Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrtnegnre Structured version   Visualization version   GIF version

Theorem sqrtnegnre 45529
Description: The square root of a negative number is not a real number. (Contributed by AV, 28-Feb-2023.)
Assertion
Ref Expression
sqrtnegnre ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘𝑋) ∉ ℝ)

Proof of Theorem sqrtnegnre
StepHypRef Expression
1 recn 11141 . . . . . . . 8 (𝑋 ∈ ℝ → 𝑋 ∈ ℂ)
21negnegd 11503 . . . . . . 7 (𝑋 ∈ ℝ → --𝑋 = 𝑋)
32adantr 481 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → --𝑋 = 𝑋)
43eqcomd 2742 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → 𝑋 = --𝑋)
54fveq2d 6846 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘𝑋) = (√‘--𝑋))
6 simpl 483 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → 𝑋 ∈ ℝ)
76renegcld 11582 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → -𝑋 ∈ ℝ)
8 0re 11157 . . . . . . . 8 0 ∈ ℝ
9 ltle 11243 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑋 < 0 → 𝑋 ≤ 0))
108, 9mpan2 689 . . . . . . 7 (𝑋 ∈ ℝ → (𝑋 < 0 → 𝑋 ≤ 0))
1110imp 407 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → 𝑋 ≤ 0)
12 le0neg1 11663 . . . . . . 7 (𝑋 ∈ ℝ → (𝑋 ≤ 0 ↔ 0 ≤ -𝑋))
1312adantr 481 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (𝑋 ≤ 0 ↔ 0 ≤ -𝑋))
1411, 13mpbid 231 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → 0 ≤ -𝑋)
157, 14sqrtnegd 15306 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘--𝑋) = (i · (√‘-𝑋)))
165, 15eqtrd 2776 . . 3 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘𝑋) = (i · (√‘-𝑋)))
17 ax-icn 11110 . . . . . 6 i ∈ ℂ
1817a1i 11 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → i ∈ ℂ)
191adantr 481 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → 𝑋 ∈ ℂ)
2019negcld 11499 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → -𝑋 ∈ ℂ)
2120sqrtcld 15322 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘-𝑋) ∈ ℂ)
2218, 21mulcomd 11176 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (i · (√‘-𝑋)) = ((√‘-𝑋) · i))
237, 14resqrtcld 15302 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘-𝑋) ∈ ℝ)
24 inelr 12143 . . . . . . . 8 ¬ i ∈ ℝ
2524a1i 11 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → ¬ i ∈ ℝ)
2618, 25eldifd 3921 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → i ∈ (ℂ ∖ ℝ))
27 lt0neg1 11661 . . . . . . . 8 (𝑋 ∈ ℝ → (𝑋 < 0 ↔ 0 < -𝑋))
288a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℝ → 0 ∈ ℝ)
29 ltne 11252 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 0 < -𝑋) → -𝑋 ≠ 0)
3028, 29sylan 580 . . . . . . . . . 10 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → -𝑋 ≠ 0)
31 simpl 483 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → 𝑋 ∈ ℝ)
3231renegcld 11582 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → -𝑋 ∈ ℝ)
3310, 27, 123imtr3d 292 . . . . . . . . . . . . . 14 (𝑋 ∈ ℝ → (0 < -𝑋 → 0 ≤ -𝑋))
3433imp 407 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → 0 ≤ -𝑋)
35 sqrt00 15148 . . . . . . . . . . . . 13 ((-𝑋 ∈ ℝ ∧ 0 ≤ -𝑋) → ((√‘-𝑋) = 0 ↔ -𝑋 = 0))
3632, 34, 35syl2anc 584 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → ((√‘-𝑋) = 0 ↔ -𝑋 = 0))
3736bicomd 222 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → (-𝑋 = 0 ↔ (√‘-𝑋) = 0))
3837necon3bid 2988 . . . . . . . . . 10 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → (-𝑋 ≠ 0 ↔ (√‘-𝑋) ≠ 0))
3930, 38mpbid 231 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → (√‘-𝑋) ≠ 0)
4039ex 413 . . . . . . . 8 (𝑋 ∈ ℝ → (0 < -𝑋 → (√‘-𝑋) ≠ 0))
4127, 40sylbid 239 . . . . . . 7 (𝑋 ∈ ℝ → (𝑋 < 0 → (√‘-𝑋) ≠ 0))
4241imp 407 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘-𝑋) ≠ 0)
4323, 26, 42recnmulnred 45527 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → ((√‘-𝑋) · i) ∉ ℝ)
44 df-nel 3050 . . . . 5 (((√‘-𝑋) · i) ∉ ℝ ↔ ¬ ((√‘-𝑋) · i) ∈ ℝ)
4543, 44sylib 217 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → ¬ ((√‘-𝑋) · i) ∈ ℝ)
4622, 45eqneltrd 2857 . . 3 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → ¬ (i · (√‘-𝑋)) ∈ ℝ)
4716, 46eqneltrd 2857 . 2 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → ¬ (√‘𝑋) ∈ ℝ)
48 df-nel 3050 . 2 ((√‘𝑋) ∉ ℝ ↔ ¬ (√‘𝑋) ∈ ℝ)
4947, 48sylibr 233 1 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘𝑋) ∉ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wnel 3049   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  ici 11053   · cmul 11056   < clt 11189  cle 11190  -cneg 11386  csqrt 15118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator