Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrtnegnre Structured version   Visualization version   GIF version

Theorem sqrtnegnre 47338
Description: The square root of a negative number is not a real number. (Contributed by AV, 28-Feb-2023.)
Assertion
Ref Expression
sqrtnegnre ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘𝑋) ∉ ℝ)

Proof of Theorem sqrtnegnre
StepHypRef Expression
1 recn 11091 . . . . . . . 8 (𝑋 ∈ ℝ → 𝑋 ∈ ℂ)
21negnegd 11458 . . . . . . 7 (𝑋 ∈ ℝ → --𝑋 = 𝑋)
32adantr 480 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → --𝑋 = 𝑋)
43eqcomd 2737 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → 𝑋 = --𝑋)
54fveq2d 6821 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘𝑋) = (√‘--𝑋))
6 simpl 482 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → 𝑋 ∈ ℝ)
76renegcld 11539 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → -𝑋 ∈ ℝ)
8 0re 11109 . . . . . . . 8 0 ∈ ℝ
9 ltle 11196 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑋 < 0 → 𝑋 ≤ 0))
108, 9mpan2 691 . . . . . . 7 (𝑋 ∈ ℝ → (𝑋 < 0 → 𝑋 ≤ 0))
1110imp 406 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → 𝑋 ≤ 0)
12 le0neg1 11620 . . . . . . 7 (𝑋 ∈ ℝ → (𝑋 ≤ 0 ↔ 0 ≤ -𝑋))
1312adantr 480 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (𝑋 ≤ 0 ↔ 0 ≤ -𝑋))
1411, 13mpbid 232 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → 0 ≤ -𝑋)
157, 14sqrtnegd 15324 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘--𝑋) = (i · (√‘-𝑋)))
165, 15eqtrd 2766 . . 3 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘𝑋) = (i · (√‘-𝑋)))
17 ax-icn 11060 . . . . . 6 i ∈ ℂ
1817a1i 11 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → i ∈ ℂ)
191adantr 480 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → 𝑋 ∈ ℂ)
2019negcld 11454 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → -𝑋 ∈ ℂ)
2120sqrtcld 15342 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘-𝑋) ∈ ℂ)
2218, 21mulcomd 11128 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (i · (√‘-𝑋)) = ((√‘-𝑋) · i))
237, 14resqrtcld 15320 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘-𝑋) ∈ ℝ)
24 inelr 12110 . . . . . . . 8 ¬ i ∈ ℝ
2524a1i 11 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → ¬ i ∈ ℝ)
2618, 25eldifd 3908 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → i ∈ (ℂ ∖ ℝ))
27 lt0neg1 11618 . . . . . . . 8 (𝑋 ∈ ℝ → (𝑋 < 0 ↔ 0 < -𝑋))
288a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℝ → 0 ∈ ℝ)
29 ltne 11205 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 0 < -𝑋) → -𝑋 ≠ 0)
3028, 29sylan 580 . . . . . . . . . 10 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → -𝑋 ≠ 0)
31 simpl 482 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → 𝑋 ∈ ℝ)
3231renegcld 11539 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → -𝑋 ∈ ℝ)
3310, 27, 123imtr3d 293 . . . . . . . . . . . . . 14 (𝑋 ∈ ℝ → (0 < -𝑋 → 0 ≤ -𝑋))
3433imp 406 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → 0 ≤ -𝑋)
35 sqrt00 15165 . . . . . . . . . . . . 13 ((-𝑋 ∈ ℝ ∧ 0 ≤ -𝑋) → ((√‘-𝑋) = 0 ↔ -𝑋 = 0))
3632, 34, 35syl2anc 584 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → ((√‘-𝑋) = 0 ↔ -𝑋 = 0))
3736bicomd 223 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → (-𝑋 = 0 ↔ (√‘-𝑋) = 0))
3837necon3bid 2972 . . . . . . . . . 10 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → (-𝑋 ≠ 0 ↔ (√‘-𝑋) ≠ 0))
3930, 38mpbid 232 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → (√‘-𝑋) ≠ 0)
4039ex 412 . . . . . . . 8 (𝑋 ∈ ℝ → (0 < -𝑋 → (√‘-𝑋) ≠ 0))
4127, 40sylbid 240 . . . . . . 7 (𝑋 ∈ ℝ → (𝑋 < 0 → (√‘-𝑋) ≠ 0))
4241imp 406 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘-𝑋) ≠ 0)
4323, 26, 42recnmulnred 47336 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → ((√‘-𝑋) · i) ∉ ℝ)
44 df-nel 3033 . . . . 5 (((√‘-𝑋) · i) ∉ ℝ ↔ ¬ ((√‘-𝑋) · i) ∈ ℝ)
4543, 44sylib 218 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → ¬ ((√‘-𝑋) · i) ∈ ℝ)
4622, 45eqneltrd 2851 . . 3 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → ¬ (i · (√‘-𝑋)) ∈ ℝ)
4716, 46eqneltrd 2851 . 2 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → ¬ (√‘𝑋) ∈ ℝ)
48 df-nel 3033 . 2 ((√‘𝑋) ∉ ℝ ↔ ¬ (√‘𝑋) ∈ ℝ)
4947, 48sylibr 234 1 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘𝑋) ∉ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wnel 3032   class class class wbr 5086  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001  ici 11003   · cmul 11006   < clt 11141  cle 11142  -cneg 11340  csqrt 15135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator