Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkercncflem4 Structured version   Visualization version   GIF version

Theorem dirkercncflem4 46135
Description: The Dirichlet Kernel is continuos at points that are not multiple of 2 π . This is the easier condition, for the proof of the continuity of the Dirichlet kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkercncflem4.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
dirkercncflem4.n (𝜑𝑁 ∈ ℕ)
dirkercncflem4.y (𝜑𝑌 ∈ ℝ)
dirkercncflem4.ymod0 (𝜑 → (𝑌 mod (2 · π)) ≠ 0)
dirkercncflem4.a 𝐴 = (⌊‘(𝑌 / (2 · π)))
dirkercncflem4.b 𝐵 = (𝐴 + 1)
dirkercncflem4.c 𝐶 = (𝐴 · (2 · π))
dirkercncflem4.e 𝐸 = (𝐵 · (2 · π))
Assertion
Ref Expression
dirkercncflem4 (𝜑 → (𝐷𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌))
Distinct variable groups:   𝑦,𝐶   𝑦,𝐷   𝑦,𝐸   𝑦,𝑁   𝑦,𝑌   𝑦,𝑛   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑦,𝑛)   𝐵(𝑦,𝑛)   𝐶(𝑛)   𝐷(𝑛)   𝐸(𝑛)   𝑁(𝑛)   𝑌(𝑛)

Proof of Theorem dirkercncflem4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sincn 26406 . . . . . . . . . . 11 sin ∈ (ℂ–cn→ℂ)
21a1i 11 . . . . . . . . . 10 (𝜑 → sin ∈ (ℂ–cn→ℂ))
3 ioosscn 13425 . . . . . . . . . . . . 13 (𝐶(,)𝐸) ⊆ ℂ
43a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐶(,)𝐸) ⊆ ℂ)
5 dirkercncflem4.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
65nncnd 12256 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
7 1cnd 11230 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
87halfcld 12486 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℂ)
96, 8addcld 11254 . . . . . . . . . . . 12 (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ)
10 ssid 3981 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
1110a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
124, 9, 11constcncfg 45901 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑁 + (1 / 2))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
134, 11idcncfg 45902 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ 𝑦) ∈ ((𝐶(,)𝐸)–cn→ℂ))
1412, 13mulcncf 25398 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((𝑁 + (1 / 2)) · 𝑦)) ∈ ((𝐶(,)𝐸)–cn→ℂ))
152, 14cncfmpt1f 24858 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
16 2cnd 12318 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 2 ∈ ℂ)
17 pirp 26422 . . . . . . . . . . . . . . . 16 π ∈ ℝ+
1817a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → π ∈ ℝ+)
1918rpcnd 13053 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → π ∈ ℂ)
2016, 19mulcld 11255 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ∈ ℂ)
21 ioossre 13424 . . . . . . . . . . . . . . . . . 18 (𝐶(,)𝐸) ⊆ ℝ
2221a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐶(,)𝐸) ⊆ ℝ)
2322sselda 3958 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑦 ∈ ℝ)
2423recnd 11263 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑦 ∈ ℂ)
2524halfcld 12486 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / 2) ∈ ℂ)
2625sincld 16148 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (sin‘(𝑦 / 2)) ∈ ℂ)
2720, 26mulcld 11255 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ)
28 2rp 13013 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ+
2928a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 2 ∈ ℝ+)
3029rpne0d 13056 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 2 ≠ 0)
3118rpne0d 13056 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → π ≠ 0)
3216, 19, 30, 31mulne0d 11889 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ≠ 0)
3324, 16, 19, 30, 31divdiv1d 12048 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((𝑦 / 2) / π) = (𝑦 / (2 · π)))
34 dirkercncflem4.c . . . . . . . . . . . . . . . . . . . . . . . 24 𝐶 = (𝐴 · (2 · π))
35 dirkercncflem4.a . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐴 = (⌊‘(𝑌 / (2 · π)))
3635oveq1i 7415 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 · (2 · π)) = ((⌊‘(𝑌 / (2 · π))) · (2 · π))
3734, 36eqtri 2758 . . . . . . . . . . . . . . . . . . . . . . 23 𝐶 = ((⌊‘(𝑌 / (2 · π))) · (2 · π))
3837oveq1i 7415 . . . . . . . . . . . . . . . . . . . . . 22 (𝐶 / (2 · π)) = (((⌊‘(𝑌 / (2 · π))) · (2 · π)) / (2 · π))
39 dirkercncflem4.y . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑌 ∈ ℝ)
40 2re 12314 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ∈ ℝ
41 pire 26418 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 π ∈ ℝ
4240, 41remulcli 11251 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (2 · π) ∈ ℝ
4342a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (2 · π) ∈ ℝ)
44 0re 11237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 ∈ ℝ
45 2pos 12343 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 < 2
46 pipos 26420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 < π
4740, 41, 45, 46mulgt0ii 11368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 < (2 · π)
4844, 47gtneii 11347 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (2 · π) ≠ 0
4948a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (2 · π) ≠ 0)
5039, 43, 49redivcld 12069 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑌 / (2 · π)) ∈ ℝ)
5150flcld 13815 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (⌊‘(𝑌 / (2 · π))) ∈ ℤ)
5251zred 12697 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (⌊‘(𝑌 / (2 · π))) ∈ ℝ)
5352recnd 11263 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (⌊‘(𝑌 / (2 · π))) ∈ ℂ)
5443recnd 11263 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (2 · π) ∈ ℂ)
5553, 54, 49divcan4d 12023 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((⌊‘(𝑌 / (2 · π))) · (2 · π)) / (2 · π)) = (⌊‘(𝑌 / (2 · π))))
5638, 55eqtrid 2782 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐶 / (2 · π)) = (⌊‘(𝑌 / (2 · π))))
5756, 51eqeltrd 2834 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐶 / (2 · π)) ∈ ℤ)
5857adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝐶 / (2 · π)) ∈ ℤ)
5952, 43remulcld 11265 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((⌊‘(𝑌 / (2 · π))) · (2 · π)) ∈ ℝ)
6037, 59eqeltrid 2838 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ ℝ)
6160adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐶 ∈ ℝ)
6229, 18rpmulcld 13067 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ∈ ℝ+)
63 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑦 ∈ (𝐶(,)𝐸))
6460rexrd 11285 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐶 ∈ ℝ*)
6564adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐶 ∈ ℝ*)
6635eqcomi 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⌊‘(𝑌 / (2 · π))) = 𝐴
6766oveq1i 7415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((⌊‘(𝑌 / (2 · π))) + 1) = (𝐴 + 1)
68 dirkercncflem4.b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝐵 = (𝐴 + 1)
6967, 68eqtr4i 2761 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((⌊‘(𝑌 / (2 · π))) + 1) = 𝐵
7069oveq1i 7415 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)) = (𝐵 · (2 · π))
71 dirkercncflem4.e . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐸 = (𝐵 · (2 · π))
7270, 71eqtr4i 2761 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)) = 𝐸
7372a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)) = 𝐸)
74 1red 11236 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → 1 ∈ ℝ)
7552, 74readdcld 11264 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((⌊‘(𝑌 / (2 · π))) + 1) ∈ ℝ)
7675, 43remulcld 11265 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)) ∈ ℝ)
7773, 76eqeltrrd 2835 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐸 ∈ ℝ)
7877rexrd 11285 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐸 ∈ ℝ*)
7978adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐸 ∈ ℝ*)
80 elioo2 13403 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ∈ ℝ*𝐸 ∈ ℝ*) → (𝑦 ∈ (𝐶(,)𝐸) ↔ (𝑦 ∈ ℝ ∧ 𝐶 < 𝑦𝑦 < 𝐸)))
8165, 79, 80syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 ∈ (𝐶(,)𝐸) ↔ (𝑦 ∈ ℝ ∧ 𝐶 < 𝑦𝑦 < 𝐸)))
8263, 81mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 ∈ ℝ ∧ 𝐶 < 𝑦𝑦 < 𝐸))
8382simp2d 1143 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐶 < 𝑦)
8461, 23, 62, 83ltdiv1dd 13108 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝐶 / (2 · π)) < (𝑦 / (2 · π)))
8577adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐸 ∈ ℝ)
8682simp3d 1144 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑦 < 𝐸)
8723, 85, 62, 86ltdiv1dd 13108 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / (2 · π)) < (𝐸 / (2 · π)))
8834a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐶 = (𝐴 · (2 · π)))
8988oveq1d 7420 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐶 / (2 · π)) = ((𝐴 · (2 · π)) / (2 · π)))
9089oveq1d 7420 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝐶 / (2 · π)) + 1) = (((𝐴 · (2 · π)) / (2 · π)) + 1))
9135, 53eqeltrid 2838 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐴 ∈ ℂ)
9291, 54, 49divcan4d 12023 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 · (2 · π)) / (2 · π)) = 𝐴)
9392oveq1d 7420 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐴 · (2 · π)) / (2 · π)) + 1) = (𝐴 + 1))
9468oveq1i 7415 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐵 · (2 · π)) = ((𝐴 + 1) · (2 · π))
9571, 94eqtri 2758 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐸 = ((𝐴 + 1) · (2 · π))
9695a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐸 = ((𝐴 + 1) · (2 · π)))
9796oveq1d 7420 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐸 / (2 · π)) = (((𝐴 + 1) · (2 · π)) / (2 · π)))
9891, 7addcld 11254 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 + 1) ∈ ℂ)
9998, 54, 49divcan4d 12023 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝐴 + 1) · (2 · π)) / (2 · π)) = (𝐴 + 1))
10097, 99eqtr2d 2771 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 + 1) = (𝐸 / (2 · π)))
10190, 93, 1003eqtrrd 2775 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸 / (2 · π)) = ((𝐶 / (2 · π)) + 1))
102101adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝐸 / (2 · π)) = ((𝐶 / (2 · π)) + 1))
10387, 102breqtrd 5145 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / (2 · π)) < ((𝐶 / (2 · π)) + 1))
104 btwnnz 12669 . . . . . . . . . . . . . . . . . . 19 (((𝐶 / (2 · π)) ∈ ℤ ∧ (𝐶 / (2 · π)) < (𝑦 / (2 · π)) ∧ (𝑦 / (2 · π)) < ((𝐶 / (2 · π)) + 1)) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
10558, 84, 103, 104syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
10633, 105eqneltrd 2854 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ ((𝑦 / 2) / π) ∈ ℤ)
107 sineq0 26485 . . . . . . . . . . . . . . . . . 18 ((𝑦 / 2) ∈ ℂ → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
10825, 107syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
109106, 108mtbird 325 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ (sin‘(𝑦 / 2)) = 0)
110109neqned 2939 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (sin‘(𝑦 / 2)) ≠ 0)
11120, 26, 32, 110mulne0d 11889 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((2 · π) · (sin‘(𝑦 / 2))) ≠ 0)
112111neneqd 2937 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ ((2 · π) · (sin‘(𝑦 / 2))) = 0)
11340a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 2 ∈ ℝ)
11441a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → π ∈ ℝ)
115113, 114remulcld 11265 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ∈ ℝ)
11623rehalfcld 12488 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / 2) ∈ ℝ)
117116resincld 16161 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (sin‘(𝑦 / 2)) ∈ ℝ)
118115, 117remulcld 11265 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℝ)
119 elsng 4615 . . . . . . . . . . . . . 14 (((2 · π) · (sin‘(𝑦 / 2))) ∈ ℝ → (((2 · π) · (sin‘(𝑦 / 2))) ∈ {0} ↔ ((2 · π) · (sin‘(𝑦 / 2))) = 0))
120118, 119syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (((2 · π) · (sin‘(𝑦 / 2))) ∈ {0} ↔ ((2 · π) · (sin‘(𝑦 / 2))) = 0))
121112, 120mtbird 325 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ ((2 · π) · (sin‘(𝑦 / 2))) ∈ {0})
12227, 121eldifd 3937 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ (ℂ ∖ {0}))
123 eqidd 2736 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))))
124 eqidd 2736 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)))
125 oveq2 7413 . . . . . . . . . . 11 (𝑥 = ((2 · π) · (sin‘(𝑦 / 2))) → (1 / 𝑥) = (1 / ((2 · π) · (sin‘(𝑦 / 2)))))
126122, 123, 124, 125fmptco 7119 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (𝑦 ∈ (𝐶(,)𝐸) ↦ (1 / ((2 · π) · (sin‘(𝑦 / 2))))))
127 eqid 2735 . . . . . . . . . . . 12 (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
128 2cnd 12318 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
1294, 128, 11constcncfg 45901 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ 2) ∈ ((𝐶(,)𝐸)–cn→ℂ))
13017a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → π ∈ ℝ+)
131130rpcnd 13053 . . . . . . . . . . . . . . 15 (𝜑 → π ∈ ℂ)
1324, 131, 11constcncfg 45901 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ π) ∈ ((𝐶(,)𝐸)–cn→ℂ))
133129, 132mulcncf 25398 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (2 · π)) ∈ ((𝐶(,)𝐸)–cn→ℂ))
13424, 16, 30divrecd 12020 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / 2) = (𝑦 · (1 / 2)))
135134mpteq2dva 5214 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑦 / 2)) = (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑦 · (1 / 2))))
1364, 8, 11constcncfg 45901 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (1 / 2)) ∈ ((𝐶(,)𝐸)–cn→ℂ))
13713, 136mulcncf 25398 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑦 · (1 / 2))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
138135, 137eqeltrd 2834 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑦 / 2)) ∈ ((𝐶(,)𝐸)–cn→ℂ))
1392, 138cncfmpt1f 24858 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (sin‘(𝑦 / 2))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
140133, 139mulcncf 25398 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
141 ssid 3981 . . . . . . . . . . . . 13 (𝐶(,)𝐸) ⊆ (𝐶(,)𝐸)
142141a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐶(,)𝐸) ⊆ (𝐶(,)𝐸))
143 difssd 4112 . . . . . . . . . . . 12 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
144127, 140, 142, 143, 122cncfmptssg 45900 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ∈ ((𝐶(,)𝐸)–cn→(ℂ ∖ {0})))
145 ax-1cn 11187 . . . . . . . . . . . 12 1 ∈ ℂ
146 eqid 2735 . . . . . . . . . . . . 13 (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))
147146cdivcncf 24865 . . . . . . . . . . . 12 (1 ∈ ℂ → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ ((ℂ ∖ {0})–cn→ℂ))
148145, 147mp1i 13 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ ((ℂ ∖ {0})–cn→ℂ))
149144, 148cncfco 24851 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
150126, 149eqeltrrd 2835 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (1 / ((2 · π) · (sin‘(𝑦 / 2))))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
15115, 150mulcncf 25398 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2)))))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
152 dirkercncflem4.d . . . . . . . . . . . 12 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
153152dirkerval 46120 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
1545, 153syl 17 . . . . . . . . . 10 (𝜑 → (𝐷𝑁) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
155154reseq1d 5965 . . . . . . . . 9 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) = ((𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) ↾ (𝐶(,)𝐸)))
15622resmptd 6027 . . . . . . . . 9 (𝜑 → ((𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) ↾ (𝐶(,)𝐸)) = (𝑦 ∈ (𝐶(,)𝐸) ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
15728a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ+)
158157, 130rpmulcld 13067 . . . . . . . . . . . . . . 15 (𝜑 → (2 · π) ∈ ℝ+)
159158adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ∈ ℝ+)
160 mod0 13893 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
16123, 159, 160syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
162105, 161mtbird 325 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ (𝑦 mod (2 · π)) = 0)
163162iffalsed 4511 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
1646adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑁 ∈ ℂ)
165 1cnd 11230 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 1 ∈ ℂ)
166165halfcld 12486 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (1 / 2) ∈ ℂ)
167164, 166addcld 11254 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑁 + (1 / 2)) ∈ ℂ)
168167, 24mulcld 11255 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
169168sincld 16148 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
170169, 27, 111divrecd 12020 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2))))))
171163, 170eqtrd 2770 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2))))))
172171mpteq2dva 5214 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑦 ∈ (𝐶(,)𝐸) ↦ ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2)))))))
173155, 156, 1723eqtrrd 2775 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2)))))) = ((𝐷𝑁) ↾ (𝐶(,)𝐸)))
174 eqid 2735 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
175 tgioo4 24744 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
176175oveq1i 7415 . . . . . . . . . . 11 ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐶(,)𝐸))
177174cnfldtop 24722 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ Top
178 reex 11220 . . . . . . . . . . . 12 ℝ ∈ V
179 restabs 23103 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐶(,)𝐸)) = ((TopOpen‘ℂfld) ↾t (𝐶(,)𝐸)))
180177, 21, 178, 179mp3an 1463 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐶(,)𝐸)) = ((TopOpen‘ℂfld) ↾t (𝐶(,)𝐸))
181176, 180eqtri 2758 . . . . . . . . . 10 ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) = ((TopOpen‘ℂfld) ↾t (𝐶(,)𝐸))
182 unicntop 24724 . . . . . . . . . . . . 13 ℂ = (TopOpen‘ℂfld)
183182restid 17447 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
184177, 183ax-mp 5 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
185184eqcomi 2744 . . . . . . . . . 10 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
186174, 181, 185cncfcn 24854 . . . . . . . . 9 (((𝐶(,)𝐸) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐶(,)𝐸)–cn→ℂ) = (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)))
1874, 11, 186syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐶(,)𝐸)–cn→ℂ) = (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)))
188151, 173, 1873eltr3d 2848 . . . . . . 7 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)))
189 retopon 24702 . . . . . . . . . 10 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
190189a1i 11 . . . . . . . . 9 (𝜑 → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
191 resttopon 23099 . . . . . . . . 9 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (𝐶(,)𝐸) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) ∈ (TopOn‘(𝐶(,)𝐸)))
192190, 22, 191syl2anc 584 . . . . . . . 8 (𝜑 → ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) ∈ (TopOn‘(𝐶(,)𝐸)))
193174cnfldtopon 24721 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
194193a1i 11 . . . . . . . 8 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
195 cncnp 23218 . . . . . . . 8 ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) ∈ (TopOn‘(𝐶(,)𝐸)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)) ↔ (((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℂ ∧ ∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦))))
196192, 194, 195syl2anc 584 . . . . . . 7 (𝜑 → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)) ↔ (((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℂ ∧ ∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦))))
197188, 196mpbid 232 . . . . . 6 (𝜑 → (((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℂ ∧ ∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦)))
198197simprd 495 . . . . 5 (𝜑 → ∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦))
199 dirkercncflem4.ymod0 . . . . . . . . . . . 12 (𝜑 → (𝑌 mod (2 · π)) ≠ 0)
200199neneqd 2937 . . . . . . . . . . 11 (𝜑 → ¬ (𝑌 mod (2 · π)) = 0)
201 mod0 13893 . . . . . . . . . . . 12 ((𝑌 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
20239, 158, 201syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
203200, 202mtbid 324 . . . . . . . . . 10 (𝜑 → ¬ (𝑌 / (2 · π)) ∈ ℤ)
204 flltnz 13828 . . . . . . . . . 10 (((𝑌 / (2 · π)) ∈ ℝ ∧ ¬ (𝑌 / (2 · π)) ∈ ℤ) → (⌊‘(𝑌 / (2 · π))) < (𝑌 / (2 · π)))
20550, 203, 204syl2anc 584 . . . . . . . . 9 (𝜑 → (⌊‘(𝑌 / (2 · π))) < (𝑌 / (2 · π)))
20652, 50, 158, 205ltmul1dd 13106 . . . . . . . 8 (𝜑 → ((⌊‘(𝑌 / (2 · π))) · (2 · π)) < ((𝑌 / (2 · π)) · (2 · π)))
20739recnd 11263 . . . . . . . . 9 (𝜑𝑌 ∈ ℂ)
208207, 54, 49divcan1d 12018 . . . . . . . 8 (𝜑 → ((𝑌 / (2 · π)) · (2 · π)) = 𝑌)
209206, 208breqtrd 5145 . . . . . . 7 (𝜑 → ((⌊‘(𝑌 / (2 · π))) · (2 · π)) < 𝑌)
21037, 209eqbrtrid 5154 . . . . . 6 (𝜑𝐶 < 𝑌)
211 fllelt 13814 . . . . . . . . . 10 ((𝑌 / (2 · π)) ∈ ℝ → ((⌊‘(𝑌 / (2 · π))) ≤ (𝑌 / (2 · π)) ∧ (𝑌 / (2 · π)) < ((⌊‘(𝑌 / (2 · π))) + 1)))
21250, 211syl 17 . . . . . . . . 9 (𝜑 → ((⌊‘(𝑌 / (2 · π))) ≤ (𝑌 / (2 · π)) ∧ (𝑌 / (2 · π)) < ((⌊‘(𝑌 / (2 · π))) + 1)))
213212simprd 495 . . . . . . . 8 (𝜑 → (𝑌 / (2 · π)) < ((⌊‘(𝑌 / (2 · π))) + 1))
21450, 75, 158, 213ltmul1dd 13106 . . . . . . 7 (𝜑 → ((𝑌 / (2 · π)) · (2 · π)) < (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)))
215214, 208, 733brtr3d 5150 . . . . . 6 (𝜑𝑌 < 𝐸)
21664, 78, 39, 210, 215eliood 45527 . . . . 5 (𝜑𝑌 ∈ (𝐶(,)𝐸))
217 fveq2 6876 . . . . . . 7 (𝑦 = 𝑌 → ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦) = ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌))
218217eleq2d 2820 . . . . . 6 (𝑦 = 𝑌 → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌)))
219218rspccva 3600 . . . . 5 ((∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦) ∧ 𝑌 ∈ (𝐶(,)𝐸)) → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌))
220198, 216, 219syl2anc 584 . . . 4 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌))
221177a1i 11 . . . . 5 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
222152dirkerf 46126 . . . . . . 7 (𝑁 ∈ ℕ → (𝐷𝑁):ℝ⟶ℝ)
2235, 222syl 17 . . . . . 6 (𝜑 → (𝐷𝑁):ℝ⟶ℝ)
224223, 22fssresd 6745 . . . . 5 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℝ)
225 ax-resscn 11186 . . . . . 6 ℝ ⊆ ℂ
226225a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
227 retop 24700 . . . . . . 7 (topGen‘ran (,)) ∈ Top
228 uniretop 24701 . . . . . . . 8 ℝ = (topGen‘ran (,))
229228restuni 23100 . . . . . . 7 (((topGen‘ran (,)) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ) → (𝐶(,)𝐸) = ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)))
230227, 21, 229mp2an 692 . . . . . 6 (𝐶(,)𝐸) = ((topGen‘ran (,)) ↾t (𝐶(,)𝐸))
231230, 182cnprest2 23228 . . . . 5 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℝ ∧ ℝ ⊆ ℂ) → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑌)))
232221, 224, 226, 231syl3anc 1373 . . . 4 (𝜑 → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑌)))
233220, 232mpbid 232 . . 3 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑌))
234175eqcomi 2744 . . . . . 6 ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,))
235234a1i 11 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,)))
236235oveq2d 7421 . . . 4 (𝜑 → (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ)) = (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,))))
237236fveq1d 6878 . . 3 (𝜑 → ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑌) = ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,)))‘𝑌))
238233, 237eleqtrd 2836 . 2 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,)))‘𝑌))
239227a1i 11 . . 3 (𝜑 → (topGen‘ran (,)) ∈ Top)
240 iooretop 24704 . . . . . . 7 (𝐶(,)𝐸) ∈ (topGen‘ran (,))
241228isopn3 23004 . . . . . . 7 (((topGen‘ran (,)) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ) → ((𝐶(,)𝐸) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)) = (𝐶(,)𝐸)))
242240, 241mpbii 233 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)) = (𝐶(,)𝐸))
243239, 22, 242syl2anc 584 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)) = (𝐶(,)𝐸))
244243eqcomd 2741 . . . 4 (𝜑 → (𝐶(,)𝐸) = ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)))
245216, 244eleqtrd 2836 . . 3 (𝜑𝑌 ∈ ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)))
246228, 228cnprest 23227 . . 3 ((((topGen‘ran (,)) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ) ∧ (𝑌 ∈ ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)) ∧ (𝐷𝑁):ℝ⟶ℝ)) → ((𝐷𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,)))‘𝑌)))
247239, 22, 245, 223, 246syl22anc 838 . 2 (𝜑 → ((𝐷𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,)))‘𝑌)))
248238, 247mpbird 257 1 (𝜑 → (𝐷𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  Vcvv 3459  cdif 3923  wss 3926  ifcif 4500  {csn 4601   cuni 4883   class class class wbr 5119  cmpt 5201  ran crn 5655  cres 5656  ccom 5658  wf 6527  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  *cxr 11268   < clt 11269  cle 11270   / cdiv 11894  cn 12240  2c2 12295  cz 12588  +crp 13008  (,)cioo 13362  cfl 13807   mod cmo 13886  sincsin 16079  πcpi 16082  t crest 17434  TopOpenctopn 17435  topGenctg 17451  fldccnfld 21315  Topctop 22831  TopOnctopon 22848  intcnt 22955   Cn ccn 23162   CnP ccnp 23163  cnccncf 24820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820
This theorem is referenced by:  dirkercncf  46136
  Copyright terms: Public domain W3C validator