![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dirker2re | Structured version Visualization version GIF version |
Description: The Dirichlet Kernel value is a real if the argument is not a multiple of π . (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dirker2re | ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 12302 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
2 | 1 | ad2antrr 725 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → 𝑁 ∈ ℝ) |
3 | 1red 11293 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → 1 ∈ ℝ) | |
4 | 3 | rehalfcld 12542 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → (1 / 2) ∈ ℝ) |
5 | 2, 4 | readdcld 11321 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → (𝑁 + (1 / 2)) ∈ ℝ) |
6 | simplr 768 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → 𝑆 ∈ ℝ) | |
7 | 5, 6 | remulcld 11322 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((𝑁 + (1 / 2)) · 𝑆) ∈ ℝ) |
8 | 7 | resincld 16193 | . 2 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → (sin‘((𝑁 + (1 / 2)) · 𝑆)) ∈ ℝ) |
9 | 2re 12369 | . . . . 5 ⊢ 2 ∈ ℝ | |
10 | 9 | a1i 11 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → 2 ∈ ℝ) |
11 | pire 26520 | . . . . 5 ⊢ π ∈ ℝ | |
12 | 11 | a1i 11 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → π ∈ ℝ) |
13 | 10, 12 | remulcld 11322 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → (2 · π) ∈ ℝ) |
14 | 6 | rehalfcld 12542 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → (𝑆 / 2) ∈ ℝ) |
15 | 14 | resincld 16193 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → (sin‘(𝑆 / 2)) ∈ ℝ) |
16 | 13, 15 | remulcld 11322 | . 2 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑆 / 2))) ∈ ℝ) |
17 | 2cnd 12373 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → 2 ∈ ℂ) | |
18 | picn 26521 | . . . . . 6 ⊢ π ∈ ℂ | |
19 | 18 | a1i 11 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → π ∈ ℂ) |
20 | 17, 19 | mulcld 11312 | . . . 4 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → (2 · π) ∈ ℂ) |
21 | recn 11276 | . . . . . . 7 ⊢ (𝑆 ∈ ℝ → 𝑆 ∈ ℂ) | |
22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → 𝑆 ∈ ℂ) |
23 | 22 | halfcld 12540 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → (𝑆 / 2) ∈ ℂ) |
24 | 23 | sincld 16180 | . . . 4 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → (sin‘(𝑆 / 2)) ∈ ℂ) |
25 | 2ne0 12399 | . . . . . 6 ⊢ 2 ≠ 0 | |
26 | 25 | a1i 11 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → 2 ≠ 0) |
27 | 0re 11294 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
28 | pipos 26522 | . . . . . . 7 ⊢ 0 < π | |
29 | 27, 28 | gtneii 11404 | . . . . . 6 ⊢ π ≠ 0 |
30 | 29 | a1i 11 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → π ≠ 0) |
31 | 17, 19, 26, 30 | mulne0d 11944 | . . . 4 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → (2 · π) ≠ 0) |
32 | 22, 17, 19, 26, 30 | divdiv1d 12103 | . . . . . . 7 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((𝑆 / 2) / π) = (𝑆 / (2 · π))) |
33 | simpr 484 | . . . . . . . 8 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ¬ (𝑆 mod (2 · π)) = 0) | |
34 | 2rp 13064 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ+ | |
35 | pirp 26523 | . . . . . . . . . . 11 ⊢ π ∈ ℝ+ | |
36 | rpmulcl 13082 | . . . . . . . . . . 11 ⊢ ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+) | |
37 | 34, 35, 36 | mp2an 691 | . . . . . . . . . 10 ⊢ (2 · π) ∈ ℝ+ |
38 | mod0 13929 | . . . . . . . . . 10 ⊢ ((𝑆 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑆 mod (2 · π)) = 0 ↔ (𝑆 / (2 · π)) ∈ ℤ)) | |
39 | 37, 38 | mpan2 690 | . . . . . . . . 9 ⊢ (𝑆 ∈ ℝ → ((𝑆 mod (2 · π)) = 0 ↔ (𝑆 / (2 · π)) ∈ ℤ)) |
40 | 39 | adantr 480 | . . . . . . . 8 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((𝑆 mod (2 · π)) = 0 ↔ (𝑆 / (2 · π)) ∈ ℤ)) |
41 | 33, 40 | mtbid 324 | . . . . . . 7 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ¬ (𝑆 / (2 · π)) ∈ ℤ) |
42 | 32, 41 | eqneltrd 2864 | . . . . . 6 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ¬ ((𝑆 / 2) / π) ∈ ℤ) |
43 | sineq0 26586 | . . . . . . 7 ⊢ ((𝑆 / 2) ∈ ℂ → ((sin‘(𝑆 / 2)) = 0 ↔ ((𝑆 / 2) / π) ∈ ℤ)) | |
44 | 23, 43 | syl 17 | . . . . . 6 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((sin‘(𝑆 / 2)) = 0 ↔ ((𝑆 / 2) / π) ∈ ℤ)) |
45 | 42, 44 | mtbird 325 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ¬ (sin‘(𝑆 / 2)) = 0) |
46 | 45 | neqned 2953 | . . . 4 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → (sin‘(𝑆 / 2)) ≠ 0) |
47 | 20, 24, 31, 46 | mulne0d 11944 | . . 3 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑆 / 2))) ≠ 0) |
48 | 47 | adantll 713 | . 2 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑆 / 2))) ≠ 0) |
49 | 8, 16, 48 | redivcld 12124 | 1 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ‘cfv 6575 (class class class)co 7450 ℂcc 11184 ℝcr 11185 0cc0 11186 1c1 11187 + caddc 11189 · cmul 11191 / cdiv 11949 ℕcn 12295 2c2 12350 ℤcz 12641 ℝ+crp 13059 mod cmo 13922 sincsin 16113 πcpi 16116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-inf2 9712 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-pre-sup 11264 ax-addf 11265 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-isom 6584 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-of 7716 df-om 7906 df-1st 8032 df-2nd 8033 df-supp 8204 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-2o 8525 df-er 8765 df-map 8888 df-pm 8889 df-ixp 8958 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-fsupp 9434 df-fi 9482 df-sup 9513 df-inf 9514 df-oi 9581 df-card 10010 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-div 11950 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-7 12363 df-8 12364 df-9 12365 df-n0 12556 df-z 12642 df-dec 12761 df-uz 12906 df-q 13016 df-rp 13060 df-xneg 13177 df-xadd 13178 df-xmul 13179 df-ioo 13413 df-ioc 13414 df-ico 13415 df-icc 13416 df-fz 13570 df-fzo 13714 df-fl 13845 df-mod 13923 df-seq 14055 df-exp 14115 df-fac 14325 df-bc 14354 df-hash 14382 df-shft 15118 df-cj 15150 df-re 15151 df-im 15152 df-sqrt 15286 df-abs 15287 df-limsup 15519 df-clim 15536 df-rlim 15537 df-sum 15737 df-ef 16117 df-sin 16119 df-cos 16120 df-pi 16122 df-struct 17196 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-starv 17328 df-sca 17329 df-vsca 17330 df-ip 17331 df-tset 17332 df-ple 17333 df-ds 17335 df-unif 17336 df-hom 17337 df-cco 17338 df-rest 17484 df-topn 17485 df-0g 17503 df-gsum 17504 df-topgen 17505 df-pt 17506 df-prds 17509 df-xrs 17564 df-qtop 17569 df-imas 17570 df-xps 17572 df-mre 17646 df-mrc 17647 df-acs 17649 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-submnd 18821 df-mulg 19110 df-cntz 19359 df-cmn 19826 df-psmet 21381 df-xmet 21382 df-met 21383 df-bl 21384 df-mopn 21385 df-fbas 21386 df-fg 21387 df-cnfld 21390 df-top 22923 df-topon 22940 df-topsp 22962 df-bases 22976 df-cld 23050 df-ntr 23051 df-cls 23052 df-nei 23129 df-lp 23167 df-perf 23168 df-cn 23258 df-cnp 23259 df-haus 23346 df-tx 23593 df-hmeo 23786 df-fil 23877 df-fm 23969 df-flim 23970 df-flf 23971 df-xms 24353 df-ms 24354 df-tms 24355 df-cncf 24925 df-limc 25923 df-dv 25924 |
This theorem is referenced by: dirkerval2 46017 dirkerre 46018 |
Copyright terms: Public domain | W3C validator |