MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrtneglem Structured version   Visualization version   GIF version

Theorem sqrtneglem 15302
Description: The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
sqrtneglem ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+))

Proof of Theorem sqrtneglem
StepHypRef Expression
1 ax-icn 11212 . . . 4 i ∈ ℂ
2 resqrtcl 15289 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
3 recn 11243 . . . . 5 ((√‘𝐴) ∈ ℝ → (√‘𝐴) ∈ ℂ)
42, 3syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℂ)
5 sqmul 14156 . . . 4 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → ((i · (√‘𝐴))↑2) = ((i↑2) · ((√‘𝐴)↑2)))
61, 4, 5sylancr 587 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((i · (√‘𝐴))↑2) = ((i↑2) · ((√‘𝐴)↑2)))
7 i2 14238 . . . . 5 (i↑2) = -1
87a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (i↑2) = -1)
9 resqrtth 15291 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴)
108, 9oveq12d 7449 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((i↑2) · ((√‘𝐴)↑2)) = (-1 · 𝐴))
11 recn 11243 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1211adantr 480 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
1312mulm1d 11713 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (-1 · 𝐴) = -𝐴)
146, 10, 133eqtrd 2779 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((i · (√‘𝐴))↑2) = -𝐴)
15 renegcl 11570 . . . 4 ((√‘𝐴) ∈ ℝ → -(√‘𝐴) ∈ ℝ)
16 0re 11261 . . . . 5 0 ∈ ℝ
17 reim0 15154 . . . . . 6 (-(√‘𝐴) ∈ ℝ → (ℑ‘-(√‘𝐴)) = 0)
18 recn 11243 . . . . . . 7 (-(√‘𝐴) ∈ ℝ → -(√‘𝐴) ∈ ℂ)
19 imre 15144 . . . . . . 7 (-(√‘𝐴) ∈ ℂ → (ℑ‘-(√‘𝐴)) = (ℜ‘(-i · -(√‘𝐴))))
2018, 19syl 17 . . . . . 6 (-(√‘𝐴) ∈ ℝ → (ℑ‘-(√‘𝐴)) = (ℜ‘(-i · -(√‘𝐴))))
2117, 20eqtr3d 2777 . . . . 5 (-(√‘𝐴) ∈ ℝ → 0 = (ℜ‘(-i · -(√‘𝐴))))
22 eqle 11361 . . . . 5 ((0 ∈ ℝ ∧ 0 = (ℜ‘(-i · -(√‘𝐴)))) → 0 ≤ (ℜ‘(-i · -(√‘𝐴))))
2316, 21, 22sylancr 587 . . . 4 (-(√‘𝐴) ∈ ℝ → 0 ≤ (ℜ‘(-i · -(√‘𝐴))))
242, 15, 233syl 18 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (ℜ‘(-i · -(√‘𝐴))))
25 mul2neg 11700 . . . . 5 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → (-i · -(√‘𝐴)) = (i · (√‘𝐴)))
261, 4, 25sylancr 587 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (-i · -(√‘𝐴)) = (i · (√‘𝐴)))
2726fveq2d 6911 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℜ‘(-i · -(√‘𝐴))) = (ℜ‘(i · (√‘𝐴))))
2824, 27breqtrd 5174 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (ℜ‘(i · (√‘𝐴))))
29 ixi 11890 . . . . . . 7 (i · i) = -1
3029oveq1i 7441 . . . . . 6 ((i · i) · (√‘𝐴)) = (-1 · (√‘𝐴))
31 mulass 11241 . . . . . . 7 ((i ∈ ℂ ∧ i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → ((i · i) · (√‘𝐴)) = (i · (i · (√‘𝐴))))
321, 1, 31mp3an12 1450 . . . . . 6 ((√‘𝐴) ∈ ℂ → ((i · i) · (√‘𝐴)) = (i · (i · (√‘𝐴))))
33 mulm1 11702 . . . . . 6 ((√‘𝐴) ∈ ℂ → (-1 · (√‘𝐴)) = -(√‘𝐴))
3430, 32, 333eqtr3a 2799 . . . . 5 ((√‘𝐴) ∈ ℂ → (i · (i · (√‘𝐴))) = -(√‘𝐴))
354, 34syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (i · (i · (√‘𝐴))) = -(√‘𝐴))
36 sqrtge0 15293 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (√‘𝐴))
37 le0neg2 11770 . . . . . . . 8 ((√‘𝐴) ∈ ℝ → (0 ≤ (√‘𝐴) ↔ -(√‘𝐴) ≤ 0))
38 lenlt 11337 . . . . . . . . 9 ((-(√‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → (-(√‘𝐴) ≤ 0 ↔ ¬ 0 < -(√‘𝐴)))
3915, 16, 38sylancl 586 . . . . . . . 8 ((√‘𝐴) ∈ ℝ → (-(√‘𝐴) ≤ 0 ↔ ¬ 0 < -(√‘𝐴)))
4037, 39bitrd 279 . . . . . . 7 ((√‘𝐴) ∈ ℝ → (0 ≤ (√‘𝐴) ↔ ¬ 0 < -(√‘𝐴)))
412, 40syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0 ≤ (√‘𝐴) ↔ ¬ 0 < -(√‘𝐴)))
4236, 41mpbid 232 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ¬ 0 < -(√‘𝐴))
43 elrp 13034 . . . . . 6 (-(√‘𝐴) ∈ ℝ+ ↔ (-(√‘𝐴) ∈ ℝ ∧ 0 < -(√‘𝐴)))
442, 15syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -(√‘𝐴) ∈ ℝ)
4544biantrurd 532 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0 < -(√‘𝐴) ↔ (-(√‘𝐴) ∈ ℝ ∧ 0 < -(√‘𝐴))))
4643, 45bitr4id 290 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (-(√‘𝐴) ∈ ℝ+ ↔ 0 < -(√‘𝐴)))
4742, 46mtbird 325 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ¬ -(√‘𝐴) ∈ ℝ+)
4835, 47eqneltrd 2859 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ¬ (i · (i · (√‘𝐴))) ∈ ℝ+)
49 df-nel 3045 . . 3 ((i · (i · (√‘𝐴))) ∉ ℝ+ ↔ ¬ (i · (i · (√‘𝐴))) ∈ ℝ+)
5048, 49sylibr 234 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (i · (i · (√‘𝐴))) ∉ ℝ+)
5114, 28, 503jca 1127 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wnel 3044   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154  ici 11155   · cmul 11158   < clt 11293  cle 11294  -cneg 11491  2c2 12319  +crp 13032  cexp 14099  cre 15133  cim 15134  csqrt 15269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271
This theorem is referenced by:  sqrtneg  15303  sqreu  15396
  Copyright terms: Public domain W3C validator