Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkercncflem4 Structured version   Visualization version   GIF version

Theorem dirkercncflem4 46061
Description: The Dirichlet Kernel is continuos at points that are not multiple of 2 π . This is the easier condition, for the proof of the continuity of the Dirichlet kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkercncflem4.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
dirkercncflem4.n (𝜑𝑁 ∈ ℕ)
dirkercncflem4.y (𝜑𝑌 ∈ ℝ)
dirkercncflem4.ymod0 (𝜑 → (𝑌 mod (2 · π)) ≠ 0)
dirkercncflem4.a 𝐴 = (⌊‘(𝑌 / (2 · π)))
dirkercncflem4.b 𝐵 = (𝐴 + 1)
dirkercncflem4.c 𝐶 = (𝐴 · (2 · π))
dirkercncflem4.e 𝐸 = (𝐵 · (2 · π))
Assertion
Ref Expression
dirkercncflem4 (𝜑 → (𝐷𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌))
Distinct variable groups:   𝑦,𝐶   𝑦,𝐷   𝑦,𝐸   𝑦,𝑁   𝑦,𝑌   𝑦,𝑛   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑦,𝑛)   𝐵(𝑦,𝑛)   𝐶(𝑛)   𝐷(𝑛)   𝐸(𝑛)   𝑁(𝑛)   𝑌(𝑛)

Proof of Theorem dirkercncflem4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sincn 26502 . . . . . . . . . . 11 sin ∈ (ℂ–cn→ℂ)
21a1i 11 . . . . . . . . . 10 (𝜑 → sin ∈ (ℂ–cn→ℂ))
3 ioosscn 13445 . . . . . . . . . . . . 13 (𝐶(,)𝐸) ⊆ ℂ
43a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐶(,)𝐸) ⊆ ℂ)
5 dirkercncflem4.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
65nncnd 12279 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
7 1cnd 11253 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
87halfcld 12508 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℂ)
96, 8addcld 11277 . . . . . . . . . . . 12 (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ)
10 ssid 4017 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
1110a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
124, 9, 11constcncfg 45827 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑁 + (1 / 2))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
134, 11idcncfg 45828 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ 𝑦) ∈ ((𝐶(,)𝐸)–cn→ℂ))
1412, 13mulcncf 25493 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((𝑁 + (1 / 2)) · 𝑦)) ∈ ((𝐶(,)𝐸)–cn→ℂ))
152, 14cncfmpt1f 24953 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
16 2cnd 12341 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 2 ∈ ℂ)
17 pirp 26517 . . . . . . . . . . . . . . . 16 π ∈ ℝ+
1817a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → π ∈ ℝ+)
1918rpcnd 13076 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → π ∈ ℂ)
2016, 19mulcld 11278 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ∈ ℂ)
21 ioossre 13444 . . . . . . . . . . . . . . . . . 18 (𝐶(,)𝐸) ⊆ ℝ
2221a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐶(,)𝐸) ⊆ ℝ)
2322sselda 3994 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑦 ∈ ℝ)
2423recnd 11286 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑦 ∈ ℂ)
2524halfcld 12508 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / 2) ∈ ℂ)
2625sincld 16162 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (sin‘(𝑦 / 2)) ∈ ℂ)
2720, 26mulcld 11278 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ)
28 2rp 13036 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ+
2928a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 2 ∈ ℝ+)
3029rpne0d 13079 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 2 ≠ 0)
3118rpne0d 13079 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → π ≠ 0)
3216, 19, 30, 31mulne0d 11912 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ≠ 0)
3324, 16, 19, 30, 31divdiv1d 12071 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((𝑦 / 2) / π) = (𝑦 / (2 · π)))
34 dirkercncflem4.c . . . . . . . . . . . . . . . . . . . . . . . 24 𝐶 = (𝐴 · (2 · π))
35 dirkercncflem4.a . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐴 = (⌊‘(𝑌 / (2 · π)))
3635oveq1i 7440 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 · (2 · π)) = ((⌊‘(𝑌 / (2 · π))) · (2 · π))
3734, 36eqtri 2762 . . . . . . . . . . . . . . . . . . . . . . 23 𝐶 = ((⌊‘(𝑌 / (2 · π))) · (2 · π))
3837oveq1i 7440 . . . . . . . . . . . . . . . . . . . . . 22 (𝐶 / (2 · π)) = (((⌊‘(𝑌 / (2 · π))) · (2 · π)) / (2 · π))
39 dirkercncflem4.y . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑌 ∈ ℝ)
40 2re 12337 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ∈ ℝ
41 pire 26514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 π ∈ ℝ
4240, 41remulcli 11274 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (2 · π) ∈ ℝ
4342a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (2 · π) ∈ ℝ)
44 0re 11260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 ∈ ℝ
45 2pos 12366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 < 2
46 pipos 26516 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 < π
4740, 41, 45, 46mulgt0ii 11391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 < (2 · π)
4844, 47gtneii 11370 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (2 · π) ≠ 0
4948a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (2 · π) ≠ 0)
5039, 43, 49redivcld 12092 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑌 / (2 · π)) ∈ ℝ)
5150flcld 13834 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (⌊‘(𝑌 / (2 · π))) ∈ ℤ)
5251zred 12719 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (⌊‘(𝑌 / (2 · π))) ∈ ℝ)
5352recnd 11286 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (⌊‘(𝑌 / (2 · π))) ∈ ℂ)
5443recnd 11286 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (2 · π) ∈ ℂ)
5553, 54, 49divcan4d 12046 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((⌊‘(𝑌 / (2 · π))) · (2 · π)) / (2 · π)) = (⌊‘(𝑌 / (2 · π))))
5638, 55eqtrid 2786 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐶 / (2 · π)) = (⌊‘(𝑌 / (2 · π))))
5756, 51eqeltrd 2838 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐶 / (2 · π)) ∈ ℤ)
5857adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝐶 / (2 · π)) ∈ ℤ)
5952, 43remulcld 11288 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((⌊‘(𝑌 / (2 · π))) · (2 · π)) ∈ ℝ)
6037, 59eqeltrid 2842 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ ℝ)
6160adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐶 ∈ ℝ)
6229, 18rpmulcld 13090 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ∈ ℝ+)
63 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑦 ∈ (𝐶(,)𝐸))
6460rexrd 11308 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐶 ∈ ℝ*)
6564adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐶 ∈ ℝ*)
6635eqcomi 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⌊‘(𝑌 / (2 · π))) = 𝐴
6766oveq1i 7440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((⌊‘(𝑌 / (2 · π))) + 1) = (𝐴 + 1)
68 dirkercncflem4.b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝐵 = (𝐴 + 1)
6967, 68eqtr4i 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((⌊‘(𝑌 / (2 · π))) + 1) = 𝐵
7069oveq1i 7440 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)) = (𝐵 · (2 · π))
71 dirkercncflem4.e . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐸 = (𝐵 · (2 · π))
7270, 71eqtr4i 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)) = 𝐸
7372a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)) = 𝐸)
74 1red 11259 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → 1 ∈ ℝ)
7552, 74readdcld 11287 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((⌊‘(𝑌 / (2 · π))) + 1) ∈ ℝ)
7675, 43remulcld 11288 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)) ∈ ℝ)
7773, 76eqeltrrd 2839 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐸 ∈ ℝ)
7877rexrd 11308 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐸 ∈ ℝ*)
7978adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐸 ∈ ℝ*)
80 elioo2 13424 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ∈ ℝ*𝐸 ∈ ℝ*) → (𝑦 ∈ (𝐶(,)𝐸) ↔ (𝑦 ∈ ℝ ∧ 𝐶 < 𝑦𝑦 < 𝐸)))
8165, 79, 80syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 ∈ (𝐶(,)𝐸) ↔ (𝑦 ∈ ℝ ∧ 𝐶 < 𝑦𝑦 < 𝐸)))
8263, 81mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 ∈ ℝ ∧ 𝐶 < 𝑦𝑦 < 𝐸))
8382simp2d 1142 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐶 < 𝑦)
8461, 23, 62, 83ltdiv1dd 13131 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝐶 / (2 · π)) < (𝑦 / (2 · π)))
8577adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐸 ∈ ℝ)
8682simp3d 1143 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑦 < 𝐸)
8723, 85, 62, 86ltdiv1dd 13131 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / (2 · π)) < (𝐸 / (2 · π)))
8834a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐶 = (𝐴 · (2 · π)))
8988oveq1d 7445 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐶 / (2 · π)) = ((𝐴 · (2 · π)) / (2 · π)))
9089oveq1d 7445 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝐶 / (2 · π)) + 1) = (((𝐴 · (2 · π)) / (2 · π)) + 1))
9135, 53eqeltrid 2842 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐴 ∈ ℂ)
9291, 54, 49divcan4d 12046 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 · (2 · π)) / (2 · π)) = 𝐴)
9392oveq1d 7445 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐴 · (2 · π)) / (2 · π)) + 1) = (𝐴 + 1))
9468oveq1i 7440 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐵 · (2 · π)) = ((𝐴 + 1) · (2 · π))
9571, 94eqtri 2762 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐸 = ((𝐴 + 1) · (2 · π))
9695a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐸 = ((𝐴 + 1) · (2 · π)))
9796oveq1d 7445 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐸 / (2 · π)) = (((𝐴 + 1) · (2 · π)) / (2 · π)))
9891, 7addcld 11277 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 + 1) ∈ ℂ)
9998, 54, 49divcan4d 12046 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝐴 + 1) · (2 · π)) / (2 · π)) = (𝐴 + 1))
10097, 99eqtr2d 2775 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 + 1) = (𝐸 / (2 · π)))
10190, 93, 1003eqtrrd 2779 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸 / (2 · π)) = ((𝐶 / (2 · π)) + 1))
102101adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝐸 / (2 · π)) = ((𝐶 / (2 · π)) + 1))
10387, 102breqtrd 5173 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / (2 · π)) < ((𝐶 / (2 · π)) + 1))
104 btwnnz 12691 . . . . . . . . . . . . . . . . . . 19 (((𝐶 / (2 · π)) ∈ ℤ ∧ (𝐶 / (2 · π)) < (𝑦 / (2 · π)) ∧ (𝑦 / (2 · π)) < ((𝐶 / (2 · π)) + 1)) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
10558, 84, 103, 104syl3anc 1370 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
10633, 105eqneltrd 2858 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ ((𝑦 / 2) / π) ∈ ℤ)
107 sineq0 26580 . . . . . . . . . . . . . . . . . 18 ((𝑦 / 2) ∈ ℂ → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
10825, 107syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
109106, 108mtbird 325 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ (sin‘(𝑦 / 2)) = 0)
110109neqned 2944 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (sin‘(𝑦 / 2)) ≠ 0)
11120, 26, 32, 110mulne0d 11912 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((2 · π) · (sin‘(𝑦 / 2))) ≠ 0)
112111neneqd 2942 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ ((2 · π) · (sin‘(𝑦 / 2))) = 0)
11340a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 2 ∈ ℝ)
11441a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → π ∈ ℝ)
115113, 114remulcld 11288 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ∈ ℝ)
11623rehalfcld 12510 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / 2) ∈ ℝ)
117116resincld 16175 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (sin‘(𝑦 / 2)) ∈ ℝ)
118115, 117remulcld 11288 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℝ)
119 elsng 4644 . . . . . . . . . . . . . 14 (((2 · π) · (sin‘(𝑦 / 2))) ∈ ℝ → (((2 · π) · (sin‘(𝑦 / 2))) ∈ {0} ↔ ((2 · π) · (sin‘(𝑦 / 2))) = 0))
120118, 119syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (((2 · π) · (sin‘(𝑦 / 2))) ∈ {0} ↔ ((2 · π) · (sin‘(𝑦 / 2))) = 0))
121112, 120mtbird 325 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ ((2 · π) · (sin‘(𝑦 / 2))) ∈ {0})
12227, 121eldifd 3973 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ (ℂ ∖ {0}))
123 eqidd 2735 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))))
124 eqidd 2735 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)))
125 oveq2 7438 . . . . . . . . . . 11 (𝑥 = ((2 · π) · (sin‘(𝑦 / 2))) → (1 / 𝑥) = (1 / ((2 · π) · (sin‘(𝑦 / 2)))))
126122, 123, 124, 125fmptco 7148 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (𝑦 ∈ (𝐶(,)𝐸) ↦ (1 / ((2 · π) · (sin‘(𝑦 / 2))))))
127 eqid 2734 . . . . . . . . . . . 12 (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
128 2cnd 12341 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
1294, 128, 11constcncfg 45827 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ 2) ∈ ((𝐶(,)𝐸)–cn→ℂ))
13017a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → π ∈ ℝ+)
131130rpcnd 13076 . . . . . . . . . . . . . . 15 (𝜑 → π ∈ ℂ)
1324, 131, 11constcncfg 45827 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ π) ∈ ((𝐶(,)𝐸)–cn→ℂ))
133129, 132mulcncf 25493 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (2 · π)) ∈ ((𝐶(,)𝐸)–cn→ℂ))
13424, 16, 30divrecd 12043 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / 2) = (𝑦 · (1 / 2)))
135134mpteq2dva 5247 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑦 / 2)) = (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑦 · (1 / 2))))
1364, 8, 11constcncfg 45827 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (1 / 2)) ∈ ((𝐶(,)𝐸)–cn→ℂ))
13713, 136mulcncf 25493 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑦 · (1 / 2))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
138135, 137eqeltrd 2838 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑦 / 2)) ∈ ((𝐶(,)𝐸)–cn→ℂ))
1392, 138cncfmpt1f 24953 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (sin‘(𝑦 / 2))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
140133, 139mulcncf 25493 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
141 ssid 4017 . . . . . . . . . . . . 13 (𝐶(,)𝐸) ⊆ (𝐶(,)𝐸)
142141a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐶(,)𝐸) ⊆ (𝐶(,)𝐸))
143 difssd 4146 . . . . . . . . . . . 12 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
144127, 140, 142, 143, 122cncfmptssg 45826 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ∈ ((𝐶(,)𝐸)–cn→(ℂ ∖ {0})))
145 ax-1cn 11210 . . . . . . . . . . . 12 1 ∈ ℂ
146 eqid 2734 . . . . . . . . . . . . 13 (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))
147146cdivcncf 24960 . . . . . . . . . . . 12 (1 ∈ ℂ → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ ((ℂ ∖ {0})–cn→ℂ))
148145, 147mp1i 13 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ ((ℂ ∖ {0})–cn→ℂ))
149144, 148cncfco 24946 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
150126, 149eqeltrrd 2839 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (1 / ((2 · π) · (sin‘(𝑦 / 2))))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
15115, 150mulcncf 25493 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2)))))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
152 dirkercncflem4.d . . . . . . . . . . . 12 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
153152dirkerval 46046 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
1545, 153syl 17 . . . . . . . . . 10 (𝜑 → (𝐷𝑁) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
155154reseq1d 5998 . . . . . . . . 9 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) = ((𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) ↾ (𝐶(,)𝐸)))
15622resmptd 6059 . . . . . . . . 9 (𝜑 → ((𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) ↾ (𝐶(,)𝐸)) = (𝑦 ∈ (𝐶(,)𝐸) ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
15728a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ+)
158157, 130rpmulcld 13090 . . . . . . . . . . . . . . 15 (𝜑 → (2 · π) ∈ ℝ+)
159158adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ∈ ℝ+)
160 mod0 13912 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
16123, 159, 160syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
162105, 161mtbird 325 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ (𝑦 mod (2 · π)) = 0)
163162iffalsed 4541 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
1646adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑁 ∈ ℂ)
165 1cnd 11253 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 1 ∈ ℂ)
166165halfcld 12508 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (1 / 2) ∈ ℂ)
167164, 166addcld 11277 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑁 + (1 / 2)) ∈ ℂ)
168167, 24mulcld 11278 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
169168sincld 16162 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
170169, 27, 111divrecd 12043 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2))))))
171163, 170eqtrd 2774 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2))))))
172171mpteq2dva 5247 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑦 ∈ (𝐶(,)𝐸) ↦ ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2)))))))
173155, 156, 1723eqtrrd 2779 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2)))))) = ((𝐷𝑁) ↾ (𝐶(,)𝐸)))
174 eqid 2734 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
175174tgioo2 24838 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
176175oveq1i 7440 . . . . . . . . . . 11 ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐶(,)𝐸))
177174cnfldtop 24819 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ Top
178 reex 11243 . . . . . . . . . . . 12 ℝ ∈ V
179 restabs 23188 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐶(,)𝐸)) = ((TopOpen‘ℂfld) ↾t (𝐶(,)𝐸)))
180177, 21, 178, 179mp3an 1460 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐶(,)𝐸)) = ((TopOpen‘ℂfld) ↾t (𝐶(,)𝐸))
181176, 180eqtri 2762 . . . . . . . . . 10 ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) = ((TopOpen‘ℂfld) ↾t (𝐶(,)𝐸))
182 unicntop 24821 . . . . . . . . . . . . 13 ℂ = (TopOpen‘ℂfld)
183182restid 17479 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
184177, 183ax-mp 5 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
185184eqcomi 2743 . . . . . . . . . 10 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
186174, 181, 185cncfcn 24949 . . . . . . . . 9 (((𝐶(,)𝐸) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐶(,)𝐸)–cn→ℂ) = (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)))
1874, 11, 186syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐶(,)𝐸)–cn→ℂ) = (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)))
188151, 173, 1873eltr3d 2852 . . . . . . 7 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)))
189 retopon 24799 . . . . . . . . . 10 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
190189a1i 11 . . . . . . . . 9 (𝜑 → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
191 resttopon 23184 . . . . . . . . 9 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (𝐶(,)𝐸) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) ∈ (TopOn‘(𝐶(,)𝐸)))
192190, 22, 191syl2anc 584 . . . . . . . 8 (𝜑 → ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) ∈ (TopOn‘(𝐶(,)𝐸)))
193174cnfldtopon 24818 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
194193a1i 11 . . . . . . . 8 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
195 cncnp 23303 . . . . . . . 8 ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) ∈ (TopOn‘(𝐶(,)𝐸)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)) ↔ (((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℂ ∧ ∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦))))
196192, 194, 195syl2anc 584 . . . . . . 7 (𝜑 → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)) ↔ (((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℂ ∧ ∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦))))
197188, 196mpbid 232 . . . . . 6 (𝜑 → (((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℂ ∧ ∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦)))
198197simprd 495 . . . . 5 (𝜑 → ∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦))
199 dirkercncflem4.ymod0 . . . . . . . . . . . 12 (𝜑 → (𝑌 mod (2 · π)) ≠ 0)
200199neneqd 2942 . . . . . . . . . . 11 (𝜑 → ¬ (𝑌 mod (2 · π)) = 0)
201 mod0 13912 . . . . . . . . . . . 12 ((𝑌 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
20239, 158, 201syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
203200, 202mtbid 324 . . . . . . . . . 10 (𝜑 → ¬ (𝑌 / (2 · π)) ∈ ℤ)
204 flltnz 13847 . . . . . . . . . 10 (((𝑌 / (2 · π)) ∈ ℝ ∧ ¬ (𝑌 / (2 · π)) ∈ ℤ) → (⌊‘(𝑌 / (2 · π))) < (𝑌 / (2 · π)))
20550, 203, 204syl2anc 584 . . . . . . . . 9 (𝜑 → (⌊‘(𝑌 / (2 · π))) < (𝑌 / (2 · π)))
20652, 50, 158, 205ltmul1dd 13129 . . . . . . . 8 (𝜑 → ((⌊‘(𝑌 / (2 · π))) · (2 · π)) < ((𝑌 / (2 · π)) · (2 · π)))
20739recnd 11286 . . . . . . . . 9 (𝜑𝑌 ∈ ℂ)
208207, 54, 49divcan1d 12041 . . . . . . . 8 (𝜑 → ((𝑌 / (2 · π)) · (2 · π)) = 𝑌)
209206, 208breqtrd 5173 . . . . . . 7 (𝜑 → ((⌊‘(𝑌 / (2 · π))) · (2 · π)) < 𝑌)
21037, 209eqbrtrid 5182 . . . . . 6 (𝜑𝐶 < 𝑌)
211 fllelt 13833 . . . . . . . . . 10 ((𝑌 / (2 · π)) ∈ ℝ → ((⌊‘(𝑌 / (2 · π))) ≤ (𝑌 / (2 · π)) ∧ (𝑌 / (2 · π)) < ((⌊‘(𝑌 / (2 · π))) + 1)))
21250, 211syl 17 . . . . . . . . 9 (𝜑 → ((⌊‘(𝑌 / (2 · π))) ≤ (𝑌 / (2 · π)) ∧ (𝑌 / (2 · π)) < ((⌊‘(𝑌 / (2 · π))) + 1)))
213212simprd 495 . . . . . . . 8 (𝜑 → (𝑌 / (2 · π)) < ((⌊‘(𝑌 / (2 · π))) + 1))
21450, 75, 158, 213ltmul1dd 13129 . . . . . . 7 (𝜑 → ((𝑌 / (2 · π)) · (2 · π)) < (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)))
215214, 208, 733brtr3d 5178 . . . . . 6 (𝜑𝑌 < 𝐸)
21664, 78, 39, 210, 215eliood 45450 . . . . 5 (𝜑𝑌 ∈ (𝐶(,)𝐸))
217 fveq2 6906 . . . . . . 7 (𝑦 = 𝑌 → ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦) = ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌))
218217eleq2d 2824 . . . . . 6 (𝑦 = 𝑌 → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌)))
219218rspccva 3620 . . . . 5 ((∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦) ∧ 𝑌 ∈ (𝐶(,)𝐸)) → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌))
220198, 216, 219syl2anc 584 . . . 4 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌))
221177a1i 11 . . . . 5 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
222152dirkerf 46052 . . . . . . 7 (𝑁 ∈ ℕ → (𝐷𝑁):ℝ⟶ℝ)
2235, 222syl 17 . . . . . 6 (𝜑 → (𝐷𝑁):ℝ⟶ℝ)
224223, 22fssresd 6775 . . . . 5 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℝ)
225 ax-resscn 11209 . . . . . 6 ℝ ⊆ ℂ
226225a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
227 retop 24797 . . . . . . 7 (topGen‘ran (,)) ∈ Top
228 uniretop 24798 . . . . . . . 8 ℝ = (topGen‘ran (,))
229228restuni 23185 . . . . . . 7 (((topGen‘ran (,)) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ) → (𝐶(,)𝐸) = ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)))
230227, 21, 229mp2an 692 . . . . . 6 (𝐶(,)𝐸) = ((topGen‘ran (,)) ↾t (𝐶(,)𝐸))
231230, 182cnprest2 23313 . . . . 5 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℝ ∧ ℝ ⊆ ℂ) → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑌)))
232221, 224, 226, 231syl3anc 1370 . . . 4 (𝜑 → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑌)))
233220, 232mpbid 232 . . 3 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑌))
234175eqcomi 2743 . . . . . 6 ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,))
235234a1i 11 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,)))
236235oveq2d 7446 . . . 4 (𝜑 → (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ)) = (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,))))
237236fveq1d 6908 . . 3 (𝜑 → ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑌) = ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,)))‘𝑌))
238233, 237eleqtrd 2840 . 2 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,)))‘𝑌))
239227a1i 11 . . 3 (𝜑 → (topGen‘ran (,)) ∈ Top)
240 iooretop 24801 . . . . . . 7 (𝐶(,)𝐸) ∈ (topGen‘ran (,))
241228isopn3 23089 . . . . . . 7 (((topGen‘ran (,)) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ) → ((𝐶(,)𝐸) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)) = (𝐶(,)𝐸)))
242240, 241mpbii 233 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)) = (𝐶(,)𝐸))
243239, 22, 242syl2anc 584 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)) = (𝐶(,)𝐸))
244243eqcomd 2740 . . . 4 (𝜑 → (𝐶(,)𝐸) = ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)))
245216, 244eleqtrd 2840 . . 3 (𝜑𝑌 ∈ ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)))
246228, 228cnprest 23312 . . 3 ((((topGen‘ran (,)) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ) ∧ (𝑌 ∈ ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)) ∧ (𝐷𝑁):ℝ⟶ℝ)) → ((𝐷𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,)))‘𝑌)))
247239, 22, 245, 223, 246syl22anc 839 . 2 (𝜑 → ((𝐷𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,)))‘𝑌)))
248238, 247mpbird 257 1 (𝜑 → (𝐷𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  Vcvv 3477  cdif 3959  wss 3962  ifcif 4530  {csn 4630   cuni 4911   class class class wbr 5147  cmpt 5230  ran crn 5689  cres 5690  ccom 5692  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  *cxr 11291   < clt 11292  cle 11293   / cdiv 11917  cn 12263  2c2 12318  cz 12610  +crp 13031  (,)cioo 13383  cfl 13826   mod cmo 13905  sincsin 16095  πcpi 16098  t crest 17466  TopOpenctopn 17467  topGenctg 17483  fldccnfld 21381  Topctop 22914  TopOnctopon 22931  intcnt 23040   Cn ccn 23247   CnP ccnp 23248  cnccncf 24915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916
This theorem is referenced by:  dirkercncf  46062
  Copyright terms: Public domain W3C validator