![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dirker2re | Structured version Visualization version GIF version |
Description: The Dirchlet Kernel value is a real if the argument is not a multiple of π . (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dirker2re | ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 11232 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
2 | 1 | ad2antrr 705 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → 𝑁 ∈ ℝ) |
3 | 1red 10260 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → 1 ∈ ℝ) | |
4 | 3 | rehalfcld 11485 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → (1 / 2) ∈ ℝ) |
5 | 2, 4 | readdcld 10274 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → (𝑁 + (1 / 2)) ∈ ℝ) |
6 | simplr 752 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → 𝑆 ∈ ℝ) | |
7 | 5, 6 | remulcld 10275 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((𝑁 + (1 / 2)) · 𝑆) ∈ ℝ) |
8 | 7 | resincld 15078 | . 2 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → (sin‘((𝑁 + (1 / 2)) · 𝑆)) ∈ ℝ) |
9 | 2re 11295 | . . . . 5 ⊢ 2 ∈ ℝ | |
10 | 9 | a1i 11 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → 2 ∈ ℝ) |
11 | pire 24430 | . . . . 5 ⊢ π ∈ ℝ | |
12 | 11 | a1i 11 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → π ∈ ℝ) |
13 | 10, 12 | remulcld 10275 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → (2 · π) ∈ ℝ) |
14 | 6 | rehalfcld 11485 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → (𝑆 / 2) ∈ ℝ) |
15 | 14 | resincld 15078 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → (sin‘(𝑆 / 2)) ∈ ℝ) |
16 | 13, 15 | remulcld 10275 | . 2 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑆 / 2))) ∈ ℝ) |
17 | 2cnd 11298 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → 2 ∈ ℂ) | |
18 | picn 24431 | . . . . . 6 ⊢ π ∈ ℂ | |
19 | 18 | a1i 11 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → π ∈ ℂ) |
20 | 17, 19 | mulcld 10265 | . . . 4 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → (2 · π) ∈ ℂ) |
21 | recn 10231 | . . . . . . 7 ⊢ (𝑆 ∈ ℝ → 𝑆 ∈ ℂ) | |
22 | 21 | adantr 466 | . . . . . 6 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → 𝑆 ∈ ℂ) |
23 | 22 | halfcld 11483 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → (𝑆 / 2) ∈ ℂ) |
24 | 23 | sincld 15065 | . . . 4 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → (sin‘(𝑆 / 2)) ∈ ℂ) |
25 | 2ne0 11318 | . . . . . 6 ⊢ 2 ≠ 0 | |
26 | 25 | a1i 11 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → 2 ≠ 0) |
27 | 0re 10245 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
28 | pipos 24432 | . . . . . . 7 ⊢ 0 < π | |
29 | 27, 28 | gtneii 10354 | . . . . . 6 ⊢ π ≠ 0 |
30 | 29 | a1i 11 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → π ≠ 0) |
31 | 17, 19, 26, 30 | mulne0d 10884 | . . . 4 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → (2 · π) ≠ 0) |
32 | 22, 17, 19, 26, 30 | divdiv1d 11037 | . . . . . . 7 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((𝑆 / 2) / π) = (𝑆 / (2 · π))) |
33 | simpr 471 | . . . . . . . 8 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ¬ (𝑆 mod (2 · π)) = 0) | |
34 | 2rp 12039 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ+ | |
35 | pirp 24433 | . . . . . . . . . . 11 ⊢ π ∈ ℝ+ | |
36 | rpmulcl 12057 | . . . . . . . . . . 11 ⊢ ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+) | |
37 | 34, 35, 36 | mp2an 672 | . . . . . . . . . 10 ⊢ (2 · π) ∈ ℝ+ |
38 | mod0 12882 | . . . . . . . . . 10 ⊢ ((𝑆 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝑆 mod (2 · π)) = 0 ↔ (𝑆 / (2 · π)) ∈ ℤ)) | |
39 | 37, 38 | mpan2 671 | . . . . . . . . 9 ⊢ (𝑆 ∈ ℝ → ((𝑆 mod (2 · π)) = 0 ↔ (𝑆 / (2 · π)) ∈ ℤ)) |
40 | 39 | adantr 466 | . . . . . . . 8 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((𝑆 mod (2 · π)) = 0 ↔ (𝑆 / (2 · π)) ∈ ℤ)) |
41 | 33, 40 | mtbid 313 | . . . . . . 7 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ¬ (𝑆 / (2 · π)) ∈ ℤ) |
42 | 32, 41 | eqneltrd 2869 | . . . . . 6 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ¬ ((𝑆 / 2) / π) ∈ ℤ) |
43 | sineq0 24493 | . . . . . . 7 ⊢ ((𝑆 / 2) ∈ ℂ → ((sin‘(𝑆 / 2)) = 0 ↔ ((𝑆 / 2) / π) ∈ ℤ)) | |
44 | 23, 43 | syl 17 | . . . . . 6 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((sin‘(𝑆 / 2)) = 0 ↔ ((𝑆 / 2) / π) ∈ ℤ)) |
45 | 42, 44 | mtbird 314 | . . . . 5 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ¬ (sin‘(𝑆 / 2)) = 0) |
46 | 45 | neqned 2950 | . . . 4 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → (sin‘(𝑆 / 2)) ≠ 0) |
47 | 20, 24, 31, 46 | mulne0d 10884 | . . 3 ⊢ ((𝑆 ∈ ℝ ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑆 / 2))) ≠ 0) |
48 | 47 | adantll 693 | . 2 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑆 / 2))) ≠ 0) |
49 | 8, 16, 48 | redivcld 11058 | 1 ⊢ (((𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ) ∧ ¬ (𝑆 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · 𝑆)) / ((2 · π) · (sin‘(𝑆 / 2)))) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ‘cfv 6030 (class class class)co 6795 ℂcc 10139 ℝcr 10140 0cc0 10141 1c1 10142 + caddc 10144 · cmul 10146 / cdiv 10889 ℕcn 11225 2c2 11275 ℤcz 11583 ℝ+crp 12034 mod cmo 12875 sincsin 14999 πcpi 15002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7099 ax-inf2 8705 ax-cnex 10197 ax-resscn 10198 ax-1cn 10199 ax-icn 10200 ax-addcl 10201 ax-addrcl 10202 ax-mulcl 10203 ax-mulrcl 10204 ax-mulcom 10205 ax-addass 10206 ax-mulass 10207 ax-distr 10208 ax-i2m1 10209 ax-1ne0 10210 ax-1rid 10211 ax-rnegex 10212 ax-rrecex 10213 ax-cnre 10214 ax-pre-lttri 10215 ax-pre-lttrn 10216 ax-pre-ltadd 10217 ax-pre-mulgt0 10218 ax-pre-sup 10219 ax-addf 10220 ax-mulf 10221 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6756 df-ov 6798 df-oprab 6799 df-mpt2 6800 df-of 7047 df-om 7216 df-1st 7318 df-2nd 7319 df-supp 7450 df-wrecs 7562 df-recs 7624 df-rdg 7662 df-1o 7716 df-2o 7717 df-oadd 7720 df-er 7899 df-map 8014 df-pm 8015 df-ixp 8066 df-en 8113 df-dom 8114 df-sdom 8115 df-fin 8116 df-fsupp 8435 df-fi 8476 df-sup 8507 df-inf 8508 df-oi 8574 df-card 8968 df-cda 9195 df-pnf 10281 df-mnf 10282 df-xr 10283 df-ltxr 10284 df-le 10285 df-sub 10473 df-neg 10474 df-div 10890 df-nn 11226 df-2 11284 df-3 11285 df-4 11286 df-5 11287 df-6 11288 df-7 11289 df-8 11290 df-9 11291 df-n0 11499 df-z 11584 df-dec 11700 df-uz 11893 df-q 11996 df-rp 12035 df-xneg 12150 df-xadd 12151 df-xmul 12152 df-ioo 12383 df-ioc 12384 df-ico 12385 df-icc 12386 df-fz 12533 df-fzo 12673 df-fl 12800 df-mod 12876 df-seq 13008 df-exp 13067 df-fac 13264 df-bc 13293 df-hash 13321 df-shft 14014 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-limsup 14409 df-clim 14426 df-rlim 14427 df-sum 14624 df-ef 15003 df-sin 15005 df-cos 15006 df-pi 15008 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-starv 16163 df-sca 16164 df-vsca 16165 df-ip 16166 df-tset 16167 df-ple 16168 df-ds 16171 df-unif 16172 df-hom 16173 df-cco 16174 df-rest 16290 df-topn 16291 df-0g 16309 df-gsum 16310 df-topgen 16311 df-pt 16312 df-prds 16315 df-xrs 16369 df-qtop 16374 df-imas 16375 df-xps 16377 df-mre 16453 df-mrc 16454 df-acs 16456 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-submnd 17543 df-mulg 17748 df-cntz 17956 df-cmn 18401 df-psmet 19952 df-xmet 19953 df-met 19954 df-bl 19955 df-mopn 19956 df-fbas 19957 df-fg 19958 df-cnfld 19961 df-top 20918 df-topon 20935 df-topsp 20957 df-bases 20970 df-cld 21043 df-ntr 21044 df-cls 21045 df-nei 21122 df-lp 21160 df-perf 21161 df-cn 21251 df-cnp 21252 df-haus 21339 df-tx 21585 df-hmeo 21778 df-fil 21869 df-fm 21961 df-flim 21962 df-flf 21963 df-xms 22344 df-ms 22345 df-tms 22346 df-cncf 22900 df-limc 23849 df-dv 23850 |
This theorem is referenced by: dirkerval2 40825 dirkerre 40826 |
Copyright terms: Public domain | W3C validator |