 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ∈ ℝ
41 pire 25815 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 π ∈ ℝ
4240, 41remulcli 11171 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (2 · π) ∈ ℝ
4342a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (2 · π) ∈ ℝ)
44 0re 11157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 ∈ ℝ
45 2pos 12256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 < 2
46 pipos 25817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 < π
4740, 41, 45, 46mulgt0ii 11288 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 < (2 · π)
4844, 47gtneii 11267 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (2 · π) ≠ 0
4948a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (2 · π) ≠ 0)
5039, 43, 49redivcld 11983 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑌 / (2 · π)) ∈ ℝ)
5150flcld 13703 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (⌊‘(𝑌 / (2 · π))) ∈ ℤ)
5251zred 12607 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (⌊‘(𝑌 / (2 · π))) ∈ ℝ)
5352recnd 11183 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (⌊‘(𝑌 / (2 · π))) ∈ ℂ)
5443recnd 11183 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (2 · π) ∈ ℂ)
5553, 54, 49divcan4d 11937 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((⌊‘(𝑌 / (2 · π))) · (2 · π)) / (2 · π)) = (⌊‘(𝑌 / (2 · π))))
5638, 55eqtrid 2788 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐶 / (2 · π)) = (⌊‘(𝑌 / (2 · π))))
5756, 51eqeltrd 2838 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐶 / (2 · π)) ∈ ℤ)
5857adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝐶 / (2 · π)) ∈ ℤ)
5952, 43remulcld 11185 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((⌊‘(𝑌 / (2 · π))) · (2 · π)) ∈ ℝ)
6037, 59eqeltrid 2842 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ ℝ)
6160adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐶 ∈ ℝ)
6229, 18rpmulcld 12973 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ∈ ℝ+)
63 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑦 ∈ (𝐶(,)𝐸))
6460rexrd 11205 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐶 ∈ ℝ*)
6564adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐶 ∈ ℝ*)
6635eqcomi 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⌊‘(𝑌 / (2 · π))) = 𝐴
6766oveq1i 7367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((⌊‘(𝑌 / (2 · π))) + 1) = (𝐴 + 1)
68 dirkercncflem4.b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝐵 = (𝐴 + 1)
6967, 68eqtr4i 2767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((⌊‘(𝑌 / (2 · π))) + 1) = 𝐵
7069oveq1i 7367 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)) = (𝐵 · (2 · π))
71 dirkercncflem4.e . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐸 = (𝐵 · (2 · π))
7270, 71eqtr4i 2767 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)) = 𝐸
7372a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)) = 𝐸)
74 1red 11156 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → 1 ∈ ℝ)
7552, 74readdcld 11184 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((⌊‘(𝑌 / (2 · π))) + 1) ∈ ℝ)
7675, 43remulcld 11185 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)) ∈ ℝ)
7773, 76eqeltrrd 2839 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐸 ∈ ℝ)
7877rexrd 11205 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐸 ∈ ℝ*)
7978adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐸 ∈ ℝ*)
80 elioo2 13305 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ∈ ℝ*𝐸 ∈ ℝ*) → (𝑦 ∈ (𝐶(,)𝐸) ↔ (𝑦 ∈ ℝ ∧ 𝐶 < 𝑦𝑦 < 𝐸)))
8165, 79, 80syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 ∈ (𝐶(,)𝐸) ↔ (𝑦 ∈ ℝ ∧ 𝐶 < 𝑦𝑦 < 𝐸)))
8263, 81mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 ∈ ℝ ∧ 𝐶 < 𝑦𝑦 < 𝐸))
8382simp2d 1143 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐶 < 𝑦)
8461, 23, 62, 83ltdiv1dd 13014 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝐶 / (2 · π)) < (𝑦 / (2 · π)))
8577adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐸 ∈ ℝ)
8682simp3d 1144 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑦 < 𝐸)
8723, 85, 62, 86ltdiv1dd 13014 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / (2 · π)) < (𝐸 / (2 · π)))
8834a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐶 = (𝐴 · (2 · π)))
8988oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐶 / (2 · π)) = ((𝐴 · (2 · π)) / (2 · π)))
9089oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝐶 / (2 · π)) + 1) = (((𝐴 · (2 · π)) / (2 · π)) + 1))
9135, 53eqeltrid 2842 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐴 ∈ ℂ)
9291, 54, 49divcan4d 11937 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 · (2 · π)) / (2 · π)) = 𝐴)
9392oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐴 · (2 · π)) / (2 · π)) + 1) = (𝐴 + 1))
9468oveq1i 7367 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐵 · (2 · π)) = ((𝐴 + 1) · (2 · π))
9571, 94eqtri 2764 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐸 = ((𝐴 + 1) · (2 · π))
9695a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐸 = ((𝐴 + 1) · (2 · π)))
9796oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐸 / (2 · π)) = (((𝐴 + 1) · (2 · π)) / (2 · π)))
9891, 7addcld 11174 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 + 1) ∈ ℂ)
9998, 54, 49divcan4d 11937 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝐴 + 1) · (2 · π)) / (2 · π)) = (𝐴 + 1))
10097, 99eqtr2d 2777 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 + 1) = (𝐸 / (2 · π)))
10190, 93, 1003eqtrrd 2781 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸 / (2 · π)) = ((𝐶 / (2 · π)) + 1))
102101adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝐸 / (2 · π)) = ((𝐶 / (2 · π)) + 1))
10387, 102breqtrd 5131 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / (2 · π)) < ((𝐶 / (2 · π)) + 1))
104 btwnnz 12579 . . . . . . . . . . . . . . . . . . 19 (((𝐶 / (2 · π)) ∈ ℤ ∧ (𝐶 / (2 · π)) < (𝑦 / (2 · π)) ∧ (𝑦 / (2 · π)) < ((𝐶 / (2 · π)) + 1)) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
10558, 84, 103, 104syl3anc 1371 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
10633, 105eqneltrd 2857 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ ((𝑦 / 2) / π) ∈ ℤ)
107 sineq0 25880 . . . . . . . . . . . . . . . . . 18 ((𝑦 / 2) ∈ ℂ → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
10825, 107syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
109106, 108mtbird 324 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ (sin‘(𝑦 / 2)) = 0)
110109neqned 2950 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (sin‘(𝑦 / 2)) ≠ 0)
11120, 26, 32, 110mulne0d 11807 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((2 · π) · (sin‘(𝑦 / 2))) ≠ 0)
112111neneqd 2948 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ ((2 · π) · (sin‘(𝑦 / 2))) = 0)
11340a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 2 ∈ ℝ)
11441a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → π ∈ ℝ)
115113, 114remulcld 11185 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ∈ ℝ)
11623rehalfcld 12400 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / 2) ∈ ℝ)
117116resincld 16025 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (sin‘(𝑦 / 2)) ∈ ℝ)
118115, 117remulcld 11185 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℝ)
119 elsng 4600 . . . . . . . . . . . . . 14 (((2 · π) · (sin‘(𝑦 / 2))) ∈ ℝ → (((2 · π) · (sin‘(𝑦 / 2))) ∈ {0} ↔ ((2 · π) · (sin‘(𝑦 / 2))) = 0))
120118, 119syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (((2 · π) · (sin‘(𝑦 / 2))) ∈ {0} ↔ ((2 · π) · (sin‘(𝑦 / 2))) = 0))
121112, 120mtbird 324 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ ((2 · π) · (sin‘(𝑦 / 2))) ∈ {0})
12227, 121eldifd 3921 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ (ℂ ∖ {0}))
123 eqidd 2737 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))))
124 eqidd 2737 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)))
125 oveq2 7365 . . . . . . . . . . 11 (𝑥 = ((2 · π) · (sin‘(𝑦 / 2))) → (1 / 𝑥) = (1 / ((2 · π) · (sin‘(𝑦 / 2)))))
126122, 123, 124, 125fmptco 7075 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (𝑦 ∈ (𝐶(,)𝐸) ↦ (1 / ((2 · π) · (sin‘(𝑦 / 2))))))
127 eqid 2736 . . . . . . . . . . . 12 (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
128 2cnd 12231 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
1294, 128, 11constcncfg 44103 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ 2) ∈ ((𝐶(,)𝐸)–cn→ℂ))
13017a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → π ∈ ℝ+)
131130rpcnd 12959 . . . . . . . . . . . . . . 15 (𝜑 → π ∈ ℂ)
1324, 131, 11constcncfg 44103 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ π) ∈ ((𝐶(,)𝐸)–cn→ℂ))
133129, 132mulcncf 24810 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (2 · π)) ∈ ((𝐶(,)𝐸)–cn→ℂ))
13424, 16, 30divrecd 11934 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / 2) = (𝑦 · (1 / 2)))
135134mpteq2dva 5205 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑦 / 2)) = (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑦 · (1 / 2))))
1364, 8, 11constcncfg 44103 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (1 / 2)) ∈ ((𝐶(,)𝐸)–cn→ℂ))
13713, 136mulcncf 24810 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑦 · (1 / 2))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
138135, 137eqeltrd 2838 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑦 / 2)) ∈ ((𝐶(,)𝐸)–cn→ℂ))
1392, 138cncfmpt1f 24277 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (sin‘(𝑦 / 2))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
140133, 139mulcncf 24810 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
141 ssid 3966 . . . . . . . . . . . . 13 (𝐶(,)𝐸) ⊆ (𝐶(,)𝐸)
142141a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐶(,)𝐸) ⊆ (𝐶(,)𝐸))
143 difssd 4092 . . . . . . . . . . . 12 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
144127, 140, 142, 143, 122cncfmptssg 44102 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ∈ ((𝐶(,)𝐸)–cn→(ℂ ∖ {0})))
145 ax-1cn 11109 . . . . . . . . . . . 12 1 ∈ ℂ
146 eqid 2736 . . . . . . . . . . . . 13 (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))
147146cdivcncf 24284 . . . . . . . . . . . 12 (1 ∈ ℂ → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ ((ℂ ∖ {0})–cn→ℂ))
148145, 147mp1i 13 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ ((ℂ ∖ {0})–cn→ℂ))
149144, 148cncfco 24270 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
150126, 149eqeltrrd 2839 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (1 / ((2 · π) · (sin‘(𝑦 / 2))))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
15115, 150mulcncf 24810 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2)))))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
152 dirkercncflem4.d . . . . . . . . . . . 12 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
153152dirkerval 44322 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
1545, 153syl 17 . . . . . . . . . 10 (𝜑 → (𝐷𝑁) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
155154reseq1d 5936 . . . . . . . . 9 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) = ((𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) ↾ (𝐶(,)𝐸)))
15622resmptd 5994 . . . . . . . . 9 (𝜑 → ((𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) ↾ (𝐶(,)𝐸)) = (𝑦 ∈ (𝐶(,)𝐸) ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
15728a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ+)
158157, 130rpmulcld 12973 . . . . . . . . . . . . . . 15 (𝜑 → (2 · π) ∈ ℝ+)
159158adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ∈ ℝ+)
160 mod0 13781 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
16123, 159, 160syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
162105, 161mtbird 324 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ (𝑦 mod (2 · π)) = 0)
163162iffalsed 4497 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
1646adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑁 ∈ ℂ)
165 1cnd 11150 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 1 ∈ ℂ)
166165halfcld 12398 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (1 / 2) ∈ ℂ)
167164, 166addcld 11174 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑁 + (1 / 2)) ∈ ℂ)
168167, 24mulcld 11175 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
169168sincld 16012 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
170169, 27, 111divrecd 11934 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2))))))
171163, 170eqtrd 2776 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2))))))
172171mpteq2dva 5205 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑦 ∈ (𝐶(,)𝐸) ↦ ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2)))))))
173155, 156, 1723eqtrrd 2781 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2)))))) = ((𝐷𝑁) ↾ (𝐶(,)𝐸)))
174 eqid 2736 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
175174tgioo2 24166 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
176175oveq1i 7367 . . . . . . . . . . 11 ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐶(,)𝐸))
177174cnfldtop 24147 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ Top
178 reex 11142 . . . . . . . . . . . 12 ℝ ∈ V
179 restabs 22516 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐶(,)𝐸)) = ((TopOpen‘ℂfld) ↾t (𝐶(,)𝐸)))
180177, 21, 178, 179mp3an 1461 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐶(,)𝐸)) = ((TopOpen‘ℂfld) ↾t (𝐶(,)𝐸))
181176, 180eqtri 2764 . . . . . . . . . 10 ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) = ((TopOpen‘ℂfld) ↾t (𝐶(,)𝐸))
182 unicntop 24149 . . . . . . . . . . . . 13 ℂ = (TopOpen‘ℂfld)
183182restid 17315 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
184177, 183ax-mp 5 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
185184eqcomi 2745 . . . . . . . . . 10 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
186174, 181, 185cncfcn 24273 . . . . . . . . 9 (((𝐶(,)𝐸) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐶(,)𝐸)–cn→ℂ) = (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)))
1874, 11, 186syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐶(,)𝐸)–cn→ℂ) = (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)))
188151, 173, 1873eltr3d 2852 . . . . . . 7 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)))
189 retopon 24127 . . . . . . . . . 10 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
190189a1i 11 . . . . . . . . 9 (𝜑 → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
191 resttopon 22512 . . . . . . . . 9 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (𝐶(,)𝐸) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) ∈ (TopOn‘(𝐶(,)𝐸)))
192190, 22, 191syl2anc 584 . . . . . . . 8 (𝜑 → ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) ∈ (TopOn‘(𝐶(,)𝐸)))
193174cnfldtopon 24146 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
194193a1i 11 . . . . . . . 8 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
195 cncnp 22631 . . . . . . . 8 ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) ∈ (TopOn‘(𝐶(,)𝐸)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)) ↔ (((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℂ ∧ ∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦))))
196192, 194, 195syl2anc 584 . . . . . . 7 (𝜑 → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)) ↔ (((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℂ ∧ ∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦))))
197188, 196mpbid 231 . . . . . 6 (𝜑 → (((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℂ ∧ ∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦)))
198197simprd 496 . . . . 5 (𝜑 → ∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦))
199 dirkercncflem4.ymod0 . . . . . . . . . . . 12 (𝜑 → (𝑌 mod (2 · π)) ≠ 0)
200199neneqd 2948 . . . . . . . . . . 11 (𝜑 → ¬ (𝑌 mod (2 · π)) = 0)
201 mod0 13781 . . . . . . . . . . . 12 ((𝑌 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
20239, 158, 201syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
203200, 202mtbid 323 . . . . . . . . . 10 (𝜑 → ¬ (𝑌 / (2 · π)) ∈ ℤ)
204 flltnz 13716 . . . . . . . . . 10 (((𝑌 / (2 · π)) ∈ ℝ ∧ ¬ (𝑌 / (2 · π)) ∈ ℤ) → (⌊‘(𝑌 / (2 · π))) < (𝑌 / (2 · π)))
20550, 203, 204syl2anc 584 . . . . . . . . 9 (𝜑 → (⌊‘(𝑌 / (2 · π))) < (𝑌 / (2 · π)))
20652, 50, 158, 205ltmul1dd 13012 . . . . . . . 8 (𝜑 → ((⌊‘(𝑌 / (2 · π))) · (2 · π)) < ((𝑌 / (2 · π)) · (2 · π)))
20739recnd 11183 . . . . . . . . 9 (𝜑𝑌 ∈ ℂ)
208207, 54, 49divcan1d 11932 . . . . . . . 8 (𝜑 → ((𝑌 / (2 · π)) · (2 · π)) = 𝑌)
209206, 208breqtrd 5131 . . . . . . 7 (𝜑 → ((⌊‘(𝑌 / (2 · π))) · (2 · π)) < 𝑌)
21037, 209eqbrtrid 5140 . . . . . 6 (𝜑𝐶 < 𝑌)
211 fllelt 13702 . . . . . . . . . 10 ((𝑌 / (2 · π)) ∈ ℝ → ((⌊‘(𝑌 / (2 · π))) ≤ (𝑌 / (2 · π)) ∧ (𝑌 / (2 · π)) < ((⌊‘(𝑌 / (2 · π))) + 1)))
21250, 211syl 17 . . . . . . . . 9 (𝜑 → ((⌊‘(𝑌 / (2 · π))) ≤ (𝑌 / (2 · π)) ∧ (𝑌 / (2 · π)) < ((⌊‘(𝑌 / (2 · π))) + 1)))
213212simprd 496 . . . . . . . 8 (𝜑 → (𝑌 / (2 · π)) < ((⌊‘(𝑌 / (2 · π))) + 1))
21450, 75, 158, 213ltmul1dd 13012 . . . . . . 7 (𝜑 → ((𝑌 / (2 · π)) · (2 · π)) < (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)))
215214, 208, 733brtr3d 5136 . . . . . 6 (𝜑𝑌 < 𝐸)
21664, 78, 39, 210, 215eliood 43726 . . . . 5 (𝜑𝑌 ∈ (𝐶(,)𝐸))
217 fveq2 6842 . . . . . . 7 (𝑦 = 𝑌 → ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦) = ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌))
218217eleq2d 2823 . . . . . 6 (𝑦 = 𝑌 → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌)))
219218rspccva 3580 . . . . 5 ((∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦) ∧ 𝑌 ∈ (𝐶(,)𝐸)) → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌))
220198, 216, 219syl2anc 584 . . . 4 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌))
221177a1i 11 . . . . 5 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
222152dirkerf 44328 . . . . . . 7 (𝑁 ∈ ℕ → (𝐷𝑁):ℝ⟶ℝ)
2235, 222syl 17 . . . . . 6 (𝜑 → (𝐷𝑁):ℝ⟶ℝ)
224223, 22fssresd 6709 . . . . 5 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℝ)
225 ax-resscn 11108 . . . . . 6 ℝ ⊆ ℂ
226225a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
227 retop 24125 . . . . . . 7 (topGen‘ran (,)) ∈ Top
228 uniretop 24126 . . . . . . . 8 ℝ = (topGen‘ran (,))
229228restuni 22513 . . . . . . 7 (((topGen‘ran (,)) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ) → (𝐶(,)𝐸) = ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)))
230227, 21, 229mp2an 690 . . . . . 6 (𝐶(,)𝐸) = ((topGen‘ran (,)) ↾t (𝐶(,)𝐸))
231230, 182cnprest2 22641 . . . . 5 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℝ ∧ ℝ ⊆ ℂ) → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑌)))
232221, 224, 226, 231syl3anc 1371 . . . 4 (𝜑 → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑌)))
233220, 232mpbid 231 . . 3 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑌))
234175eqcomi 2745 . . . . . 6 ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,))
235234a1i 11 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,)))
236235oveq2d 7373 . . . 4 (𝜑 → (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ)) = (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,))))
237236fveq1d 6844 . . 3 (𝜑 → ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑌) = ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,)))‘𝑌))
238233, 237eleqtrd 2840 . 2 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,)))‘𝑌))
239227a1i 11 . . 3 (𝜑 → (topGen‘ran (,)) ∈ Top)
240 iooretop 24129 . . . . . . 7 (𝐶(,)𝐸) ∈ (topGen‘ran (,))
241228isopn3 22417 . . . . . . 7 (((topGen‘ran (,)) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ) → ((𝐶(,)𝐸) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)) = (𝐶(,)𝐸)))
242240, 241mpbii 232 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)) = (𝐶(,)𝐸))
243239, 22, 242syl2anc 584 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)) = (𝐶(,)𝐸))
244243eqcomd 2742 . . . 4 (𝜑 → (𝐶(,)𝐸) = ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)))
245216, 244eleqtrd 2840 . . 3 (𝜑𝑌 ∈ ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)))
246228, 228cnprest 22640 . . 3 ((((topGen‘ran (,)) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ) ∧ (𝑌 ∈ ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)) ∧ (𝐷𝑁):ℝ⟶ℝ)) → ((𝐷𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,)))‘𝑌)))
247239, 22, 245, 223, 246syl22anc 837 . 2 (𝜑 → ((𝐷𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,)))‘𝑌)))
248238, 247mpbird 256 1 (𝜑 → (𝐷𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  Vcvv 3445  cdif 3907  wss 3910  ifcif 4486  {csn 4586   cuni 4865   class class class wbr 5105  cmpt 5188  ran crn 5634  cres 5635  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  *cxr 11188   < clt 11189  cle 11190   / cdiv 11812  cn 12153  2c2 12208  cz 12499  +crp 12915  (,)cioo 13264  cfl 13695   mod cmo 13774  sincsin 15946  πcpi 15949  t crest 17302  TopOpenctopn 17303  topGenctg 17319  fldccnfld 20796  Topctop 22242  TopOnctopon 22259  intcnt 22368   Cn ccn 22575   CnP ccnp 22576  cnccncf 24239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231
This theorem is referenced by:  dirkercncf  44338
  Copyright terms: Public domain W3C validator