Step | Hyp | Ref
| Expression |
1 | | mplcoe1.p |
. . . . . 6
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
2 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
3 | | mplcoe1.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑃) |
4 | | mplcoe1.d |
. . . . . 6
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
5 | | mplcoe1.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
6 | 1, 2, 3, 4, 5 | mplelf 21204 |
. . . . 5
⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
7 | 6 | feqmptd 6837 |
. . . 4
⊢ (𝜑 → 𝑋 = (𝑦 ∈ 𝐷 ↦ (𝑋‘𝑦))) |
8 | | iftrue 4465 |
. . . . . . 7
⊢ (𝑦 ∈ (𝑋 supp 0 ) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋‘𝑦), 0 ) = (𝑋‘𝑦)) |
9 | 8 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ (𝑋 supp 0 )) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋‘𝑦), 0 ) = (𝑋‘𝑦)) |
10 | | eldif 3897 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ (𝑦 ∈ 𝐷 ∧ ¬ 𝑦 ∈ (𝑋 supp 0 ))) |
11 | | ssidd 3944 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑋 supp 0 ) ⊆ (𝑋 supp 0 )) |
12 | | ovex 7308 |
. . . . . . . . . . . . 13
⊢
(ℕ0 ↑m 𝐼) ∈ V |
13 | 4, 12 | rabex2 5258 |
. . . . . . . . . . . 12
⊢ 𝐷 ∈ V |
14 | 13 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ V) |
15 | | mplcoe1.z |
. . . . . . . . . . . . 13
⊢ 0 =
(0g‘𝑅) |
16 | 15 | fvexi 6788 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
17 | 16 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ∈ V) |
18 | 6, 11, 14, 17 | suppssr 8012 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → (𝑋‘𝑦) = 0 ) |
19 | 18 | ifeq2d 4479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋‘𝑦), (𝑋‘𝑦)) = if(𝑦 ∈ (𝑋 supp 0 ), (𝑋‘𝑦), 0 )) |
20 | | ifid 4499 |
. . . . . . . . 9
⊢ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋‘𝑦), (𝑋‘𝑦)) = (𝑋‘𝑦) |
21 | 19, 20 | eqtr3di 2793 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋‘𝑦), 0 ) = (𝑋‘𝑦)) |
22 | 10, 21 | sylan2br 595 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐷 ∧ ¬ 𝑦 ∈ (𝑋 supp 0 ))) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋‘𝑦), 0 ) = (𝑋‘𝑦)) |
23 | 22 | anassrs 468 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ (𝑋 supp 0 )) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋‘𝑦), 0 ) = (𝑋‘𝑦)) |
24 | 9, 23 | pm2.61dan 810 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋‘𝑦), 0 ) = (𝑋‘𝑦)) |
25 | 24 | mpteq2dva 5174 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋‘𝑦), 0 )) = (𝑦 ∈ 𝐷 ↦ (𝑋‘𝑦))) |
26 | 7, 25 | eqtr4d 2781 |
. . 3
⊢ (𝜑 → 𝑋 = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋‘𝑦), 0 ))) |
27 | | suppssdm 7993 |
. . . . 5
⊢ (𝑋 supp 0 ) ⊆ dom 𝑋 |
28 | 27, 6 | fssdm 6620 |
. . . 4
⊢ (𝜑 → (𝑋 supp 0 ) ⊆ 𝐷) |
29 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) |
30 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘(𝐼
mPwSer 𝑅)) =
(Base‘(𝐼 mPwSer 𝑅)) |
31 | 1, 29, 30, 15, 3 | mplelbas 21199 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑋 finSupp 0 )) |
32 | 31 | simprbi 497 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐵 → 𝑋 finSupp 0 ) |
33 | 5, 32 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑋 finSupp 0 ) |
34 | 33 | fsuppimpd 9135 |
. . . . 5
⊢ (𝜑 → (𝑋 supp 0 ) ∈
Fin) |
35 | | sseq1 3946 |
. . . . . . . 8
⊢ (𝑤 = ∅ → (𝑤 ⊆ 𝐷 ↔ ∅ ⊆ 𝐷)) |
36 | | mpteq1 5167 |
. . . . . . . . . . . 12
⊢ (𝑤 = ∅ → (𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = (𝑘 ∈ ∅ ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) |
37 | | mpt0 6575 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ∅ ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) =
∅ |
38 | 36, 37 | eqtrdi 2794 |
. . . . . . . . . . 11
⊢ (𝑤 = ∅ → (𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) =
∅) |
39 | 38 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (𝑤 = ∅ → (𝑃 Σg
(𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg
∅)) |
40 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(0g‘𝑃) = (0g‘𝑃) |
41 | 40 | gsum0 18368 |
. . . . . . . . . 10
⊢ (𝑃 Σg
∅) = (0g‘𝑃) |
42 | 39, 41 | eqtrdi 2794 |
. . . . . . . . 9
⊢ (𝑤 = ∅ → (𝑃 Σg
(𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) =
(0g‘𝑃)) |
43 | | noel 4264 |
. . . . . . . . . . . 12
⊢ ¬
𝑦 ∈
∅ |
44 | | eleq2 2827 |
. . . . . . . . . . . 12
⊢ (𝑤 = ∅ → (𝑦 ∈ 𝑤 ↔ 𝑦 ∈ ∅)) |
45 | 43, 44 | mtbiri 327 |
. . . . . . . . . . 11
⊢ (𝑤 = ∅ → ¬ 𝑦 ∈ 𝑤) |
46 | 45 | iffalsed 4470 |
. . . . . . . . . 10
⊢ (𝑤 = ∅ → if(𝑦 ∈ 𝑤, (𝑋‘𝑦), 0 ) = 0 ) |
47 | 46 | mpteq2dv 5176 |
. . . . . . . . 9
⊢ (𝑤 = ∅ → (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑤, (𝑋‘𝑦), 0 )) = (𝑦 ∈ 𝐷 ↦ 0 )) |
48 | 42, 47 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑤 = ∅ → ((𝑃 Σg
(𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑤, (𝑋‘𝑦), 0 )) ↔
(0g‘𝑃) =
(𝑦 ∈ 𝐷 ↦ 0 ))) |
49 | 35, 48 | imbi12d 345 |
. . . . . . 7
⊢ (𝑤 = ∅ → ((𝑤 ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑤, (𝑋‘𝑦), 0 ))) ↔ (∅
⊆ 𝐷 →
(0g‘𝑃) =
(𝑦 ∈ 𝐷 ↦ 0 )))) |
50 | 49 | imbi2d 341 |
. . . . . 6
⊢ (𝑤 = ∅ → ((𝜑 → (𝑤 ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑤, (𝑋‘𝑦), 0 )))) ↔ (𝜑 → (∅ ⊆ 𝐷 →
(0g‘𝑃) =
(𝑦 ∈ 𝐷 ↦ 0 ))))) |
51 | | sseq1 3946 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → (𝑤 ⊆ 𝐷 ↔ 𝑥 ⊆ 𝐷)) |
52 | | mpteq1 5167 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → (𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = (𝑘 ∈ 𝑥 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) |
53 | 52 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → (𝑃 Σg (𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg (𝑘 ∈ 𝑥 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))) |
54 | | eleq2 2827 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → (𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥)) |
55 | 54 | ifbid 4482 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → if(𝑦 ∈ 𝑤, (𝑋‘𝑦), 0 ) = if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) |
56 | 55 | mpteq2dv 5176 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑤, (𝑋‘𝑦), 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 ))) |
57 | 53, 56 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → ((𝑃 Σg (𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑤, (𝑋‘𝑦), 0 )) ↔ (𝑃 Σg
(𝑘 ∈ 𝑥 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )))) |
58 | 51, 57 | imbi12d 345 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → ((𝑤 ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑤, (𝑋‘𝑦), 0 ))) ↔ (𝑥 ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ 𝑥 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 ))))) |
59 | 58 | imbi2d 341 |
. . . . . 6
⊢ (𝑤 = 𝑥 → ((𝜑 → (𝑤 ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑤, (𝑋‘𝑦), 0 )))) ↔ (𝜑 → (𝑥 ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ 𝑥 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )))))) |
60 | | sseq1 3946 |
. . . . . . . 8
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑤 ⊆ 𝐷 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) |
61 | | mpteq1 5167 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) |
62 | 61 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑃 Σg (𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))) |
63 | | eleq2 2827 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦 ∈ 𝑤 ↔ 𝑦 ∈ (𝑥 ∪ {𝑧}))) |
64 | 63 | ifbid 4482 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → if(𝑦 ∈ 𝑤, (𝑋‘𝑦), 0 ) = if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋‘𝑦), 0 )) |
65 | 64 | mpteq2dv 5176 |
. . . . . . . . 9
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑤, (𝑋‘𝑦), 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋‘𝑦), 0 ))) |
66 | 62, 65 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑃 Σg (𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑤, (𝑋‘𝑦), 0 )) ↔ (𝑃 Σg
(𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋‘𝑦), 0 )))) |
67 | 60, 66 | imbi12d 345 |
. . . . . . 7
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑤 ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑤, (𝑋‘𝑦), 0 ))) ↔ ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋‘𝑦), 0 ))))) |
68 | 67 | imbi2d 341 |
. . . . . 6
⊢ (𝑤 = (𝑥 ∪ {𝑧}) → ((𝜑 → (𝑤 ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑤, (𝑋‘𝑦), 0 )))) ↔ (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋‘𝑦), 0 )))))) |
69 | | sseq1 3946 |
. . . . . . . 8
⊢ (𝑤 = (𝑋 supp 0 ) → (𝑤 ⊆ 𝐷 ↔ (𝑋 supp 0 ) ⊆ 𝐷)) |
70 | | mpteq1 5167 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑋 supp 0 ) → (𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) |
71 | 70 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑤 = (𝑋 supp 0 ) → (𝑃 Σg
(𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))) |
72 | | eleq2 2827 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑋 supp 0 ) → (𝑦 ∈ 𝑤 ↔ 𝑦 ∈ (𝑋 supp 0 ))) |
73 | 72 | ifbid 4482 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑋 supp 0 ) → if(𝑦 ∈ 𝑤, (𝑋‘𝑦), 0 ) = if(𝑦 ∈ (𝑋 supp 0 ), (𝑋‘𝑦), 0 )) |
74 | 73 | mpteq2dv 5176 |
. . . . . . . . 9
⊢ (𝑤 = (𝑋 supp 0 ) → (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑤, (𝑋‘𝑦), 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋‘𝑦), 0 ))) |
75 | 71, 74 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑤 = (𝑋 supp 0 ) → ((𝑃 Σg
(𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑤, (𝑋‘𝑦), 0 )) ↔ (𝑃 Σg
(𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋‘𝑦), 0 )))) |
76 | 69, 75 | imbi12d 345 |
. . . . . . 7
⊢ (𝑤 = (𝑋 supp 0 ) → ((𝑤 ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑤, (𝑋‘𝑦), 0 ))) ↔ ((𝑋 supp 0 ) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋‘𝑦), 0 ))))) |
77 | 76 | imbi2d 341 |
. . . . . 6
⊢ (𝑤 = (𝑋 supp 0 ) → ((𝜑 → (𝑤 ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ 𝑤 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑤, (𝑋‘𝑦), 0 )))) ↔ (𝜑 → ((𝑋 supp 0 ) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋‘𝑦), 0 )))))) |
78 | | mplcoe1.i |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
79 | | mplcoe1.r |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Ring) |
80 | | ringgrp 19788 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
81 | 79, 80 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Grp) |
82 | 1, 4, 15, 40, 78, 81 | mpl0 21212 |
. . . . . . . 8
⊢ (𝜑 → (0g‘𝑃) = (𝐷 × { 0 })) |
83 | | fconstmpt 5649 |
. . . . . . . 8
⊢ (𝐷 × { 0 }) = (𝑦 ∈ 𝐷 ↦ 0 ) |
84 | 82, 83 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝜑 → (0g‘𝑃) = (𝑦 ∈ 𝐷 ↦ 0 )) |
85 | 84 | a1d 25 |
. . . . . 6
⊢ (𝜑 → (∅ ⊆ 𝐷 →
(0g‘𝑃) =
(𝑦 ∈ 𝐷 ↦ 0 ))) |
86 | | ssun1 4106 |
. . . . . . . . . . 11
⊢ 𝑥 ⊆ (𝑥 ∪ {𝑧}) |
87 | | sstr2 3928 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ (𝑥 ∪ {𝑧}) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → 𝑥 ⊆ 𝐷)) |
88 | 86, 87 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → 𝑥 ⊆ 𝐷) |
89 | 88 | imim1i 63 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ 𝑥 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 ))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ 𝑥 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )))) |
90 | | oveq1 7282 |
. . . . . . . . . . . 12
⊢ ((𝑃 Σg
(𝑘 ∈ 𝑥 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) → ((𝑃 Σg
(𝑘 ∈ 𝑥 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0
)))))(+g‘𝑃)((𝑋‘𝑧) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0
))(+g‘𝑃)((𝑋‘𝑧) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))))) |
91 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(+g‘𝑃) = (+g‘𝑃) |
92 | 1 | mplring 21224 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring) |
93 | 78, 79, 92 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 ∈ Ring) |
94 | | ringcmn 19820 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ Ring → 𝑃 ∈ CMnd) |
95 | 93, 94 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑃 ∈ CMnd) |
96 | 95 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑃 ∈ CMnd) |
97 | | simprll 776 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑥 ∈ Fin) |
98 | | simprr 770 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑥 ∪ {𝑧}) ⊆ 𝐷) |
99 | 98 | unssad 4121 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑥 ⊆ 𝐷) |
100 | 99 | sselda 3921 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑘 ∈ 𝑥) → 𝑘 ∈ 𝐷) |
101 | 78 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝐼 ∈ 𝑊) |
102 | 79 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑅 ∈ Ring) |
103 | 1 | mpllmod 21223 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ LMod) |
104 | 101, 102,
103 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑃 ∈ LMod) |
105 | 6 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑋‘𝑘) ∈ (Base‘𝑅)) |
106 | 1, 78, 79 | mplsca 21217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
107 | 106 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑅 = (Scalar‘𝑃)) |
108 | 107 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
109 | 105, 108 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑋‘𝑘) ∈ (Base‘(Scalar‘𝑃))) |
110 | | mplcoe1.o |
. . . . . . . . . . . . . . . . . 18
⊢ 1 =
(1r‘𝑅) |
111 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑘 ∈ 𝐷) |
112 | 1, 3, 15, 110, 4, 101, 102, 111 | mplmon 21236 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )) ∈ 𝐵) |
113 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
114 | | mplcoe1.n |
. . . . . . . . . . . . . . . . . 18
⊢ · = (
·𝑠 ‘𝑃) |
115 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
116 | 3, 113, 114, 115 | lmodvscl 20140 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ LMod ∧ (𝑋‘𝑘) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )) ∈ 𝐵) → ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) ∈ 𝐵) |
117 | 104, 109,
112, 116 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) ∈ 𝐵) |
118 | 117 | adantlr 712 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑘 ∈ 𝐷) → ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) ∈ 𝐵) |
119 | 100, 118 | syldan 591 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑘 ∈ 𝑥) → ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) ∈ 𝐵) |
120 | | vex 3436 |
. . . . . . . . . . . . . . 15
⊢ 𝑧 ∈ V |
121 | 120 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑧 ∈ V) |
122 | | simprlr 777 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ¬ 𝑧 ∈ 𝑥) |
123 | 78, 79, 103 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 ∈ LMod) |
124 | 123 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑃 ∈ LMod) |
125 | 6 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑋:𝐷⟶(Base‘𝑅)) |
126 | 98 | unssbd 4122 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → {𝑧} ⊆ 𝐷) |
127 | 120 | snss 4719 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝐷 ↔ {𝑧} ⊆ 𝐷) |
128 | 126, 127 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑧 ∈ 𝐷) |
129 | 125, 128 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑋‘𝑧) ∈ (Base‘𝑅)) |
130 | 106 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑅 = (Scalar‘𝑃)) |
131 | 130 | fveq2d 6778 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
132 | 129, 131 | eleqtrd 2841 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑋‘𝑧) ∈ (Base‘(Scalar‘𝑃))) |
133 | 78 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝐼 ∈ 𝑊) |
134 | 79 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑅 ∈ Ring) |
135 | 1, 3, 15, 110, 4, 133, 134, 128 | mplmon 21236 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )) ∈ 𝐵) |
136 | 3, 113, 114, 115 | lmodvscl 20140 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ LMod ∧ (𝑋‘𝑧) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )) ∈ 𝐵) → ((𝑋‘𝑧) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) ∈ 𝐵) |
137 | 124, 132,
135, 136 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋‘𝑧) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) ∈ 𝐵) |
138 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑧 → (𝑋‘𝑘) = (𝑋‘𝑧)) |
139 | | equequ2 2029 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑧 → (𝑦 = 𝑘 ↔ 𝑦 = 𝑧)) |
140 | 139 | ifbid 4482 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑧 → if(𝑦 = 𝑘, 1 , 0 ) = if(𝑦 = 𝑧, 1 , 0 )) |
141 | 140 | mpteq2dv 5176 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑧 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) |
142 | 138, 141 | oveq12d 7293 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑧 → ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = ((𝑋‘𝑧) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) |
143 | 3, 91, 96, 97, 119, 121, 122, 137, 142 | gsumunsn 19561 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = ((𝑃 Σg
(𝑘 ∈ 𝑥 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0
)))))(+g‘𝑃)((𝑋‘𝑧) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))))) |
144 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(+g‘𝑅) = (+g‘𝑅) |
145 | 125 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) → (𝑋‘𝑦) ∈ (Base‘𝑅)) |
146 | 2, 15 | ring0cl 19808 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑅 ∈ Ring → 0 ∈
(Base‘𝑅)) |
147 | 79, 146 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 0 ∈ (Base‘𝑅)) |
148 | 147 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) → 0 ∈ (Base‘𝑅)) |
149 | 145, 148 | ifcld 4505 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) → if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 ) ∈ (Base‘𝑅)) |
150 | 149 | fmpttd 6989 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )):𝐷⟶(Base‘𝑅)) |
151 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Base‘𝑅)
∈ V |
152 | 151, 13 | elmap 8659 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) ∈
((Base‘𝑅)
↑m 𝐷)
↔ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )):𝐷⟶(Base‘𝑅)) |
153 | 150, 152 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) ∈
((Base‘𝑅)
↑m 𝐷)) |
154 | 29, 2, 4, 30, 133 | psrbas 21147 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (Base‘(𝐼 mPwSer 𝑅)) = ((Base‘𝑅) ↑m 𝐷)) |
155 | 153, 154 | eleqtrrd 2842 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) ∈
(Base‘(𝐼 mPwSer 𝑅))) |
156 | 13 | mptex 7099 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) ∈
V |
157 | | funmpt 6472 |
. . . . . . . . . . . . . . . . . . 19
⊢ Fun
(𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) |
158 | 156, 157,
16 | 3pm3.2i 1338 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) ∈ V ∧ Fun
(𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) ∧ 0 ∈
V) |
159 | 158 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) ∈ V ∧ Fun
(𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) ∧ 0 ∈
V)) |
160 | | eldifn 4062 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (𝐷 ∖ 𝑥) → ¬ 𝑦 ∈ 𝑥) |
161 | 160 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ (𝐷 ∖ 𝑥)) → ¬ 𝑦 ∈ 𝑥) |
162 | 161 | iffalsed 4470 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ (𝐷 ∖ 𝑥)) → if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 ) = 0 ) |
163 | 13 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝐷 ∈ V) |
164 | 162, 163 | suppss2 8016 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) supp 0 ) ⊆ 𝑥) |
165 | | suppssfifsupp 9143 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) ∈ V ∧ Fun
(𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) ∧ 0 ∈ V)
∧ (𝑥 ∈ Fin ∧
((𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) supp 0 ) ⊆ 𝑥)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) finSupp 0
) |
166 | 159, 97, 164, 165 | syl12anc 834 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) finSupp 0
) |
167 | 1, 29, 30, 15, 3 | mplelbas 21199 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) ∈ 𝐵 ↔ ((𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) ∈
(Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) finSupp 0
)) |
168 | 155, 166,
167 | sylanbrc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) ∈ 𝐵) |
169 | 1, 3, 144, 91, 168, 137 | mpladd 21213 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0
))(+g‘𝑃)((𝑋‘𝑧) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) ∘f
(+g‘𝑅)((𝑋‘𝑧) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))))) |
170 | | ovexd 7310 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) → ((𝑋‘𝑧)(.r‘𝑅)if(𝑦 = 𝑧, 1 , 0 )) ∈
V) |
171 | | eqidd 2739 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 ))) |
172 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(.r‘𝑅) = (.r‘𝑅) |
173 | 1, 114, 2, 3, 172, 4, 129, 135 | mplvsca 21219 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋‘𝑧) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) = ((𝐷 × {(𝑋‘𝑧)}) ∘f
(.r‘𝑅)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) |
174 | 129 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) → (𝑋‘𝑧) ∈ (Base‘𝑅)) |
175 | 2, 110 | ringidcl 19807 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑅 ∈ Ring → 1 ∈
(Base‘𝑅)) |
176 | 175, 146 | ifcld 4505 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ Ring → if(𝑦 = 𝑧, 1 , 0 ) ∈ (Base‘𝑅)) |
177 | 79, 176 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → if(𝑦 = 𝑧, 1 , 0 ) ∈ (Base‘𝑅)) |
178 | 177 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) → if(𝑦 = 𝑧, 1 , 0 ) ∈ (Base‘𝑅)) |
179 | | fconstmpt 5649 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐷 × {(𝑋‘𝑧)}) = (𝑦 ∈ 𝐷 ↦ (𝑋‘𝑧)) |
180 | 179 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝐷 × {(𝑋‘𝑧)}) = (𝑦 ∈ 𝐷 ↦ (𝑋‘𝑧))) |
181 | | eqidd 2739 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) |
182 | 163, 174,
178, 180, 181 | offval2 7553 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝐷 × {(𝑋‘𝑧)}) ∘f
(.r‘𝑅)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ ((𝑋‘𝑧)(.r‘𝑅)if(𝑦 = 𝑧, 1 , 0 )))) |
183 | 173, 182 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋‘𝑧) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ ((𝑋‘𝑧)(.r‘𝑅)if(𝑦 = 𝑧, 1 , 0 )))) |
184 | 163, 149,
170, 171, 183 | offval2 7553 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) ∘f
(+g‘𝑅)((𝑋‘𝑧) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) = (𝑦 ∈ 𝐷 ↦ (if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0
)(+g‘𝑅)((𝑋‘𝑧)(.r‘𝑅)if(𝑦 = 𝑧, 1 , 0 ))))) |
185 | 134, 80 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑅 ∈ Grp) |
186 | 2, 144, 15 | grplid 18609 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ Grp ∧ (𝑋‘𝑧) ∈ (Base‘𝑅)) → ( 0 (+g‘𝑅)(𝑋‘𝑧)) = (𝑋‘𝑧)) |
187 | 185, 129,
186 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ( 0 (+g‘𝑅)(𝑋‘𝑧)) = (𝑋‘𝑧)) |
188 | 187 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ {𝑧}) → ( 0 (+g‘𝑅)(𝑋‘𝑧)) = (𝑋‘𝑧)) |
189 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ {𝑧}) → 𝑦 ∈ {𝑧}) |
190 | | velsn 4577 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧) |
191 | 189, 190 | sylib 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ {𝑧}) → 𝑦 = 𝑧) |
192 | 191 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ {𝑧}) → (𝑋‘𝑦) = (𝑋‘𝑧)) |
193 | 188, 192 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ {𝑧}) → ( 0 (+g‘𝑅)(𝑋‘𝑧)) = (𝑋‘𝑦)) |
194 | 122 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ {𝑧}) → ¬ 𝑧 ∈ 𝑥) |
195 | 191, 194 | eqneltrd 2858 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ {𝑧}) → ¬ 𝑦 ∈ 𝑥) |
196 | 195 | iffalsed 4470 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ {𝑧}) → if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 ) = 0 ) |
197 | 191 | iftrued 4467 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ {𝑧}) → if(𝑦 = 𝑧, 1 , 0 ) = 1 ) |
198 | 197 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ {𝑧}) → ((𝑋‘𝑧)(.r‘𝑅)if(𝑦 = 𝑧, 1 , 0 )) = ((𝑋‘𝑧)(.r‘𝑅) 1 )) |
199 | 2, 172, 110 | ringridm 19811 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑧) ∈ (Base‘𝑅)) → ((𝑋‘𝑧)(.r‘𝑅) 1 ) = (𝑋‘𝑧)) |
200 | 134, 129,
199 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋‘𝑧)(.r‘𝑅) 1 ) = (𝑋‘𝑧)) |
201 | 200 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ {𝑧}) → ((𝑋‘𝑧)(.r‘𝑅) 1 ) = (𝑋‘𝑧)) |
202 | 198, 201 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ {𝑧}) → ((𝑋‘𝑧)(.r‘𝑅)if(𝑦 = 𝑧, 1 , 0 )) = (𝑋‘𝑧)) |
203 | 196, 202 | oveq12d 7293 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ {𝑧}) → (if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0
)(+g‘𝑅)((𝑋‘𝑧)(.r‘𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = ( 0 (+g‘𝑅)(𝑋‘𝑧))) |
204 | | elun2 4111 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ {𝑧} → 𝑦 ∈ (𝑥 ∪ {𝑧})) |
205 | 204 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ {𝑧}) → 𝑦 ∈ (𝑥 ∪ {𝑧})) |
206 | 205 | iftrued 4467 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ {𝑧}) → if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋‘𝑦), 0 ) = (𝑋‘𝑦)) |
207 | 193, 203,
206 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ 𝑦 ∈ {𝑧}) → (if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0
)(+g‘𝑅)((𝑋‘𝑧)(.r‘𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋‘𝑦), 0 )) |
208 | 81 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) → 𝑅 ∈ Grp) |
209 | 2, 144, 15 | grprid 18610 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ Grp ∧ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 ) ∈ (Base‘𝑅)) → (if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0
)(+g‘𝑅)
0 ) =
if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) |
210 | 208, 149,
209 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) → (if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0
)(+g‘𝑅)
0 ) =
if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) |
211 | 210 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → (if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0
)(+g‘𝑅)
0 ) =
if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) |
212 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ¬ 𝑦 ∈ {𝑧}) |
213 | 212, 190 | sylnib 328 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ¬ 𝑦 = 𝑧) |
214 | 213 | iffalsed 4470 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → if(𝑦 = 𝑧, 1 , 0 ) = 0 ) |
215 | 214 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ((𝑋‘𝑧)(.r‘𝑅)if(𝑦 = 𝑧, 1 , 0 )) = ((𝑋‘𝑧)(.r‘𝑅) 0 )) |
216 | 2, 172, 15 | ringrz 19827 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑧) ∈ (Base‘𝑅)) → ((𝑋‘𝑧)(.r‘𝑅) 0 ) = 0 ) |
217 | 134, 129,
216 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋‘𝑧)(.r‘𝑅) 0 ) = 0 ) |
218 | 217 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ((𝑋‘𝑧)(.r‘𝑅) 0 ) = 0 ) |
219 | 215, 218 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ((𝑋‘𝑧)(.r‘𝑅)if(𝑦 = 𝑧, 1 , 0 )) = 0 ) |
220 | 219 | oveq2d 7291 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → (if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0
)(+g‘𝑅)((𝑋‘𝑧)(.r‘𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = (if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0
)(+g‘𝑅)
0
)) |
221 | | elun 4083 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑦 ∈ 𝑥 ∨ 𝑦 ∈ {𝑧})) |
222 | | orcom 867 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ 𝑥 ∨ 𝑦 ∈ {𝑧}) ↔ (𝑦 ∈ {𝑧} ∨ 𝑦 ∈ 𝑥)) |
223 | 221, 222 | bitri 274 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑦 ∈ {𝑧} ∨ 𝑦 ∈ 𝑥)) |
224 | | biorf 934 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝑦 ∈ {𝑧} → (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ {𝑧} ∨ 𝑦 ∈ 𝑥))) |
225 | 223, 224 | bitr4id 290 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑦 ∈ {𝑧} → (𝑦 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑦 ∈ 𝑥)) |
226 | 225 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → (𝑦 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑦 ∈ 𝑥)) |
227 | 226 | ifbid 4482 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋‘𝑦), 0 ) = if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) |
228 | 211, 220,
227 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → (if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0
)(+g‘𝑅)((𝑋‘𝑧)(.r‘𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋‘𝑦), 0 )) |
229 | 207, 228 | pm2.61dan 810 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ 𝐷) → (if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0
)(+g‘𝑅)((𝑋‘𝑧)(.r‘𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋‘𝑦), 0 )) |
230 | 229 | mpteq2dva 5174 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦 ∈ 𝐷 ↦ (if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0
)(+g‘𝑅)((𝑋‘𝑧)(.r‘𝑅)if(𝑦 = 𝑧, 1 , 0 )))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋‘𝑦), 0 ))) |
231 | 169, 184,
230 | 3eqtrrd 2783 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋‘𝑦), 0 )) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0
))(+g‘𝑃)((𝑋‘𝑧) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))))) |
232 | 143, 231 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋‘𝑦), 0 )) ↔ ((𝑃 Σg
(𝑘 ∈ 𝑥 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0
)))))(+g‘𝑃)((𝑋‘𝑧) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0
))(+g‘𝑃)((𝑋‘𝑧) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))))) |
233 | 90, 232 | syl5ibr 245 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑃 Σg (𝑘 ∈ 𝑥 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) → (𝑃 Σg
(𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋‘𝑦), 0 )))) |
234 | 233 | expr 457 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥)) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → ((𝑃 Σg (𝑘 ∈ 𝑥 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )) → (𝑃 Σg
(𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋‘𝑦), 0 ))))) |
235 | 234 | a2d 29 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥)) → (((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ 𝑥 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 ))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋‘𝑦), 0 ))))) |
236 | 89, 235 | syl5 34 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥)) → ((𝑥 ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ 𝑥 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 ))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋‘𝑦), 0 ))))) |
237 | 236 | expcom 414 |
. . . . . . 7
⊢ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) → (𝜑 → ((𝑥 ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ 𝑥 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 ))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋‘𝑦), 0 )))))) |
238 | 237 | a2d 29 |
. . . . . 6
⊢ ((𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥) → ((𝜑 → (𝑥 ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ 𝑥 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ 𝑥, (𝑋‘𝑦), 0 )))) → (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋‘𝑦), 0 )))))) |
239 | 50, 59, 68, 77, 85, 238 | findcard2s 8948 |
. . . . 5
⊢ ((𝑋 supp 0 ) ∈ Fin → (𝜑 → ((𝑋 supp 0 ) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋‘𝑦), 0 ))))) |
240 | 34, 239 | mpcom 38 |
. . . 4
⊢ (𝜑 → ((𝑋 supp 0 ) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋‘𝑦), 0 )))) |
241 | 28, 240 | mpd 15 |
. . 3
⊢ (𝜑 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋‘𝑦), 0 ))) |
242 | 26, 241 | eqtr4d 2781 |
. 2
⊢ (𝜑 → 𝑋 = (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))) |
243 | 28 | resmptd 5948 |
. . . 4
⊢ (𝜑 → ((𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ↾ (𝑋 supp 0 )) = (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) |
244 | 243 | oveq2d 7291 |
. . 3
⊢ (𝜑 → (𝑃 Σg ((𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ↾ (𝑋 supp 0 ))) = (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))) |
245 | 117 | fmpttd 6989 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))):𝐷⟶𝐵) |
246 | 6, 11, 14, 17 | suppssr 8012 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → (𝑋‘𝑘) = 0 ) |
247 | 246 | oveq1d 7290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = ( 0 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) |
248 | | eldifi 4061 |
. . . . . . 7
⊢ (𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 )) → 𝑘 ∈ 𝐷) |
249 | 107 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (0g‘𝑅) =
(0g‘(Scalar‘𝑃))) |
250 | 15, 249 | eqtrid 2790 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 0 =
(0g‘(Scalar‘𝑃))) |
251 | 250 | oveq1d 7290 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ( 0 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) =
((0g‘(Scalar‘𝑃)) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) |
252 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0g‘(Scalar‘𝑃)) =
(0g‘(Scalar‘𝑃)) |
253 | 3, 113, 114, 252, 40 | lmod0vs 20156 |
. . . . . . . . 9
⊢ ((𝑃 ∈ LMod ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )) ∈ 𝐵) →
((0g‘(Scalar‘𝑃)) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) =
(0g‘𝑃)) |
254 | 104, 112,
253 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) →
((0g‘(Scalar‘𝑃)) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) =
(0g‘𝑃)) |
255 | 251, 254 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ( 0 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) =
(0g‘𝑃)) |
256 | 248, 255 | sylan2 593 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → ( 0 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) =
(0g‘𝑃)) |
257 | 247, 256 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) =
(0g‘𝑃)) |
258 | 257, 14 | suppss2 8016 |
. . . 4
⊢ (𝜑 → ((𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) supp
(0g‘𝑃))
⊆ (𝑋 supp 0
)) |
259 | 13 | mptex 7099 |
. . . . . . 7
⊢ (𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∈
V |
260 | | funmpt 6472 |
. . . . . . 7
⊢ Fun
(𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) |
261 | | fvex 6787 |
. . . . . . 7
⊢
(0g‘𝑃) ∈ V |
262 | 259, 260,
261 | 3pm3.2i 1338 |
. . . . . 6
⊢ ((𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∈ V ∧ Fun
(𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∧
(0g‘𝑃)
∈ V) |
263 | 262 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∈ V ∧ Fun
(𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∧
(0g‘𝑃)
∈ V)) |
264 | | suppssfifsupp 9143 |
. . . . 5
⊢ ((((𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∈ V ∧ Fun
(𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∧
(0g‘𝑃)
∈ V) ∧ ((𝑋 supp
0 )
∈ Fin ∧ ((𝑘 ∈
𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) supp
(0g‘𝑃))
⊆ (𝑋 supp 0 ))) →
(𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) finSupp
(0g‘𝑃)) |
265 | 263, 34, 258, 264 | syl12anc 834 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) finSupp
(0g‘𝑃)) |
266 | 3, 40, 95, 14, 245, 258, 265 | gsumres 19514 |
. . 3
⊢ (𝜑 → (𝑃 Σg ((𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ↾ (𝑋 supp 0 ))) = (𝑃 Σg (𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))) |
267 | 244, 266 | eqtr3d 2780 |
. 2
⊢ (𝜑 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg (𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))) |
268 | 242, 267 | eqtrd 2778 |
1
⊢ (𝜑 → 𝑋 = (𝑃 Σg (𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))) |