Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrtnegnre Structured version   Visualization version   GIF version

Theorem sqrtnegnre 42943
Description: The square root of a negative number is not a real number. (Contributed by AV, 28-Feb-2023.)
Assertion
Ref Expression
sqrtnegnre ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘𝑋) ∉ ℝ)

Proof of Theorem sqrtnegnre
StepHypRef Expression
1 recn 10424 . . . . . . . 8 (𝑋 ∈ ℝ → 𝑋 ∈ ℂ)
21negnegd 10788 . . . . . . 7 (𝑋 ∈ ℝ → --𝑋 = 𝑋)
32adantr 473 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → --𝑋 = 𝑋)
43eqcomd 2779 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → 𝑋 = --𝑋)
54fveq2d 6501 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘𝑋) = (√‘--𝑋))
6 simpl 475 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → 𝑋 ∈ ℝ)
76renegcld 10867 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → -𝑋 ∈ ℝ)
8 0re 10440 . . . . . . . 8 0 ∈ ℝ
9 ltle 10528 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑋 < 0 → 𝑋 ≤ 0))
108, 9mpan2 679 . . . . . . 7 (𝑋 ∈ ℝ → (𝑋 < 0 → 𝑋 ≤ 0))
1110imp 398 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → 𝑋 ≤ 0)
12 le0neg1 10948 . . . . . . 7 (𝑋 ∈ ℝ → (𝑋 ≤ 0 ↔ 0 ≤ -𝑋))
1312adantr 473 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (𝑋 ≤ 0 ↔ 0 ≤ -𝑋))
1411, 13mpbid 224 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → 0 ≤ -𝑋)
157, 14sqrtnegd 14641 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘--𝑋) = (i · (√‘-𝑋)))
165, 15eqtrd 2809 . . 3 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘𝑋) = (i · (√‘-𝑋)))
17 ax-icn 10393 . . . . . 6 i ∈ ℂ
1817a1i 11 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → i ∈ ℂ)
191adantr 473 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → 𝑋 ∈ ℂ)
2019negcld 10784 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → -𝑋 ∈ ℂ)
2120sqrtcld 14657 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘-𝑋) ∈ ℂ)
2218, 21mulcomd 10460 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (i · (√‘-𝑋)) = ((√‘-𝑋) · i))
237, 14resqrtcld 14637 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘-𝑋) ∈ ℝ)
24 inelr 11428 . . . . . . . 8 ¬ i ∈ ℝ
2524a1i 11 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → ¬ i ∈ ℝ)
2618, 25eldifd 3835 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → i ∈ (ℂ ∖ ℝ))
27 lt0neg1 10946 . . . . . . . 8 (𝑋 ∈ ℝ → (𝑋 < 0 ↔ 0 < -𝑋))
288a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℝ → 0 ∈ ℝ)
29 ltne 10536 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 0 < -𝑋) → -𝑋 ≠ 0)
3028, 29sylan 572 . . . . . . . . . 10 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → -𝑋 ≠ 0)
31 simpl 475 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → 𝑋 ∈ ℝ)
3231renegcld 10867 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → -𝑋 ∈ ℝ)
3310, 27, 123imtr3d 285 . . . . . . . . . . . . . 14 (𝑋 ∈ ℝ → (0 < -𝑋 → 0 ≤ -𝑋))
3433imp 398 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → 0 ≤ -𝑋)
35 sqrt00 14483 . . . . . . . . . . . . 13 ((-𝑋 ∈ ℝ ∧ 0 ≤ -𝑋) → ((√‘-𝑋) = 0 ↔ -𝑋 = 0))
3632, 34, 35syl2anc 576 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → ((√‘-𝑋) = 0 ↔ -𝑋 = 0))
3736bicomd 215 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → (-𝑋 = 0 ↔ (√‘-𝑋) = 0))
3837necon3bid 3006 . . . . . . . . . 10 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → (-𝑋 ≠ 0 ↔ (√‘-𝑋) ≠ 0))
3930, 38mpbid 224 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 0 < -𝑋) → (√‘-𝑋) ≠ 0)
4039ex 405 . . . . . . . 8 (𝑋 ∈ ℝ → (0 < -𝑋 → (√‘-𝑋) ≠ 0))
4127, 40sylbid 232 . . . . . . 7 (𝑋 ∈ ℝ → (𝑋 < 0 → (√‘-𝑋) ≠ 0))
4241imp 398 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘-𝑋) ≠ 0)
4323, 26, 42recnmulnred 42941 . . . . 5 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → ((√‘-𝑋) · i) ∉ ℝ)
44 df-nel 3069 . . . . 5 (((√‘-𝑋) · i) ∉ ℝ ↔ ¬ ((√‘-𝑋) · i) ∈ ℝ)
4543, 44sylib 210 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → ¬ ((√‘-𝑋) · i) ∈ ℝ)
4622, 45eqneltrd 2880 . . 3 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → ¬ (i · (√‘-𝑋)) ∈ ℝ)
4716, 46eqneltrd 2880 . 2 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → ¬ (√‘𝑋) ∈ ℝ)
48 df-nel 3069 . 2 ((√‘𝑋) ∉ ℝ ↔ ¬ (√‘𝑋) ∈ ℝ)
4947, 48sylibr 226 1 ((𝑋 ∈ ℝ ∧ 𝑋 < 0) → (√‘𝑋) ∉ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1508  wcel 2051  wne 2962  wnel 3068   class class class wbr 4926  cfv 6186  (class class class)co 6975  cc 10332  cr 10333  0cc0 10334  ici 10336   · cmul 10339   < clt 10473  cle 10474  -cneg 10670  csqrt 14452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411  ax-pre-sup 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-sup 8700  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-div 11098  df-nn 11439  df-2 11502  df-3 11503  df-n0 11707  df-z 11793  df-uz 12058  df-rp 12204  df-seq 13184  df-exp 13244  df-cj 14318  df-re 14319  df-im 14320  df-sqrt 14454  df-abs 14455
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator