Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddfl Structured version   Visualization version   GIF version

Theorem oddfl 42705
Description: Odd number representation by using the floor function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
oddfl ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 𝐾 = ((2 · (⌊‘(𝐾 / 2))) + 1))

Proof of Theorem oddfl
StepHypRef Expression
1 zre 12253 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
2 1red 10907 . . . . . . . . 9 (𝐾 ∈ ℤ → 1 ∈ ℝ)
31, 2resubcld 11333 . . . . . . . 8 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℝ)
4 2rp 12664 . . . . . . . . 9 2 ∈ ℝ+
54a1i 11 . . . . . . . 8 (𝐾 ∈ ℤ → 2 ∈ ℝ+)
61lem1d 11838 . . . . . . . 8 (𝐾 ∈ ℤ → (𝐾 − 1) ≤ 𝐾)
73, 1, 5, 6lediv1dd 12759 . . . . . . 7 (𝐾 ∈ ℤ → ((𝐾 − 1) / 2) ≤ (𝐾 / 2))
81rehalfcld 12150 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐾 / 2) ∈ ℝ)
95rpreccld 12711 . . . . . . . . 9 (𝐾 ∈ ℤ → (1 / 2) ∈ ℝ+)
108, 9ltaddrpd 12734 . . . . . . . 8 (𝐾 ∈ ℤ → (𝐾 / 2) < ((𝐾 / 2) + (1 / 2)))
11 zcn 12254 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
122recnd 10934 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 1 ∈ ℂ)
13 2cnd 11981 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 2 ∈ ℂ)
145rpne0d 12706 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 2 ≠ 0)
1511, 12, 13, 14divsubdird 11720 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝐾 − 1) / 2) = ((𝐾 / 2) − (1 / 2)))
1615oveq1d 7270 . . . . . . . . 9 (𝐾 ∈ ℤ → (((𝐾 − 1) / 2) + 1) = (((𝐾 / 2) − (1 / 2)) + 1))
1711halfcld 12148 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 / 2) ∈ ℂ)
1813, 14reccld 11674 . . . . . . . . . 10 (𝐾 ∈ ℤ → (1 / 2) ∈ ℂ)
1917, 18, 12subadd23d 11284 . . . . . . . . 9 (𝐾 ∈ ℤ → (((𝐾 / 2) − (1 / 2)) + 1) = ((𝐾 / 2) + (1 − (1 / 2))))
20 1mhlfehlf 12122 . . . . . . . . . . 11 (1 − (1 / 2)) = (1 / 2)
2120oveq2i 7266 . . . . . . . . . 10 ((𝐾 / 2) + (1 − (1 / 2))) = ((𝐾 / 2) + (1 / 2))
2221a1i 11 . . . . . . . . 9 (𝐾 ∈ ℤ → ((𝐾 / 2) + (1 − (1 / 2))) = ((𝐾 / 2) + (1 / 2)))
2316, 19, 223eqtrrd 2783 . . . . . . . 8 (𝐾 ∈ ℤ → ((𝐾 / 2) + (1 / 2)) = (((𝐾 − 1) / 2) + 1))
2410, 23breqtrd 5096 . . . . . . 7 (𝐾 ∈ ℤ → (𝐾 / 2) < (((𝐾 − 1) / 2) + 1))
257, 24jca 511 . . . . . 6 (𝐾 ∈ ℤ → (((𝐾 − 1) / 2) ≤ (𝐾 / 2) ∧ (𝐾 / 2) < (((𝐾 − 1) / 2) + 1)))
2625adantr 480 . . . . 5 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (((𝐾 − 1) / 2) ≤ (𝐾 / 2) ∧ (𝐾 / 2) < (((𝐾 − 1) / 2) + 1)))
271adantr 480 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 𝐾 ∈ ℝ)
2827rehalfcld 12150 . . . . . 6 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (𝐾 / 2) ∈ ℝ)
2911, 12npcand 11266 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝐾 − 1) + 1) = 𝐾)
3029oveq1d 7270 . . . . . . . . 9 (𝐾 ∈ ℤ → (((𝐾 − 1) + 1) / 2) = (𝐾 / 2))
3130adantr 480 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (((𝐾 − 1) + 1) / 2) = (𝐾 / 2))
32 simpr 484 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (𝐾 mod 2) ≠ 0)
3332neneqd 2947 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ¬ (𝐾 mod 2) = 0)
34 mod0 13524 . . . . . . . . . . 11 ((𝐾 ∈ ℝ ∧ 2 ∈ ℝ+) → ((𝐾 mod 2) = 0 ↔ (𝐾 / 2) ∈ ℤ))
351, 5, 34syl2anc 583 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝐾 mod 2) = 0 ↔ (𝐾 / 2) ∈ ℤ))
3635adantr 480 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((𝐾 mod 2) = 0 ↔ (𝐾 / 2) ∈ ℤ))
3733, 36mtbid 323 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ¬ (𝐾 / 2) ∈ ℤ)
3831, 37eqneltrd 2858 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ¬ (((𝐾 − 1) + 1) / 2) ∈ ℤ)
39 simpl 482 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 𝐾 ∈ ℤ)
40 1zzd 12281 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 1 ∈ ℤ)
4139, 40zsubcld 12360 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (𝐾 − 1) ∈ ℤ)
42 zeo2 12337 . . . . . . . 8 ((𝐾 − 1) ∈ ℤ → (((𝐾 − 1) / 2) ∈ ℤ ↔ ¬ (((𝐾 − 1) + 1) / 2) ∈ ℤ))
4341, 42syl 17 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (((𝐾 − 1) / 2) ∈ ℤ ↔ ¬ (((𝐾 − 1) + 1) / 2) ∈ ℤ))
4438, 43mpbird 256 . . . . . 6 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((𝐾 − 1) / 2) ∈ ℤ)
45 flbi 13464 . . . . . 6 (((𝐾 / 2) ∈ ℝ ∧ ((𝐾 − 1) / 2) ∈ ℤ) → ((⌊‘(𝐾 / 2)) = ((𝐾 − 1) / 2) ↔ (((𝐾 − 1) / 2) ≤ (𝐾 / 2) ∧ (𝐾 / 2) < (((𝐾 − 1) / 2) + 1))))
4628, 44, 45syl2anc 583 . . . . 5 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((⌊‘(𝐾 / 2)) = ((𝐾 − 1) / 2) ↔ (((𝐾 − 1) / 2) ≤ (𝐾 / 2) ∧ (𝐾 / 2) < (((𝐾 − 1) / 2) + 1))))
4726, 46mpbird 256 . . . 4 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (⌊‘(𝐾 / 2)) = ((𝐾 − 1) / 2))
4847oveq2d 7271 . . 3 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (2 · (⌊‘(𝐾 / 2))) = (2 · ((𝐾 − 1) / 2)))
4948oveq1d 7270 . 2 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((2 · (⌊‘(𝐾 / 2))) + 1) = ((2 · ((𝐾 − 1) / 2)) + 1))
5011, 12subcld 11262 . . . . 5 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℂ)
5150, 13, 14divcan2d 11683 . . . 4 (𝐾 ∈ ℤ → (2 · ((𝐾 − 1) / 2)) = (𝐾 − 1))
5251oveq1d 7270 . . 3 (𝐾 ∈ ℤ → ((2 · ((𝐾 − 1) / 2)) + 1) = ((𝐾 − 1) + 1))
5352adantr 480 . 2 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((2 · ((𝐾 − 1) / 2)) + 1) = ((𝐾 − 1) + 1))
5429adantr 480 . 2 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((𝐾 − 1) + 1) = 𝐾)
5549, 53, 543eqtrrd 2783 1 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 𝐾 = ((2 · (⌊‘(𝐾 / 2))) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  cz 12249  +crp 12659  cfl 13438   mod cmo 13517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-mod 13518
This theorem is referenced by:  dirkertrigeqlem3  43531  dirkertrigeq  43532
  Copyright terms: Public domain W3C validator