Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkercncflem4 Structured version   Visualization version   GIF version

Theorem dirkercncflem4 46231
Description: The Dirichlet Kernel is continuos at points that are not multiple of 2 π . This is the easier condition, for the proof of the continuity of the Dirichlet kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkercncflem4.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
dirkercncflem4.n (𝜑𝑁 ∈ ℕ)
dirkercncflem4.y (𝜑𝑌 ∈ ℝ)
dirkercncflem4.ymod0 (𝜑 → (𝑌 mod (2 · π)) ≠ 0)
dirkercncflem4.a 𝐴 = (⌊‘(𝑌 / (2 · π)))
dirkercncflem4.b 𝐵 = (𝐴 + 1)
dirkercncflem4.c 𝐶 = (𝐴 · (2 · π))
dirkercncflem4.e 𝐸 = (𝐵 · (2 · π))
Assertion
Ref Expression
dirkercncflem4 (𝜑 → (𝐷𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌))
Distinct variable groups:   𝑦,𝐶   𝑦,𝐷   𝑦,𝐸   𝑦,𝑁   𝑦,𝑌   𝑦,𝑛   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑦,𝑛)   𝐵(𝑦,𝑛)   𝐶(𝑛)   𝐷(𝑛)   𝐸(𝑛)   𝑁(𝑛)   𝑌(𝑛)

Proof of Theorem dirkercncflem4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sincn 26384 . . . . . . . . . . 11 sin ∈ (ℂ–cn→ℂ)
21a1i 11 . . . . . . . . . 10 (𝜑 → sin ∈ (ℂ–cn→ℂ))
3 ioosscn 13312 . . . . . . . . . . . . 13 (𝐶(,)𝐸) ⊆ ℂ
43a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐶(,)𝐸) ⊆ ℂ)
5 dirkercncflem4.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
65nncnd 12150 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
7 1cnd 11116 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
87halfcld 12375 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℂ)
96, 8addcld 11140 . . . . . . . . . . . 12 (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ)
10 ssid 3953 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
1110a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
124, 9, 11constcncfg 45997 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑁 + (1 / 2))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
134, 11idcncfg 45998 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ 𝑦) ∈ ((𝐶(,)𝐸)–cn→ℂ))
1412, 13mulcncf 25376 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((𝑁 + (1 / 2)) · 𝑦)) ∈ ((𝐶(,)𝐸)–cn→ℂ))
152, 14cncfmpt1f 24837 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
16 2cnd 12212 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 2 ∈ ℂ)
17 pirp 26400 . . . . . . . . . . . . . . . 16 π ∈ ℝ+
1817a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → π ∈ ℝ+)
1918rpcnd 12940 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → π ∈ ℂ)
2016, 19mulcld 11141 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ∈ ℂ)
21 ioossre 13311 . . . . . . . . . . . . . . . . . 18 (𝐶(,)𝐸) ⊆ ℝ
2221a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐶(,)𝐸) ⊆ ℝ)
2322sselda 3930 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑦 ∈ ℝ)
2423recnd 11149 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑦 ∈ ℂ)
2524halfcld 12375 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / 2) ∈ ℂ)
2625sincld 16043 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (sin‘(𝑦 / 2)) ∈ ℂ)
2720, 26mulcld 11141 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℂ)
28 2rp 12899 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ+
2928a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 2 ∈ ℝ+)
3029rpne0d 12943 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 2 ≠ 0)
3118rpne0d 12943 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → π ≠ 0)
3216, 19, 30, 31mulne0d 11778 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ≠ 0)
3324, 16, 19, 30, 31divdiv1d 11937 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((𝑦 / 2) / π) = (𝑦 / (2 · π)))
34 dirkercncflem4.c . . . . . . . . . . . . . . . . . . . . . . . 24 𝐶 = (𝐴 · (2 · π))
35 dirkercncflem4.a . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐴 = (⌊‘(𝑌 / (2 · π)))
3635oveq1i 7364 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 · (2 · π)) = ((⌊‘(𝑌 / (2 · π))) · (2 · π))
3734, 36eqtri 2756 . . . . . . . . . . . . . . . . . . . . . . 23 𝐶 = ((⌊‘(𝑌 / (2 · π))) · (2 · π))
3837oveq1i 7364 . . . . . . . . . . . . . . . . . . . . . 22 (𝐶 / (2 · π)) = (((⌊‘(𝑌 / (2 · π))) · (2 · π)) / (2 · π))
39 dirkercncflem4.y . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑌 ∈ ℝ)
40 2re 12208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ∈ ℝ
41 pire 26396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 π ∈ ℝ
4240, 41remulcli 11137 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (2 · π) ∈ ℝ
4342a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (2 · π) ∈ ℝ)
44 0re 11123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 ∈ ℝ
45 2pos 12237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 < 2
46 pipos 26398 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 < π
4740, 41, 45, 46mulgt0ii 11255 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 < (2 · π)
4844, 47gtneii 11234 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (2 · π) ≠ 0
4948a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (2 · π) ≠ 0)
5039, 43, 49redivcld 11958 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑌 / (2 · π)) ∈ ℝ)
5150flcld 13706 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (⌊‘(𝑌 / (2 · π))) ∈ ℤ)
5251zred 12585 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (⌊‘(𝑌 / (2 · π))) ∈ ℝ)
5352recnd 11149 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (⌊‘(𝑌 / (2 · π))) ∈ ℂ)
5443recnd 11149 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (2 · π) ∈ ℂ)
5553, 54, 49divcan4d 11912 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((⌊‘(𝑌 / (2 · π))) · (2 · π)) / (2 · π)) = (⌊‘(𝑌 / (2 · π))))
5638, 55eqtrid 2780 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐶 / (2 · π)) = (⌊‘(𝑌 / (2 · π))))
5756, 51eqeltrd 2833 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐶 / (2 · π)) ∈ ℤ)
5857adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝐶 / (2 · π)) ∈ ℤ)
5952, 43remulcld 11151 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((⌊‘(𝑌 / (2 · π))) · (2 · π)) ∈ ℝ)
6037, 59eqeltrid 2837 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐶 ∈ ℝ)
6160adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐶 ∈ ℝ)
6229, 18rpmulcld 12954 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ∈ ℝ+)
63 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑦 ∈ (𝐶(,)𝐸))
6460rexrd 11171 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐶 ∈ ℝ*)
6564adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐶 ∈ ℝ*)
6635eqcomi 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⌊‘(𝑌 / (2 · π))) = 𝐴
6766oveq1i 7364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((⌊‘(𝑌 / (2 · π))) + 1) = (𝐴 + 1)
68 dirkercncflem4.b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝐵 = (𝐴 + 1)
6967, 68eqtr4i 2759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((⌊‘(𝑌 / (2 · π))) + 1) = 𝐵
7069oveq1i 7364 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)) = (𝐵 · (2 · π))
71 dirkercncflem4.e . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐸 = (𝐵 · (2 · π))
7270, 71eqtr4i 2759 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)) = 𝐸
7372a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)) = 𝐸)
74 1red 11122 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → 1 ∈ ℝ)
7552, 74readdcld 11150 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((⌊‘(𝑌 / (2 · π))) + 1) ∈ ℝ)
7675, 43remulcld 11151 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)) ∈ ℝ)
7773, 76eqeltrrd 2834 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐸 ∈ ℝ)
7877rexrd 11171 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐸 ∈ ℝ*)
7978adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐸 ∈ ℝ*)
80 elioo2 13290 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ∈ ℝ*𝐸 ∈ ℝ*) → (𝑦 ∈ (𝐶(,)𝐸) ↔ (𝑦 ∈ ℝ ∧ 𝐶 < 𝑦𝑦 < 𝐸)))
8165, 79, 80syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 ∈ (𝐶(,)𝐸) ↔ (𝑦 ∈ ℝ ∧ 𝐶 < 𝑦𝑦 < 𝐸)))
8263, 81mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 ∈ ℝ ∧ 𝐶 < 𝑦𝑦 < 𝐸))
8382simp2d 1143 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐶 < 𝑦)
8461, 23, 62, 83ltdiv1dd 12995 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝐶 / (2 · π)) < (𝑦 / (2 · π)))
8577adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝐸 ∈ ℝ)
8682simp3d 1144 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑦 < 𝐸)
8723, 85, 62, 86ltdiv1dd 12995 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / (2 · π)) < (𝐸 / (2 · π)))
8834a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐶 = (𝐴 · (2 · π)))
8988oveq1d 7369 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐶 / (2 · π)) = ((𝐴 · (2 · π)) / (2 · π)))
9089oveq1d 7369 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝐶 / (2 · π)) + 1) = (((𝐴 · (2 · π)) / (2 · π)) + 1))
9135, 53eqeltrid 2837 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐴 ∈ ℂ)
9291, 54, 49divcan4d 11912 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 · (2 · π)) / (2 · π)) = 𝐴)
9392oveq1d 7369 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐴 · (2 · π)) / (2 · π)) + 1) = (𝐴 + 1))
9468oveq1i 7364 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐵 · (2 · π)) = ((𝐴 + 1) · (2 · π))
9571, 94eqtri 2756 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐸 = ((𝐴 + 1) · (2 · π))
9695a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐸 = ((𝐴 + 1) · (2 · π)))
9796oveq1d 7369 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐸 / (2 · π)) = (((𝐴 + 1) · (2 · π)) / (2 · π)))
9891, 7addcld 11140 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 + 1) ∈ ℂ)
9998, 54, 49divcan4d 11912 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝐴 + 1) · (2 · π)) / (2 · π)) = (𝐴 + 1))
10097, 99eqtr2d 2769 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 + 1) = (𝐸 / (2 · π)))
10190, 93, 1003eqtrrd 2773 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸 / (2 · π)) = ((𝐶 / (2 · π)) + 1))
102101adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝐸 / (2 · π)) = ((𝐶 / (2 · π)) + 1))
10387, 102breqtrd 5121 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / (2 · π)) < ((𝐶 / (2 · π)) + 1))
104 btwnnz 12557 . . . . . . . . . . . . . . . . . . 19 (((𝐶 / (2 · π)) ∈ ℤ ∧ (𝐶 / (2 · π)) < (𝑦 / (2 · π)) ∧ (𝑦 / (2 · π)) < ((𝐶 / (2 · π)) + 1)) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
10558, 84, 103, 104syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ (𝑦 / (2 · π)) ∈ ℤ)
10633, 105eqneltrd 2853 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ ((𝑦 / 2) / π) ∈ ℤ)
107 sineq0 26463 . . . . . . . . . . . . . . . . . 18 ((𝑦 / 2) ∈ ℂ → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
10825, 107syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((sin‘(𝑦 / 2)) = 0 ↔ ((𝑦 / 2) / π) ∈ ℤ))
109106, 108mtbird 325 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ (sin‘(𝑦 / 2)) = 0)
110109neqned 2936 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (sin‘(𝑦 / 2)) ≠ 0)
11120, 26, 32, 110mulne0d 11778 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((2 · π) · (sin‘(𝑦 / 2))) ≠ 0)
112111neneqd 2934 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ ((2 · π) · (sin‘(𝑦 / 2))) = 0)
11340a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 2 ∈ ℝ)
11441a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → π ∈ ℝ)
115113, 114remulcld 11151 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ∈ ℝ)
11623rehalfcld 12377 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / 2) ∈ ℝ)
117116resincld 16056 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (sin‘(𝑦 / 2)) ∈ ℝ)
118115, 117remulcld 11151 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ ℝ)
119 elsng 4591 . . . . . . . . . . . . . 14 (((2 · π) · (sin‘(𝑦 / 2))) ∈ ℝ → (((2 · π) · (sin‘(𝑦 / 2))) ∈ {0} ↔ ((2 · π) · (sin‘(𝑦 / 2))) = 0))
120118, 119syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (((2 · π) · (sin‘(𝑦 / 2))) ∈ {0} ↔ ((2 · π) · (sin‘(𝑦 / 2))) = 0))
121112, 120mtbird 325 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ ((2 · π) · (sin‘(𝑦 / 2))) ∈ {0})
12227, 121eldifd 3909 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((2 · π) · (sin‘(𝑦 / 2))) ∈ (ℂ ∖ {0}))
123 eqidd 2734 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))))
124 eqidd 2734 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)))
125 oveq2 7362 . . . . . . . . . . 11 (𝑥 = ((2 · π) · (sin‘(𝑦 / 2))) → (1 / 𝑥) = (1 / ((2 · π) · (sin‘(𝑦 / 2)))))
126122, 123, 124, 125fmptco 7070 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) = (𝑦 ∈ (𝐶(,)𝐸) ↦ (1 / ((2 · π) · (sin‘(𝑦 / 2))))))
127 eqid 2733 . . . . . . . . . . . 12 (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) = (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
128 2cnd 12212 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
1294, 128, 11constcncfg 45997 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ 2) ∈ ((𝐶(,)𝐸)–cn→ℂ))
13017a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → π ∈ ℝ+)
131130rpcnd 12940 . . . . . . . . . . . . . . 15 (𝜑 → π ∈ ℂ)
1324, 131, 11constcncfg 45997 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ π) ∈ ((𝐶(,)𝐸)–cn→ℂ))
133129, 132mulcncf 25376 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (2 · π)) ∈ ((𝐶(,)𝐸)–cn→ℂ))
13424, 16, 30divrecd 11909 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑦 / 2) = (𝑦 · (1 / 2)))
135134mpteq2dva 5188 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑦 / 2)) = (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑦 · (1 / 2))))
1364, 8, 11constcncfg 45997 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (1 / 2)) ∈ ((𝐶(,)𝐸)–cn→ℂ))
13713, 136mulcncf 25376 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑦 · (1 / 2))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
138135, 137eqeltrd 2833 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (𝑦 / 2)) ∈ ((𝐶(,)𝐸)–cn→ℂ))
1392, 138cncfmpt1f 24837 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (sin‘(𝑦 / 2))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
140133, 139mulcncf 25376 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
141 ssid 3953 . . . . . . . . . . . . 13 (𝐶(,)𝐸) ⊆ (𝐶(,)𝐸)
142141a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐶(,)𝐸) ⊆ (𝐶(,)𝐸))
143 difssd 4086 . . . . . . . . . . . 12 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
144127, 140, 142, 143, 122cncfmptssg 45996 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2)))) ∈ ((𝐶(,)𝐸)–cn→(ℂ ∖ {0})))
145 ax-1cn 11073 . . . . . . . . . . . 12 1 ∈ ℂ
146 eqid 2733 . . . . . . . . . . . . 13 (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥))
147146cdivcncf 24844 . . . . . . . . . . . 12 (1 ∈ ℂ → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ ((ℂ ∖ {0})–cn→ℂ))
148145, 147mp1i 13 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∈ ((ℂ ∖ {0})–cn→ℂ))
149144, 148cncfco 24830 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑥)) ∘ (𝑦 ∈ (𝐶(,)𝐸) ↦ ((2 · π) · (sin‘(𝑦 / 2))))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
150126, 149eqeltrrd 2834 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ (1 / ((2 · π) · (sin‘(𝑦 / 2))))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
15115, 150mulcncf 25376 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2)))))) ∈ ((𝐶(,)𝐸)–cn→ℂ))
152 dirkercncflem4.d . . . . . . . . . . . 12 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
153152dirkerval 46216 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝐷𝑁) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
1545, 153syl 17 . . . . . . . . . 10 (𝜑 → (𝐷𝑁) = (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
155154reseq1d 5933 . . . . . . . . 9 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) = ((𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) ↾ (𝐶(,)𝐸)))
15622resmptd 5995 . . . . . . . . 9 (𝜑 → ((𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) ↾ (𝐶(,)𝐸)) = (𝑦 ∈ (𝐶(,)𝐸) ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
15728a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ+)
158157, 130rpmulcld 12954 . . . . . . . . . . . . . . 15 (𝜑 → (2 · π) ∈ ℝ+)
159158adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (2 · π) ∈ ℝ+)
160 mod0 13784 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
16123, 159, 160syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((𝑦 mod (2 · π)) = 0 ↔ (𝑦 / (2 · π)) ∈ ℤ))
162105, 161mtbird 325 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ¬ (𝑦 mod (2 · π)) = 0)
163162iffalsed 4487 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
1646adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 𝑁 ∈ ℂ)
165 1cnd 11116 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → 1 ∈ ℂ)
166165halfcld 12375 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (1 / 2) ∈ ℂ)
167164, 166addcld 11140 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (𝑁 + (1 / 2)) ∈ ℂ)
168167, 24mulcld 11141 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((𝑁 + (1 / 2)) · 𝑦) ∈ ℂ)
169168sincld 16043 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → (sin‘((𝑁 + (1 / 2)) · 𝑦)) ∈ ℂ)
170169, 27, 111divrecd 11909 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2))))))
171163, 170eqtrd 2768 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐶(,)𝐸)) → if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2))))))
172171mpteq2dva 5188 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))) = (𝑦 ∈ (𝐶(,)𝐸) ↦ ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2)))))))
173155, 156, 1723eqtrrd 2773 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐶(,)𝐸) ↦ ((sin‘((𝑁 + (1 / 2)) · 𝑦)) · (1 / ((2 · π) · (sin‘(𝑦 / 2)))))) = ((𝐷𝑁) ↾ (𝐶(,)𝐸)))
174 eqid 2733 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
175 tgioo4 24723 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
176175oveq1i 7364 . . . . . . . . . . 11 ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐶(,)𝐸))
177174cnfldtop 24701 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ Top
178 reex 11106 . . . . . . . . . . . 12 ℝ ∈ V
179 restabs 23083 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐶(,)𝐸)) = ((TopOpen‘ℂfld) ↾t (𝐶(,)𝐸)))
180177, 21, 178, 179mp3an 1463 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐶(,)𝐸)) = ((TopOpen‘ℂfld) ↾t (𝐶(,)𝐸))
181176, 180eqtri 2756 . . . . . . . . . 10 ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) = ((TopOpen‘ℂfld) ↾t (𝐶(,)𝐸))
182 unicntop 24703 . . . . . . . . . . . . 13 ℂ = (TopOpen‘ℂfld)
183182restid 17341 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
184177, 183ax-mp 5 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
185184eqcomi 2742 . . . . . . . . . 10 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
186174, 181, 185cncfcn 24833 . . . . . . . . 9 (((𝐶(,)𝐸) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐶(,)𝐸)–cn→ℂ) = (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)))
1874, 11, 186syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐶(,)𝐸)–cn→ℂ) = (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)))
188151, 173, 1873eltr3d 2847 . . . . . . 7 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)))
189 retopon 24681 . . . . . . . . . 10 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
190189a1i 11 . . . . . . . . 9 (𝜑 → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
191 resttopon 23079 . . . . . . . . 9 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (𝐶(,)𝐸) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) ∈ (TopOn‘(𝐶(,)𝐸)))
192190, 22, 191syl2anc 584 . . . . . . . 8 (𝜑 → ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) ∈ (TopOn‘(𝐶(,)𝐸)))
193174cnfldtopon 24700 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
194193a1i 11 . . . . . . . 8 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
195 cncnp 23198 . . . . . . . 8 ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) ∈ (TopOn‘(𝐶(,)𝐸)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)) ↔ (((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℂ ∧ ∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦))))
196192, 194, 195syl2anc 584 . . . . . . 7 (𝜑 → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) Cn (TopOpen‘ℂfld)) ↔ (((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℂ ∧ ∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦))))
197188, 196mpbid 232 . . . . . 6 (𝜑 → (((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℂ ∧ ∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦)))
198197simprd 495 . . . . 5 (𝜑 → ∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦))
199 dirkercncflem4.ymod0 . . . . . . . . . . . 12 (𝜑 → (𝑌 mod (2 · π)) ≠ 0)
200199neneqd 2934 . . . . . . . . . . 11 (𝜑 → ¬ (𝑌 mod (2 · π)) = 0)
201 mod0 13784 . . . . . . . . . . . 12 ((𝑌 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
20239, 158, 201syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝑌 mod (2 · π)) = 0 ↔ (𝑌 / (2 · π)) ∈ ℤ))
203200, 202mtbid 324 . . . . . . . . . 10 (𝜑 → ¬ (𝑌 / (2 · π)) ∈ ℤ)
204 flltnz 13719 . . . . . . . . . 10 (((𝑌 / (2 · π)) ∈ ℝ ∧ ¬ (𝑌 / (2 · π)) ∈ ℤ) → (⌊‘(𝑌 / (2 · π))) < (𝑌 / (2 · π)))
20550, 203, 204syl2anc 584 . . . . . . . . 9 (𝜑 → (⌊‘(𝑌 / (2 · π))) < (𝑌 / (2 · π)))
20652, 50, 158, 205ltmul1dd 12993 . . . . . . . 8 (𝜑 → ((⌊‘(𝑌 / (2 · π))) · (2 · π)) < ((𝑌 / (2 · π)) · (2 · π)))
20739recnd 11149 . . . . . . . . 9 (𝜑𝑌 ∈ ℂ)
208207, 54, 49divcan1d 11907 . . . . . . . 8 (𝜑 → ((𝑌 / (2 · π)) · (2 · π)) = 𝑌)
209206, 208breqtrd 5121 . . . . . . 7 (𝜑 → ((⌊‘(𝑌 / (2 · π))) · (2 · π)) < 𝑌)
21037, 209eqbrtrid 5130 . . . . . 6 (𝜑𝐶 < 𝑌)
211 fllelt 13705 . . . . . . . . . 10 ((𝑌 / (2 · π)) ∈ ℝ → ((⌊‘(𝑌 / (2 · π))) ≤ (𝑌 / (2 · π)) ∧ (𝑌 / (2 · π)) < ((⌊‘(𝑌 / (2 · π))) + 1)))
21250, 211syl 17 . . . . . . . . 9 (𝜑 → ((⌊‘(𝑌 / (2 · π))) ≤ (𝑌 / (2 · π)) ∧ (𝑌 / (2 · π)) < ((⌊‘(𝑌 / (2 · π))) + 1)))
213212simprd 495 . . . . . . . 8 (𝜑 → (𝑌 / (2 · π)) < ((⌊‘(𝑌 / (2 · π))) + 1))
21450, 75, 158, 213ltmul1dd 12993 . . . . . . 7 (𝜑 → ((𝑌 / (2 · π)) · (2 · π)) < (((⌊‘(𝑌 / (2 · π))) + 1) · (2 · π)))
215214, 208, 733brtr3d 5126 . . . . . 6 (𝜑𝑌 < 𝐸)
21664, 78, 39, 210, 215eliood 45625 . . . . 5 (𝜑𝑌 ∈ (𝐶(,)𝐸))
217 fveq2 6830 . . . . . . 7 (𝑦 = 𝑌 → ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦) = ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌))
218217eleq2d 2819 . . . . . 6 (𝑦 = 𝑌 → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌)))
219218rspccva 3572 . . . . 5 ((∀𝑦 ∈ (𝐶(,)𝐸)((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑦) ∧ 𝑌 ∈ (𝐶(,)𝐸)) → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌))
220198, 216, 219syl2anc 584 . . . 4 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌))
221177a1i 11 . . . . 5 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
222152dirkerf 46222 . . . . . . 7 (𝑁 ∈ ℕ → (𝐷𝑁):ℝ⟶ℝ)
2235, 222syl 17 . . . . . 6 (𝜑 → (𝐷𝑁):ℝ⟶ℝ)
224223, 22fssresd 6697 . . . . 5 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℝ)
225 ax-resscn 11072 . . . . . 6 ℝ ⊆ ℂ
226225a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
227 retop 24679 . . . . . . 7 (topGen‘ran (,)) ∈ Top
228 uniretop 24680 . . . . . . . 8 ℝ = (topGen‘ran (,))
229228restuni 23080 . . . . . . 7 (((topGen‘ran (,)) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ) → (𝐶(,)𝐸) = ((topGen‘ran (,)) ↾t (𝐶(,)𝐸)))
230227, 21, 229mp2an 692 . . . . . 6 (𝐶(,)𝐸) = ((topGen‘ran (,)) ↾t (𝐶(,)𝐸))
231230, 182cnprest2 23208 . . . . 5 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐷𝑁) ↾ (𝐶(,)𝐸)):(𝐶(,)𝐸)⟶ℝ ∧ ℝ ⊆ ℂ) → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑌)))
232221, 224, 226, 231syl3anc 1373 . . . 4 (𝜑 → (((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (TopOpen‘ℂfld))‘𝑌) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑌)))
233220, 232mpbid 232 . . 3 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑌))
234175eqcomi 2742 . . . . . 6 ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,))
235234a1i 11 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,)))
236235oveq2d 7370 . . . 4 (𝜑 → (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ)) = (((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,))))
237236fveq1d 6832 . . 3 (𝜑 → ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP ((TopOpen‘ℂfld) ↾t ℝ))‘𝑌) = ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,)))‘𝑌))
238233, 237eleqtrd 2835 . 2 (𝜑 → ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,)))‘𝑌))
239227a1i 11 . . 3 (𝜑 → (topGen‘ran (,)) ∈ Top)
240 iooretop 24683 . . . . . . 7 (𝐶(,)𝐸) ∈ (topGen‘ran (,))
241228isopn3 22984 . . . . . . 7 (((topGen‘ran (,)) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ) → ((𝐶(,)𝐸) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)) = (𝐶(,)𝐸)))
242240, 241mpbii 233 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)) = (𝐶(,)𝐸))
243239, 22, 242syl2anc 584 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)) = (𝐶(,)𝐸))
244243eqcomd 2739 . . . 4 (𝜑 → (𝐶(,)𝐸) = ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)))
245216, 244eleqtrd 2835 . . 3 (𝜑𝑌 ∈ ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)))
246228, 228cnprest 23207 . . 3 ((((topGen‘ran (,)) ∈ Top ∧ (𝐶(,)𝐸) ⊆ ℝ) ∧ (𝑌 ∈ ((int‘(topGen‘ran (,)))‘(𝐶(,)𝐸)) ∧ (𝐷𝑁):ℝ⟶ℝ)) → ((𝐷𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,)))‘𝑌)))
247239, 22, 245, 223, 246syl22anc 838 . 2 (𝜑 → ((𝐷𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌) ↔ ((𝐷𝑁) ↾ (𝐶(,)𝐸)) ∈ ((((topGen‘ran (,)) ↾t (𝐶(,)𝐸)) CnP (topGen‘ran (,)))‘𝑌)))
248238, 247mpbird 257 1 (𝜑 → (𝐷𝑁) ∈ (((topGen‘ran (,)) CnP (topGen‘ran (,)))‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  Vcvv 3437  cdif 3895  wss 3898  ifcif 4476  {csn 4577   cuni 4860   class class class wbr 5095  cmpt 5176  ran crn 5622  cres 5623  ccom 5625  wf 6484  cfv 6488  (class class class)co 7354  cc 11013  cr 11014  0cc0 11015  1c1 11016   + caddc 11018   · cmul 11020  *cxr 11154   < clt 11155  cle 11156   / cdiv 11783  cn 12134  2c2 12189  cz 12477  +crp 12894  (,)cioo 13249  cfl 13698   mod cmo 13777  sincsin 15974  πcpi 15977  t crest 17328  TopOpenctopn 17329  topGenctg 17345  fldccnfld 21295  Topctop 22811  TopOnctopon 22828  intcnt 22935   Cn ccn 23142   CnP ccnp 23143  cnccncf 24799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-addf 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-pm 8761  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-fi 9304  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-ioo 13253  df-ioc 13254  df-ico 13255  df-icc 13256  df-fz 13412  df-fzo 13559  df-fl 13700  df-mod 13778  df-seq 13913  df-exp 13973  df-fac 14185  df-bc 14214  df-hash 14242  df-shft 14978  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-limsup 15382  df-clim 15399  df-rlim 15400  df-sum 15598  df-ef 15978  df-sin 15980  df-cos 15981  df-pi 15983  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-rest 17330  df-topn 17331  df-0g 17349  df-gsum 17350  df-topgen 17351  df-pt 17352  df-prds 17355  df-xrs 17410  df-qtop 17415  df-imas 17416  df-xps 17418  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-mulg 18985  df-cntz 19233  df-cmn 19698  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-mopn 21291  df-fbas 21292  df-fg 21293  df-cnfld 21296  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-cld 22937  df-ntr 22938  df-cls 22939  df-nei 23016  df-lp 23054  df-perf 23055  df-cn 23145  df-cnp 23146  df-haus 23233  df-tx 23480  df-hmeo 23673  df-fil 23764  df-fm 23856  df-flim 23857  df-flf 23858  df-xms 24238  df-ms 24239  df-tms 24240  df-cncf 24801  df-limc 25797  df-dv 25798
This theorem is referenced by:  dirkercncf  46232
  Copyright terms: Public domain W3C validator