![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dirker2re | Structured version Visualization version GIF version |
Description: The Dirchlet Kernel value is a real if the argument is not a multiple of π . (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dirker2re | ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 11499 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
2 | 1 | ad2antrr 722 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → 𝑁 ∈ ℝ) |
3 | 1red 10495 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → 1 ∈ ℝ) | |
4 | 3 | rehalfcld 11738 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → (1 / 2) ∈ ℝ) |
5 | 2, 4 | readdcld 10523 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → (𝑁 + (1 / 2)) ∈ ℝ) |
6 | simplr 765 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → 𝑆 ∈ ℝ) | |
7 | 5, 6 | remulcld 10524 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((𝑁 + (1 / 2)) · 𝑆) ∈ ℝ) |
8 | 7 | resincld 15333 | . 2 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → (sin‘((𝑁 + (1 / 2)) · 𝑆)) ∈ ℝ) |
9 | 2re 11565 | . . . . 5 ⊢ 2 ∈ ℝ | |
10 | 9 | a1i 11 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → 2 ∈ ℝ) |
11 | pire 24731 | . . . . 5 ⊢ π ∈ ℝ | |
12 | 11 | a1i 11 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → π ∈ ℝ) |
13 | 10, 12 | remulcld 10524 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → (2 · π) ∈ ℝ) |
14 | 6 | rehalfcld 11738 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → (𝑆 / 2) ∈ ℝ) |
15 | 14 | resincld 15333 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → (sin‘(𝑆 / 2)) ∈ ℝ) |
16 | 13, 15 | remulcld 10524 | . 2 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑆 / 2))) ∈ ℝ) |
17 | 2cnd 11569 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → 2 ∈ ℂ) | |
18 | picn 24732 | . . . . . 6 ⊢ π ∈ ℂ | |
19 | 18 | a1i 11 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → π ∈ ℂ) |
20 | 17, 19 | mulcld 10514 | . . . 4 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → (2 · π) ∈ ℂ) |
21 | recn 10480 | . . . . . . 7 ⊢ (𝑆 ∈ ℝ → 𝑆 ∈ ℂ) | |
22 | 21 | adantr 481 | . . . . . 6 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → 𝑆 ∈ ℂ) |
23 | 22 | halfcld 11736 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → (𝑆 / 2) ∈ ℂ) |
24 | 23 | sincld 15320 | . . . 4 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → (sin‘(𝑆 / 2)) ∈ ℂ) |
25 | 2ne0 11595 | . . . . . 6 ⊢ 2 ≠ 0 | |
26 | 25 | a1i 11 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → 2 ≠ 0) |
27 | 0re 10496 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
28 | pipos 24733 | . . . . . . 7 ⊢ 0 < π | |
29 | 27, 28 | gtneii 10605 | . . . . . 6 ⊢ π ≠ 0 |
30 | 29 | a1i 11 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → π ≠ 0) |
31 | 17, 19, 26, 30 | mulne0d 11146 | . . . 4 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → (2 · π) ≠ 0) |
32 | 22, 17, 19, 26, 30 | divdiv1d 11301 | . . . . . . 7 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((𝑆 / 2) / π) = (𝑆 / (2 · π))) |
33 | simpr 485 | . . . . . . . 8 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ¬ (𝑆 mod (2 · π)) = 0) | |
34 | 2rp 12248 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ+ | |
35 | pirp 24734 | . . . . . . . . . . 11 ⊢ π ∈ ℝ+ | |
36 | rpmulcl 12266 | . . . . . . . . . . 11 ⊢ ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+) | |
37 | 34, 35, 36 | mp2an 688 | . . . . . . . . . 10 ⊢ (2 · π) ∈ ℝ+ |
38 | mod0 13098 | . . . . . . . . . 10 ⊢ ((𝑆 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑆 mod (2 · π)) = 0 ↔ (𝑆 / (2 · π)) ∈ ℤ)) | |
39 | 37, 38 | mpan2 687 | . . . . . . . . 9 ⊢ (𝑆 ∈ ℝ → ((𝑆 mod (2 · π)) = 0 ↔ (𝑆 / (2 · π)) ∈ ℤ)) |
40 | 39 | adantr 481 | . . . . . . . 8 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((𝑆 mod (2 · π)) = 0 ↔ (𝑆 / (2 · π)) ∈ ℤ)) |
41 | 33, 40 | mtbid 325 | . . . . . . 7 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ¬ (𝑆 / (2 · π)) ∈ ℤ) |
42 | 32, 41 | eqneltrd 2904 | . . . . . 6 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ¬ ((𝑆 / 2) / π) ∈ ℤ) |
43 | sineq0 24796 | . . . . . . 7 ⊢ ((𝑆 / 2) ∈ ℂ → ((sin‘(𝑆 / 2)) = 0 ↔ ((𝑆 / 2) / π) ∈ ℤ)) | |
44 | 23, 43 | syl 17 | . . . . . 6 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((sin‘(𝑆 / 2)) = 0 ↔ ((𝑆 / 2) / π) ∈ ℤ)) |
45 | 42, 44 | mtbird 326 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ¬ (sin‘(𝑆 / 2)) = 0) |
46 | 45 | neqned 2993 | . . . 4 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → (sin‘(𝑆 / 2)) ≠ 0) |
47 | 20, 24, 31, 46 | mulne0d 11146 | . . 3 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑆 / 2))) ≠ 0) |
48 | 47 | adantll 710 | . 2 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑆 / 2))) ≠ 0) |
49 | 8, 16, 48 | redivcld 11322 | 1 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1525 ∈ wcel 2083 ≠ wne 2986 ‘cfv 6232 (class class class)co 7023 ℂcc 10388 ℝcr 10389 0cc0 10390 1c1 10391 + caddc 10393 · cmul 10395 / cdiv 11151 ℕcn 11492 2c2 11546 ℤcz 11835 ℝ+crp 12243 mod cmo 13091 sincsin 15254 πcpi 15257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-inf2 8957 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 ax-pre-sup 10468 ax-addf 10469 ax-mulf 10470 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-fal 1538 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-iin 4834 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-se 5410 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-isom 6241 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-of 7274 df-om 7444 df-1st 7552 df-2nd 7553 df-supp 7689 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-2o 7961 df-oadd 7964 df-er 8146 df-map 8265 df-pm 8266 df-ixp 8318 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-fsupp 8687 df-fi 8728 df-sup 8759 df-inf 8760 df-oi 8827 df-card 9221 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-div 11152 df-nn 11493 df-2 11554 df-3 11555 df-4 11556 df-5 11557 df-6 11558 df-7 11559 df-8 11560 df-9 11561 df-n0 11752 df-z 11836 df-dec 11953 df-uz 12098 df-q 12202 df-rp 12244 df-xneg 12361 df-xadd 12362 df-xmul 12363 df-ioo 12596 df-ioc 12597 df-ico 12598 df-icc 12599 df-fz 12747 df-fzo 12888 df-fl 13016 df-mod 13092 df-seq 13224 df-exp 13284 df-fac 13488 df-bc 13517 df-hash 13545 df-shft 14264 df-cj 14296 df-re 14297 df-im 14298 df-sqrt 14432 df-abs 14433 df-limsup 14666 df-clim 14683 df-rlim 14684 df-sum 14881 df-ef 15258 df-sin 15260 df-cos 15261 df-pi 15263 df-struct 16318 df-ndx 16319 df-slot 16320 df-base 16322 df-sets 16323 df-ress 16324 df-plusg 16411 df-mulr 16412 df-starv 16413 df-sca 16414 df-vsca 16415 df-ip 16416 df-tset 16417 df-ple 16418 df-ds 16420 df-unif 16421 df-hom 16422 df-cco 16423 df-rest 16529 df-topn 16530 df-0g 16548 df-gsum 16549 df-topgen 16550 df-pt 16551 df-prds 16554 df-xrs 16608 df-qtop 16613 df-imas 16614 df-xps 16616 df-mre 16690 df-mrc 16691 df-acs 16693 df-mgm 17685 df-sgrp 17727 df-mnd 17738 df-submnd 17779 df-mulg 17986 df-cntz 18192 df-cmn 18639 df-psmet 20223 df-xmet 20224 df-met 20225 df-bl 20226 df-mopn 20227 df-fbas 20228 df-fg 20229 df-cnfld 20232 df-top 21190 df-topon 21207 df-topsp 21229 df-bases 21242 df-cld 21315 df-ntr 21316 df-cls 21317 df-nei 21394 df-lp 21432 df-perf 21433 df-cn 21523 df-cnp 21524 df-haus 21611 df-tx 21858 df-hmeo 22051 df-fil 22142 df-fm 22234 df-flim 22235 df-flf 22236 df-xms 22617 df-ms 22618 df-tms 22619 df-cncf 23173 df-limc 24151 df-dv 24152 |
This theorem is referenced by: dirkerval2 41943 dirkerre 41944 |
Copyright terms: Public domain | W3C validator |