Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddfl Structured version   Visualization version   GIF version

Theorem oddfl 45192
Description: Odd number representation by using the floor function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
oddfl ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 𝐾 = ((2 · (⌊‘(𝐾 / 2))) + 1))

Proof of Theorem oddfl
StepHypRef Expression
1 zre 12643 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
2 1red 11291 . . . . . . . . 9 (𝐾 ∈ ℤ → 1 ∈ ℝ)
31, 2resubcld 11718 . . . . . . . 8 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℝ)
4 2rp 13062 . . . . . . . . 9 2 ∈ ℝ+
54a1i 11 . . . . . . . 8 (𝐾 ∈ ℤ → 2 ∈ ℝ+)
61lem1d 12228 . . . . . . . 8 (𝐾 ∈ ℤ → (𝐾 − 1) ≤ 𝐾)
73, 1, 5, 6lediv1dd 13157 . . . . . . 7 (𝐾 ∈ ℤ → ((𝐾 − 1) / 2) ≤ (𝐾 / 2))
81rehalfcld 12540 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐾 / 2) ∈ ℝ)
95rpreccld 13109 . . . . . . . . 9 (𝐾 ∈ ℤ → (1 / 2) ∈ ℝ+)
108, 9ltaddrpd 13132 . . . . . . . 8 (𝐾 ∈ ℤ → (𝐾 / 2) < ((𝐾 / 2) + (1 / 2)))
11 zcn 12644 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
122recnd 11318 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 1 ∈ ℂ)
13 2cnd 12371 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 2 ∈ ℂ)
145rpne0d 13104 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 2 ≠ 0)
1511, 12, 13, 14divsubdird 12109 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝐾 − 1) / 2) = ((𝐾 / 2) − (1 / 2)))
1615oveq1d 7463 . . . . . . . . 9 (𝐾 ∈ ℤ → (((𝐾 − 1) / 2) + 1) = (((𝐾 / 2) − (1 / 2)) + 1))
1711halfcld 12538 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 / 2) ∈ ℂ)
1813, 14reccld 12063 . . . . . . . . . 10 (𝐾 ∈ ℤ → (1 / 2) ∈ ℂ)
1917, 18, 12subadd23d 11669 . . . . . . . . 9 (𝐾 ∈ ℤ → (((𝐾 / 2) − (1 / 2)) + 1) = ((𝐾 / 2) + (1 − (1 / 2))))
20 1mhlfehlf 12512 . . . . . . . . . . 11 (1 − (1 / 2)) = (1 / 2)
2120oveq2i 7459 . . . . . . . . . 10 ((𝐾 / 2) + (1 − (1 / 2))) = ((𝐾 / 2) + (1 / 2))
2221a1i 11 . . . . . . . . 9 (𝐾 ∈ ℤ → ((𝐾 / 2) + (1 − (1 / 2))) = ((𝐾 / 2) + (1 / 2)))
2316, 19, 223eqtrrd 2785 . . . . . . . 8 (𝐾 ∈ ℤ → ((𝐾 / 2) + (1 / 2)) = (((𝐾 − 1) / 2) + 1))
2410, 23breqtrd 5192 . . . . . . 7 (𝐾 ∈ ℤ → (𝐾 / 2) < (((𝐾 − 1) / 2) + 1))
257, 24jca 511 . . . . . 6 (𝐾 ∈ ℤ → (((𝐾 − 1) / 2) ≤ (𝐾 / 2) ∧ (𝐾 / 2) < (((𝐾 − 1) / 2) + 1)))
2625adantr 480 . . . . 5 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (((𝐾 − 1) / 2) ≤ (𝐾 / 2) ∧ (𝐾 / 2) < (((𝐾 − 1) / 2) + 1)))
271adantr 480 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 𝐾 ∈ ℝ)
2827rehalfcld 12540 . . . . . 6 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (𝐾 / 2) ∈ ℝ)
2911, 12npcand 11651 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝐾 − 1) + 1) = 𝐾)
3029oveq1d 7463 . . . . . . . . 9 (𝐾 ∈ ℤ → (((𝐾 − 1) + 1) / 2) = (𝐾 / 2))
3130adantr 480 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (((𝐾 − 1) + 1) / 2) = (𝐾 / 2))
32 simpr 484 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (𝐾 mod 2) ≠ 0)
3332neneqd 2951 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ¬ (𝐾 mod 2) = 0)
34 mod0 13927 . . . . . . . . . . 11 ((𝐾 ∈ ℝ ∧ 2 ∈ ℝ+) → ((𝐾 mod 2) = 0 ↔ (𝐾 / 2) ∈ ℤ))
351, 5, 34syl2anc 583 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝐾 mod 2) = 0 ↔ (𝐾 / 2) ∈ ℤ))
3635adantr 480 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((𝐾 mod 2) = 0 ↔ (𝐾 / 2) ∈ ℤ))
3733, 36mtbid 324 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ¬ (𝐾 / 2) ∈ ℤ)
3831, 37eqneltrd 2864 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ¬ (((𝐾 − 1) + 1) / 2) ∈ ℤ)
39 simpl 482 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 𝐾 ∈ ℤ)
40 1zzd 12674 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 1 ∈ ℤ)
4139, 40zsubcld 12752 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (𝐾 − 1) ∈ ℤ)
42 zeo2 12730 . . . . . . . 8 ((𝐾 − 1) ∈ ℤ → (((𝐾 − 1) / 2) ∈ ℤ ↔ ¬ (((𝐾 − 1) + 1) / 2) ∈ ℤ))
4341, 42syl 17 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (((𝐾 − 1) / 2) ∈ ℤ ↔ ¬ (((𝐾 − 1) + 1) / 2) ∈ ℤ))
4438, 43mpbird 257 . . . . . 6 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((𝐾 − 1) / 2) ∈ ℤ)
45 flbi 13867 . . . . . 6 (((𝐾 / 2) ∈ ℝ ∧ ((𝐾 − 1) / 2) ∈ ℤ) → ((⌊‘(𝐾 / 2)) = ((𝐾 − 1) / 2) ↔ (((𝐾 − 1) / 2) ≤ (𝐾 / 2) ∧ (𝐾 / 2) < (((𝐾 − 1) / 2) + 1))))
4628, 44, 45syl2anc 583 . . . . 5 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((⌊‘(𝐾 / 2)) = ((𝐾 − 1) / 2) ↔ (((𝐾 − 1) / 2) ≤ (𝐾 / 2) ∧ (𝐾 / 2) < (((𝐾 − 1) / 2) + 1))))
4726, 46mpbird 257 . . . 4 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (⌊‘(𝐾 / 2)) = ((𝐾 − 1) / 2))
4847oveq2d 7464 . . 3 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (2 · (⌊‘(𝐾 / 2))) = (2 · ((𝐾 − 1) / 2)))
4948oveq1d 7463 . 2 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((2 · (⌊‘(𝐾 / 2))) + 1) = ((2 · ((𝐾 − 1) / 2)) + 1))
5011, 12subcld 11647 . . . . 5 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℂ)
5150, 13, 14divcan2d 12072 . . . 4 (𝐾 ∈ ℤ → (2 · ((𝐾 − 1) / 2)) = (𝐾 − 1))
5251oveq1d 7463 . . 3 (𝐾 ∈ ℤ → ((2 · ((𝐾 − 1) / 2)) + 1) = ((𝐾 − 1) + 1))
5352adantr 480 . 2 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((2 · ((𝐾 − 1) / 2)) + 1) = ((𝐾 − 1) + 1))
5429adantr 480 . 2 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((𝐾 − 1) + 1) = 𝐾)
5549, 53, 543eqtrrd 2785 1 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 𝐾 = ((2 · (⌊‘(𝐾 / 2))) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  2c2 12348  cz 12639  +crp 13057  cfl 13841   mod cmo 13920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-mod 13921
This theorem is referenced by:  dirkertrigeqlem3  46021  dirkertrigeq  46022
  Copyright terms: Public domain W3C validator