MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrtneglem Structured version   Visualization version   GIF version

Theorem sqrtneglem 14295
Description: The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
sqrtneglem ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+))

Proof of Theorem sqrtneglem
StepHypRef Expression
1 ax-icn 10250 . . . 4 i ∈ ℂ
2 resqrtcl 14282 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
3 recn 10281 . . . . 5 ((√‘𝐴) ∈ ℝ → (√‘𝐴) ∈ ℂ)
42, 3syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℂ)
5 sqmul 13136 . . . 4 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → ((i · (√‘𝐴))↑2) = ((i↑2) · ((√‘𝐴)↑2)))
61, 4, 5sylancr 581 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((i · (√‘𝐴))↑2) = ((i↑2) · ((√‘𝐴)↑2)))
7 i2 13175 . . . . 5 (i↑2) = -1
87a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (i↑2) = -1)
9 resqrtth 14284 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴)
108, 9oveq12d 6862 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((i↑2) · ((√‘𝐴)↑2)) = (-1 · 𝐴))
11 recn 10281 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1211adantr 472 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
1312mulm1d 10738 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (-1 · 𝐴) = -𝐴)
146, 10, 133eqtrd 2803 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((i · (√‘𝐴))↑2) = -𝐴)
15 renegcl 10600 . . . 4 ((√‘𝐴) ∈ ℝ → -(√‘𝐴) ∈ ℝ)
16 0re 10297 . . . . 5 0 ∈ ℝ
17 reim0 14146 . . . . . 6 (-(√‘𝐴) ∈ ℝ → (ℑ‘-(√‘𝐴)) = 0)
18 recn 10281 . . . . . . 7 (-(√‘𝐴) ∈ ℝ → -(√‘𝐴) ∈ ℂ)
19 imre 14136 . . . . . . 7 (-(√‘𝐴) ∈ ℂ → (ℑ‘-(√‘𝐴)) = (ℜ‘(-i · -(√‘𝐴))))
2018, 19syl 17 . . . . . 6 (-(√‘𝐴) ∈ ℝ → (ℑ‘-(√‘𝐴)) = (ℜ‘(-i · -(√‘𝐴))))
2117, 20eqtr3d 2801 . . . . 5 (-(√‘𝐴) ∈ ℝ → 0 = (ℜ‘(-i · -(√‘𝐴))))
22 eqle 10395 . . . . 5 ((0 ∈ ℝ ∧ 0 = (ℜ‘(-i · -(√‘𝐴)))) → 0 ≤ (ℜ‘(-i · -(√‘𝐴))))
2316, 21, 22sylancr 581 . . . 4 (-(√‘𝐴) ∈ ℝ → 0 ≤ (ℜ‘(-i · -(√‘𝐴))))
242, 15, 233syl 18 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (ℜ‘(-i · -(√‘𝐴))))
25 mul2neg 10725 . . . . 5 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → (-i · -(√‘𝐴)) = (i · (√‘𝐴)))
261, 4, 25sylancr 581 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (-i · -(√‘𝐴)) = (i · (√‘𝐴)))
2726fveq2d 6381 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℜ‘(-i · -(√‘𝐴))) = (ℜ‘(i · (√‘𝐴))))
2824, 27breqtrd 4837 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (ℜ‘(i · (√‘𝐴))))
29 ixi 10912 . . . . . . 7 (i · i) = -1
3029oveq1i 6854 . . . . . 6 ((i · i) · (√‘𝐴)) = (-1 · (√‘𝐴))
31 mulass 10279 . . . . . . 7 ((i ∈ ℂ ∧ i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → ((i · i) · (√‘𝐴)) = (i · (i · (√‘𝐴))))
321, 1, 31mp3an12 1575 . . . . . 6 ((√‘𝐴) ∈ ℂ → ((i · i) · (√‘𝐴)) = (i · (i · (√‘𝐴))))
33 mulm1 10727 . . . . . 6 ((√‘𝐴) ∈ ℂ → (-1 · (√‘𝐴)) = -(√‘𝐴))
3430, 32, 333eqtr3a 2823 . . . . 5 ((√‘𝐴) ∈ ℂ → (i · (i · (√‘𝐴))) = -(√‘𝐴))
354, 34syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (i · (i · (√‘𝐴))) = -(√‘𝐴))
36 sqrtge0 14286 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (√‘𝐴))
37 le0neg2 10793 . . . . . . . 8 ((√‘𝐴) ∈ ℝ → (0 ≤ (√‘𝐴) ↔ -(√‘𝐴) ≤ 0))
38 lenlt 10372 . . . . . . . . 9 ((-(√‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → (-(√‘𝐴) ≤ 0 ↔ ¬ 0 < -(√‘𝐴)))
3915, 16, 38sylancl 580 . . . . . . . 8 ((√‘𝐴) ∈ ℝ → (-(√‘𝐴) ≤ 0 ↔ ¬ 0 < -(√‘𝐴)))
4037, 39bitrd 270 . . . . . . 7 ((√‘𝐴) ∈ ℝ → (0 ≤ (√‘𝐴) ↔ ¬ 0 < -(√‘𝐴)))
412, 40syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0 ≤ (√‘𝐴) ↔ ¬ 0 < -(√‘𝐴)))
4236, 41mpbid 223 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ¬ 0 < -(√‘𝐴))
432, 15syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -(√‘𝐴) ∈ ℝ)
4443biantrurd 528 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0 < -(√‘𝐴) ↔ (-(√‘𝐴) ∈ ℝ ∧ 0 < -(√‘𝐴))))
45 elrp 12033 . . . . . 6 (-(√‘𝐴) ∈ ℝ+ ↔ (-(√‘𝐴) ∈ ℝ ∧ 0 < -(√‘𝐴)))
4644, 45syl6rbbr 281 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (-(√‘𝐴) ∈ ℝ+ ↔ 0 < -(√‘𝐴)))
4742, 46mtbird 316 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ¬ -(√‘𝐴) ∈ ℝ+)
4835, 47eqneltrd 2863 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ¬ (i · (i · (√‘𝐴))) ∈ ℝ+)
49 df-nel 3041 . . 3 ((i · (i · (√‘𝐴))) ∉ ℝ+ ↔ ¬ (i · (i · (√‘𝐴))) ∈ ℝ+)
5048, 49sylibr 225 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (i · (i · (√‘𝐴))) ∉ ℝ+)
5114, 28, 503jca 1158 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wnel 3040   class class class wbr 4811  cfv 6070  (class class class)co 6844  cc 10189  cr 10190  0cc0 10191  1c1 10192  ici 10193   · cmul 10196   < clt 10330  cle 10331  -cneg 10523  2c2 11329  +crp 12031  cexp 13070  cre 14125  cim 14126  csqrt 14261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-er 7949  df-en 8163  df-dom 8164  df-sdom 8165  df-sup 8557  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-n0 11541  df-z 11627  df-uz 11890  df-rp 12032  df-seq 13012  df-exp 13071  df-cj 14127  df-re 14128  df-im 14129  df-sqrt 14263
This theorem is referenced by:  sqrtneg  14296  sqreu  14388
  Copyright terms: Public domain W3C validator