Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddfl Structured version   Visualization version   GIF version

Theorem oddfl 41550
Description: Odd number representation by using the floor function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
oddfl ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 𝐾 = ((2 · (⌊‘(𝐾 / 2))) + 1))

Proof of Theorem oddfl
StepHypRef Expression
1 zre 11988 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
2 1red 10644 . . . . . . . . 9 (𝐾 ∈ ℤ → 1 ∈ ℝ)
31, 2resubcld 11070 . . . . . . . 8 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℝ)
4 2rp 12397 . . . . . . . . 9 2 ∈ ℝ+
54a1i 11 . . . . . . . 8 (𝐾 ∈ ℤ → 2 ∈ ℝ+)
61lem1d 11575 . . . . . . . 8 (𝐾 ∈ ℤ → (𝐾 − 1) ≤ 𝐾)
73, 1, 5, 6lediv1dd 12492 . . . . . . 7 (𝐾 ∈ ℤ → ((𝐾 − 1) / 2) ≤ (𝐾 / 2))
81rehalfcld 11887 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐾 / 2) ∈ ℝ)
95rpreccld 12444 . . . . . . . . 9 (𝐾 ∈ ℤ → (1 / 2) ∈ ℝ+)
108, 9ltaddrpd 12467 . . . . . . . 8 (𝐾 ∈ ℤ → (𝐾 / 2) < ((𝐾 / 2) + (1 / 2)))
11 zcn 11989 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
122recnd 10671 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 1 ∈ ℂ)
13 2cnd 11718 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 2 ∈ ℂ)
145rpne0d 12439 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 2 ≠ 0)
1511, 12, 13, 14divsubdird 11457 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝐾 − 1) / 2) = ((𝐾 / 2) − (1 / 2)))
1615oveq1d 7173 . . . . . . . . 9 (𝐾 ∈ ℤ → (((𝐾 − 1) / 2) + 1) = (((𝐾 / 2) − (1 / 2)) + 1))
1711halfcld 11885 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 / 2) ∈ ℂ)
1813, 14reccld 11411 . . . . . . . . . 10 (𝐾 ∈ ℤ → (1 / 2) ∈ ℂ)
1917, 18, 12subadd23d 11021 . . . . . . . . 9 (𝐾 ∈ ℤ → (((𝐾 / 2) − (1 / 2)) + 1) = ((𝐾 / 2) + (1 − (1 / 2))))
20 1mhlfehlf 11859 . . . . . . . . . . 11 (1 − (1 / 2)) = (1 / 2)
2120oveq2i 7169 . . . . . . . . . 10 ((𝐾 / 2) + (1 − (1 / 2))) = ((𝐾 / 2) + (1 / 2))
2221a1i 11 . . . . . . . . 9 (𝐾 ∈ ℤ → ((𝐾 / 2) + (1 − (1 / 2))) = ((𝐾 / 2) + (1 / 2)))
2316, 19, 223eqtrrd 2863 . . . . . . . 8 (𝐾 ∈ ℤ → ((𝐾 / 2) + (1 / 2)) = (((𝐾 − 1) / 2) + 1))
2410, 23breqtrd 5094 . . . . . . 7 (𝐾 ∈ ℤ → (𝐾 / 2) < (((𝐾 − 1) / 2) + 1))
257, 24jca 514 . . . . . 6 (𝐾 ∈ ℤ → (((𝐾 − 1) / 2) ≤ (𝐾 / 2) ∧ (𝐾 / 2) < (((𝐾 − 1) / 2) + 1)))
2625adantr 483 . . . . 5 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (((𝐾 − 1) / 2) ≤ (𝐾 / 2) ∧ (𝐾 / 2) < (((𝐾 − 1) / 2) + 1)))
271adantr 483 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 𝐾 ∈ ℝ)
2827rehalfcld 11887 . . . . . 6 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (𝐾 / 2) ∈ ℝ)
2911, 12npcand 11003 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝐾 − 1) + 1) = 𝐾)
3029oveq1d 7173 . . . . . . . . 9 (𝐾 ∈ ℤ → (((𝐾 − 1) + 1) / 2) = (𝐾 / 2))
3130adantr 483 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (((𝐾 − 1) + 1) / 2) = (𝐾 / 2))
32 simpr 487 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (𝐾 mod 2) ≠ 0)
3332neneqd 3023 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ¬ (𝐾 mod 2) = 0)
34 mod0 13247 . . . . . . . . . . 11 ((𝐾 ∈ ℝ ∧ 2 ∈ ℝ+) → ((𝐾 mod 2) = 0 ↔ (𝐾 / 2) ∈ ℤ))
351, 5, 34syl2anc 586 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝐾 mod 2) = 0 ↔ (𝐾 / 2) ∈ ℤ))
3635adantr 483 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((𝐾 mod 2) = 0 ↔ (𝐾 / 2) ∈ ℤ))
3733, 36mtbid 326 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ¬ (𝐾 / 2) ∈ ℤ)
3831, 37eqneltrd 2934 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ¬ (((𝐾 − 1) + 1) / 2) ∈ ℤ)
39 simpl 485 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 𝐾 ∈ ℤ)
40 1zzd 12016 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 1 ∈ ℤ)
4139, 40zsubcld 12095 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (𝐾 − 1) ∈ ℤ)
42 zeo2 12072 . . . . . . . 8 ((𝐾 − 1) ∈ ℤ → (((𝐾 − 1) / 2) ∈ ℤ ↔ ¬ (((𝐾 − 1) + 1) / 2) ∈ ℤ))
4341, 42syl 17 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (((𝐾 − 1) / 2) ∈ ℤ ↔ ¬ (((𝐾 − 1) + 1) / 2) ∈ ℤ))
4438, 43mpbird 259 . . . . . 6 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((𝐾 − 1) / 2) ∈ ℤ)
45 flbi 13189 . . . . . 6 (((𝐾 / 2) ∈ ℝ ∧ ((𝐾 − 1) / 2) ∈ ℤ) → ((⌊‘(𝐾 / 2)) = ((𝐾 − 1) / 2) ↔ (((𝐾 − 1) / 2) ≤ (𝐾 / 2) ∧ (𝐾 / 2) < (((𝐾 − 1) / 2) + 1))))
4628, 44, 45syl2anc 586 . . . . 5 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((⌊‘(𝐾 / 2)) = ((𝐾 − 1) / 2) ↔ (((𝐾 − 1) / 2) ≤ (𝐾 / 2) ∧ (𝐾 / 2) < (((𝐾 − 1) / 2) + 1))))
4726, 46mpbird 259 . . . 4 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (⌊‘(𝐾 / 2)) = ((𝐾 − 1) / 2))
4847oveq2d 7174 . . 3 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → (2 · (⌊‘(𝐾 / 2))) = (2 · ((𝐾 − 1) / 2)))
4948oveq1d 7173 . 2 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((2 · (⌊‘(𝐾 / 2))) + 1) = ((2 · ((𝐾 − 1) / 2)) + 1))
5011, 12subcld 10999 . . . . 5 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℂ)
5150, 13, 14divcan2d 11420 . . . 4 (𝐾 ∈ ℤ → (2 · ((𝐾 − 1) / 2)) = (𝐾 − 1))
5251oveq1d 7173 . . 3 (𝐾 ∈ ℤ → ((2 · ((𝐾 − 1) / 2)) + 1) = ((𝐾 − 1) + 1))
5352adantr 483 . 2 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((2 · ((𝐾 − 1) / 2)) + 1) = ((𝐾 − 1) + 1))
5429adantr 483 . 2 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → ((𝐾 − 1) + 1) = 𝐾)
5549, 53, 543eqtrrd 2863 1 ((𝐾 ∈ ℤ ∧ (𝐾 mod 2) ≠ 0) → 𝐾 = ((2 · (⌊‘(𝐾 / 2))) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cfv 6357  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  2c2 11695  cz 11984  +crp 12392  cfl 13163   mod cmo 13240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fl 13165  df-mod 13241
This theorem is referenced by:  dirkertrigeqlem3  42392  dirkertrigeq  42393
  Copyright terms: Public domain W3C validator