MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrtneglem Structured version   Visualization version   GIF version

Theorem sqrtneglem 15151
Description: The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
sqrtneglem ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+))

Proof of Theorem sqrtneglem
StepHypRef Expression
1 ax-icn 11110 . . . 4 i ∈ ℂ
2 resqrtcl 15138 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
3 recn 11141 . . . . 5 ((√‘𝐴) ∈ ℝ → (√‘𝐴) ∈ ℂ)
42, 3syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℂ)
5 sqmul 14024 . . . 4 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → ((i · (√‘𝐴))↑2) = ((i↑2) · ((√‘𝐴)↑2)))
61, 4, 5sylancr 587 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((i · (√‘𝐴))↑2) = ((i↑2) · ((√‘𝐴)↑2)))
7 i2 14106 . . . . 5 (i↑2) = -1
87a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (i↑2) = -1)
9 resqrtth 15140 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴)
108, 9oveq12d 7375 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((i↑2) · ((√‘𝐴)↑2)) = (-1 · 𝐴))
11 recn 11141 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1211adantr 481 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
1312mulm1d 11607 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (-1 · 𝐴) = -𝐴)
146, 10, 133eqtrd 2780 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((i · (√‘𝐴))↑2) = -𝐴)
15 renegcl 11464 . . . 4 ((√‘𝐴) ∈ ℝ → -(√‘𝐴) ∈ ℝ)
16 0re 11157 . . . . 5 0 ∈ ℝ
17 reim0 15003 . . . . . 6 (-(√‘𝐴) ∈ ℝ → (ℑ‘-(√‘𝐴)) = 0)
18 recn 11141 . . . . . . 7 (-(√‘𝐴) ∈ ℝ → -(√‘𝐴) ∈ ℂ)
19 imre 14993 . . . . . . 7 (-(√‘𝐴) ∈ ℂ → (ℑ‘-(√‘𝐴)) = (ℜ‘(-i · -(√‘𝐴))))
2018, 19syl 17 . . . . . 6 (-(√‘𝐴) ∈ ℝ → (ℑ‘-(√‘𝐴)) = (ℜ‘(-i · -(√‘𝐴))))
2117, 20eqtr3d 2778 . . . . 5 (-(√‘𝐴) ∈ ℝ → 0 = (ℜ‘(-i · -(√‘𝐴))))
22 eqle 11257 . . . . 5 ((0 ∈ ℝ ∧ 0 = (ℜ‘(-i · -(√‘𝐴)))) → 0 ≤ (ℜ‘(-i · -(√‘𝐴))))
2316, 21, 22sylancr 587 . . . 4 (-(√‘𝐴) ∈ ℝ → 0 ≤ (ℜ‘(-i · -(√‘𝐴))))
242, 15, 233syl 18 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (ℜ‘(-i · -(√‘𝐴))))
25 mul2neg 11594 . . . . 5 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → (-i · -(√‘𝐴)) = (i · (√‘𝐴)))
261, 4, 25sylancr 587 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (-i · -(√‘𝐴)) = (i · (√‘𝐴)))
2726fveq2d 6846 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℜ‘(-i · -(√‘𝐴))) = (ℜ‘(i · (√‘𝐴))))
2824, 27breqtrd 5131 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (ℜ‘(i · (√‘𝐴))))
29 ixi 11784 . . . . . . 7 (i · i) = -1
3029oveq1i 7367 . . . . . 6 ((i · i) · (√‘𝐴)) = (-1 · (√‘𝐴))
31 mulass 11139 . . . . . . 7 ((i ∈ ℂ ∧ i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → ((i · i) · (√‘𝐴)) = (i · (i · (√‘𝐴))))
321, 1, 31mp3an12 1451 . . . . . 6 ((√‘𝐴) ∈ ℂ → ((i · i) · (√‘𝐴)) = (i · (i · (√‘𝐴))))
33 mulm1 11596 . . . . . 6 ((√‘𝐴) ∈ ℂ → (-1 · (√‘𝐴)) = -(√‘𝐴))
3430, 32, 333eqtr3a 2800 . . . . 5 ((√‘𝐴) ∈ ℂ → (i · (i · (√‘𝐴))) = -(√‘𝐴))
354, 34syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (i · (i · (√‘𝐴))) = -(√‘𝐴))
36 sqrtge0 15142 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (√‘𝐴))
37 le0neg2 11664 . . . . . . . 8 ((√‘𝐴) ∈ ℝ → (0 ≤ (√‘𝐴) ↔ -(√‘𝐴) ≤ 0))
38 lenlt 11233 . . . . . . . . 9 ((-(√‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → (-(√‘𝐴) ≤ 0 ↔ ¬ 0 < -(√‘𝐴)))
3915, 16, 38sylancl 586 . . . . . . . 8 ((√‘𝐴) ∈ ℝ → (-(√‘𝐴) ≤ 0 ↔ ¬ 0 < -(√‘𝐴)))
4037, 39bitrd 278 . . . . . . 7 ((√‘𝐴) ∈ ℝ → (0 ≤ (√‘𝐴) ↔ ¬ 0 < -(√‘𝐴)))
412, 40syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0 ≤ (√‘𝐴) ↔ ¬ 0 < -(√‘𝐴)))
4236, 41mpbid 231 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ¬ 0 < -(√‘𝐴))
43 elrp 12917 . . . . . 6 (-(√‘𝐴) ∈ ℝ+ ↔ (-(√‘𝐴) ∈ ℝ ∧ 0 < -(√‘𝐴)))
442, 15syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -(√‘𝐴) ∈ ℝ)
4544biantrurd 533 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0 < -(√‘𝐴) ↔ (-(√‘𝐴) ∈ ℝ ∧ 0 < -(√‘𝐴))))
4643, 45bitr4id 289 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (-(√‘𝐴) ∈ ℝ+ ↔ 0 < -(√‘𝐴)))
4742, 46mtbird 324 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ¬ -(√‘𝐴) ∈ ℝ+)
4835, 47eqneltrd 2857 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ¬ (i · (i · (√‘𝐴))) ∈ ℝ+)
49 df-nel 3050 . . 3 ((i · (i · (√‘𝐴))) ∉ ℝ+ ↔ ¬ (i · (i · (√‘𝐴))) ∈ ℝ+)
5048, 49sylibr 233 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (i · (i · (√‘𝐴))) ∉ ℝ+)
5114, 28, 503jca 1128 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wnel 3049   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052  ici 11053   · cmul 11056   < clt 11189  cle 11190  -cneg 11386  2c2 12208  +crp 12915  cexp 13967  cre 14982  cim 14983  csqrt 15118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120
This theorem is referenced by:  sqrtneg  15152  sqreu  15245
  Copyright terms: Public domain W3C validator