MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrtneglem Structured version   Visualization version   GIF version

Theorem sqrtneglem 14618
Description: The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
sqrtneglem ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+))

Proof of Theorem sqrtneglem
StepHypRef Expression
1 ax-icn 10585 . . . 4 i ∈ ℂ
2 resqrtcl 14605 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
3 recn 10616 . . . . 5 ((√‘𝐴) ∈ ℝ → (√‘𝐴) ∈ ℂ)
42, 3syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℂ)
5 sqmul 13481 . . . 4 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → ((i · (√‘𝐴))↑2) = ((i↑2) · ((√‘𝐴)↑2)))
61, 4, 5sylancr 590 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((i · (√‘𝐴))↑2) = ((i↑2) · ((√‘𝐴)↑2)))
7 i2 13561 . . . . 5 (i↑2) = -1
87a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (i↑2) = -1)
9 resqrtth 14607 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴)
108, 9oveq12d 7153 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((i↑2) · ((√‘𝐴)↑2)) = (-1 · 𝐴))
11 recn 10616 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1211adantr 484 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
1312mulm1d 11081 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (-1 · 𝐴) = -𝐴)
146, 10, 133eqtrd 2837 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((i · (√‘𝐴))↑2) = -𝐴)
15 renegcl 10938 . . . 4 ((√‘𝐴) ∈ ℝ → -(√‘𝐴) ∈ ℝ)
16 0re 10632 . . . . 5 0 ∈ ℝ
17 reim0 14469 . . . . . 6 (-(√‘𝐴) ∈ ℝ → (ℑ‘-(√‘𝐴)) = 0)
18 recn 10616 . . . . . . 7 (-(√‘𝐴) ∈ ℝ → -(√‘𝐴) ∈ ℂ)
19 imre 14459 . . . . . . 7 (-(√‘𝐴) ∈ ℂ → (ℑ‘-(√‘𝐴)) = (ℜ‘(-i · -(√‘𝐴))))
2018, 19syl 17 . . . . . 6 (-(√‘𝐴) ∈ ℝ → (ℑ‘-(√‘𝐴)) = (ℜ‘(-i · -(√‘𝐴))))
2117, 20eqtr3d 2835 . . . . 5 (-(√‘𝐴) ∈ ℝ → 0 = (ℜ‘(-i · -(√‘𝐴))))
22 eqle 10731 . . . . 5 ((0 ∈ ℝ ∧ 0 = (ℜ‘(-i · -(√‘𝐴)))) → 0 ≤ (ℜ‘(-i · -(√‘𝐴))))
2316, 21, 22sylancr 590 . . . 4 (-(√‘𝐴) ∈ ℝ → 0 ≤ (ℜ‘(-i · -(√‘𝐴))))
242, 15, 233syl 18 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (ℜ‘(-i · -(√‘𝐴))))
25 mul2neg 11068 . . . . 5 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → (-i · -(√‘𝐴)) = (i · (√‘𝐴)))
261, 4, 25sylancr 590 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (-i · -(√‘𝐴)) = (i · (√‘𝐴)))
2726fveq2d 6649 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (ℜ‘(-i · -(√‘𝐴))) = (ℜ‘(i · (√‘𝐴))))
2824, 27breqtrd 5056 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (ℜ‘(i · (√‘𝐴))))
29 ixi 11258 . . . . . . 7 (i · i) = -1
3029oveq1i 7145 . . . . . 6 ((i · i) · (√‘𝐴)) = (-1 · (√‘𝐴))
31 mulass 10614 . . . . . . 7 ((i ∈ ℂ ∧ i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → ((i · i) · (√‘𝐴)) = (i · (i · (√‘𝐴))))
321, 1, 31mp3an12 1448 . . . . . 6 ((√‘𝐴) ∈ ℂ → ((i · i) · (√‘𝐴)) = (i · (i · (√‘𝐴))))
33 mulm1 11070 . . . . . 6 ((√‘𝐴) ∈ ℂ → (-1 · (√‘𝐴)) = -(√‘𝐴))
3430, 32, 333eqtr3a 2857 . . . . 5 ((√‘𝐴) ∈ ℂ → (i · (i · (√‘𝐴))) = -(√‘𝐴))
354, 34syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (i · (i · (√‘𝐴))) = -(√‘𝐴))
36 sqrtge0 14609 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (√‘𝐴))
37 le0neg2 11138 . . . . . . . 8 ((√‘𝐴) ∈ ℝ → (0 ≤ (√‘𝐴) ↔ -(√‘𝐴) ≤ 0))
38 lenlt 10708 . . . . . . . . 9 ((-(√‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → (-(√‘𝐴) ≤ 0 ↔ ¬ 0 < -(√‘𝐴)))
3915, 16, 38sylancl 589 . . . . . . . 8 ((√‘𝐴) ∈ ℝ → (-(√‘𝐴) ≤ 0 ↔ ¬ 0 < -(√‘𝐴)))
4037, 39bitrd 282 . . . . . . 7 ((√‘𝐴) ∈ ℝ → (0 ≤ (√‘𝐴) ↔ ¬ 0 < -(√‘𝐴)))
412, 40syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0 ≤ (√‘𝐴) ↔ ¬ 0 < -(√‘𝐴)))
4236, 41mpbid 235 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ¬ 0 < -(√‘𝐴))
43 elrp 12379 . . . . . 6 (-(√‘𝐴) ∈ ℝ+ ↔ (-(√‘𝐴) ∈ ℝ ∧ 0 < -(√‘𝐴)))
442, 15syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -(√‘𝐴) ∈ ℝ)
4544biantrurd 536 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (0 < -(√‘𝐴) ↔ (-(√‘𝐴) ∈ ℝ ∧ 0 < -(√‘𝐴))))
4643, 45bitr4id 293 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (-(√‘𝐴) ∈ ℝ+ ↔ 0 < -(√‘𝐴)))
4742, 46mtbird 328 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ¬ -(√‘𝐴) ∈ ℝ+)
4835, 47eqneltrd 2909 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ¬ (i · (i · (√‘𝐴))) ∈ ℝ+)
49 df-nel 3092 . . 3 ((i · (i · (√‘𝐴))) ∉ ℝ+ ↔ ¬ (i · (i · (√‘𝐴))) ∈ ℝ+)
5048, 49sylibr 237 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (i · (i · (√‘𝐴))) ∉ ℝ+)
5114, 28, 503jca 1125 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((i · (√‘𝐴))↑2) = -𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘𝐴))) ∧ (i · (i · (√‘𝐴))) ∉ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wnel 3091   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527  ici 10528   · cmul 10531   < clt 10664  cle 10665  -cneg 10860  2c2 11680  +crp 12377  cexp 13425  cre 14448  cim 14449  csqrt 14584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586
This theorem is referenced by:  sqrtneg  14619  sqreu  14712
  Copyright terms: Public domain W3C validator