MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe1 Structured version   Visualization version   GIF version

Theorem mplcoe1 22044
Description: Decompose a polynomial into a finite sum of monomials. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplcoe1.p 𝑃 = (𝐼 mPoly 𝑅)
mplcoe1.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplcoe1.z 0 = (0g𝑅)
mplcoe1.o 1 = (1r𝑅)
mplcoe1.i (𝜑𝐼𝑊)
mplcoe1.b 𝐵 = (Base‘𝑃)
mplcoe1.n · = ( ·𝑠𝑃)
mplcoe1.r (𝜑𝑅 ∈ Ring)
mplcoe1.x (𝜑𝑋𝐵)
Assertion
Ref Expression
mplcoe1 (𝜑𝑋 = (𝑃 Σg (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
Distinct variable groups:   𝑦,𝑘, 1   𝐵,𝑘   𝑓,𝑘,𝑦,𝐼   𝜑,𝑘,𝑦   𝑅,𝑓,𝑦   𝐷,𝑘,𝑦   𝑃,𝑘   0 ,𝑓,𝑘,𝑦   𝑓,𝑋,𝑘,𝑦   𝑘,𝑊,𝑦   · ,𝑘
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑦,𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑘)   · (𝑦,𝑓)   1 (𝑓)   𝑊(𝑓)

Proof of Theorem mplcoe1
Dummy variables 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplcoe1.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
2 eqid 2726 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
3 mplcoe1.b . . . . . 6 𝐵 = (Base‘𝑃)
4 mplcoe1.d . . . . . 6 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 mplcoe1.x . . . . . 6 (𝜑𝑋𝐵)
61, 2, 3, 4, 5mplelf 22007 . . . . 5 (𝜑𝑋:𝐷⟶(Base‘𝑅))
76feqmptd 6971 . . . 4 (𝜑𝑋 = (𝑦𝐷 ↦ (𝑋𝑦)))
8 iftrue 4539 . . . . . . 7 (𝑦 ∈ (𝑋 supp 0 ) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
98adantl 480 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑦 ∈ (𝑋 supp 0 )) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
10 eldif 3957 . . . . . . . 8 (𝑦 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ (𝑦𝐷 ∧ ¬ 𝑦 ∈ (𝑋 supp 0 )))
11 ssidd 4003 . . . . . . . . . . 11 (𝜑 → (𝑋 supp 0 ) ⊆ (𝑋 supp 0 ))
12 ovex 7457 . . . . . . . . . . . . 13 (ℕ0m 𝐼) ∈ V
134, 12rabex2 5341 . . . . . . . . . . . 12 𝐷 ∈ V
1413a1i 11 . . . . . . . . . . 11 (𝜑𝐷 ∈ V)
15 mplcoe1.z . . . . . . . . . . . . 13 0 = (0g𝑅)
1615fvexi 6915 . . . . . . . . . . . 12 0 ∈ V
1716a1i 11 . . . . . . . . . . 11 (𝜑0 ∈ V)
186, 11, 14, 17suppssr 8210 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → (𝑋𝑦) = 0 )
1918ifeq2d 4553 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), (𝑋𝑦)) = if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ))
20 ifid 4573 . . . . . . . . 9 if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), (𝑋𝑦)) = (𝑋𝑦)
2119, 20eqtr3di 2781 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
2210, 21sylan2br 593 . . . . . . 7 ((𝜑 ∧ (𝑦𝐷 ∧ ¬ 𝑦 ∈ (𝑋 supp 0 ))) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
2322anassrs 466 . . . . . 6 (((𝜑𝑦𝐷) ∧ ¬ 𝑦 ∈ (𝑋 supp 0 )) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
249, 23pm2.61dan 811 . . . . 5 ((𝜑𝑦𝐷) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
2524mpteq2dva 5253 . . . 4 (𝜑 → (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )) = (𝑦𝐷 ↦ (𝑋𝑦)))
267, 25eqtr4d 2769 . . 3 (𝜑𝑋 = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )))
27 suppssdm 8191 . . . . 5 (𝑋 supp 0 ) ⊆ dom 𝑋
2827, 6fssdm 6747 . . . 4 (𝜑 → (𝑋 supp 0 ) ⊆ 𝐷)
29 eqid 2726 . . . . . . . . 9 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
30 eqid 2726 . . . . . . . . 9 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
311, 29, 30, 15, 3mplelbas 22000 . . . . . . . 8 (𝑋𝐵 ↔ (𝑋 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑋 finSupp 0 ))
3231simprbi 495 . . . . . . 7 (𝑋𝐵𝑋 finSupp 0 )
335, 32syl 17 . . . . . 6 (𝜑𝑋 finSupp 0 )
3433fsuppimpd 9413 . . . . 5 (𝜑 → (𝑋 supp 0 ) ∈ Fin)
35 sseq1 4005 . . . . . . . 8 (𝑤 = ∅ → (𝑤𝐷 ↔ ∅ ⊆ 𝐷))
36 mpteq1 5246 . . . . . . . . . . . 12 (𝑤 = ∅ → (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = (𝑘 ∈ ∅ ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))
37 mpt0 6703 . . . . . . . . . . . 12 (𝑘 ∈ ∅ ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = ∅
3836, 37eqtrdi 2782 . . . . . . . . . . 11 (𝑤 = ∅ → (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = ∅)
3938oveq2d 7440 . . . . . . . . . 10 (𝑤 = ∅ → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg ∅))
40 eqid 2726 . . . . . . . . . . 11 (0g𝑃) = (0g𝑃)
4140gsum0 18677 . . . . . . . . . 10 (𝑃 Σg ∅) = (0g𝑃)
4239, 41eqtrdi 2782 . . . . . . . . 9 (𝑤 = ∅ → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (0g𝑃))
43 noel 4333 . . . . . . . . . . . 12 ¬ 𝑦 ∈ ∅
44 eleq2 2815 . . . . . . . . . . . 12 (𝑤 = ∅ → (𝑦𝑤𝑦 ∈ ∅))
4543, 44mtbiri 326 . . . . . . . . . . 11 (𝑤 = ∅ → ¬ 𝑦𝑤)
4645iffalsed 4544 . . . . . . . . . 10 (𝑤 = ∅ → if(𝑦𝑤, (𝑋𝑦), 0 ) = 0 )
4746mpteq2dv 5255 . . . . . . . . 9 (𝑤 = ∅ → (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) = (𝑦𝐷0 ))
4842, 47eqeq12d 2742 . . . . . . . 8 (𝑤 = ∅ → ((𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) ↔ (0g𝑃) = (𝑦𝐷0 )))
4935, 48imbi12d 343 . . . . . . 7 (𝑤 = ∅ → ((𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 ))) ↔ (∅ ⊆ 𝐷 → (0g𝑃) = (𝑦𝐷0 ))))
5049imbi2d 339 . . . . . 6 (𝑤 = ∅ → ((𝜑 → (𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )))) ↔ (𝜑 → (∅ ⊆ 𝐷 → (0g𝑃) = (𝑦𝐷0 )))))
51 sseq1 4005 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤𝐷𝑥𝐷))
52 mpteq1 5246 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))
5352oveq2d 7440 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
54 eleq2 2815 . . . . . . . . . . 11 (𝑤 = 𝑥 → (𝑦𝑤𝑦𝑥))
5554ifbid 4556 . . . . . . . . . 10 (𝑤 = 𝑥 → if(𝑦𝑤, (𝑋𝑦), 0 ) = if(𝑦𝑥, (𝑋𝑦), 0 ))
5655mpteq2dv 5255 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )))
5753, 56eqeq12d 2742 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) ↔ (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))))
5851, 57imbi12d 343 . . . . . . 7 (𝑤 = 𝑥 → ((𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 ))) ↔ (𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )))))
5958imbi2d 339 . . . . . 6 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )))) ↔ (𝜑 → (𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))))))
60 sseq1 4005 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑤𝐷 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐷))
61 mpteq1 5246 . . . . . . . . . 10 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))
6261oveq2d 7440 . . . . . . . . 9 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
63 eleq2 2815 . . . . . . . . . . 11 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦𝑤𝑦 ∈ (𝑥 ∪ {𝑧})))
6463ifbid 4556 . . . . . . . . . 10 (𝑤 = (𝑥 ∪ {𝑧}) → if(𝑦𝑤, (𝑋𝑦), 0 ) = if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))
6564mpteq2dv 5255 . . . . . . . . 9 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))
6662, 65eqeq12d 2742 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) ↔ (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))))
6760, 66imbi12d 343 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 ))) ↔ ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))))
6867imbi2d 339 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝜑 → (𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )))) ↔ (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))))))
69 sseq1 4005 . . . . . . . 8 (𝑤 = (𝑋 supp 0 ) → (𝑤𝐷 ↔ (𝑋 supp 0 ) ⊆ 𝐷))
70 mpteq1 5246 . . . . . . . . . 10 (𝑤 = (𝑋 supp 0 ) → (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))
7170oveq2d 7440 . . . . . . . . 9 (𝑤 = (𝑋 supp 0 ) → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
72 eleq2 2815 . . . . . . . . . . 11 (𝑤 = (𝑋 supp 0 ) → (𝑦𝑤𝑦 ∈ (𝑋 supp 0 )))
7372ifbid 4556 . . . . . . . . . 10 (𝑤 = (𝑋 supp 0 ) → if(𝑦𝑤, (𝑋𝑦), 0 ) = if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ))
7473mpteq2dv 5255 . . . . . . . . 9 (𝑤 = (𝑋 supp 0 ) → (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )))
7571, 74eqeq12d 2742 . . . . . . . 8 (𝑤 = (𝑋 supp 0 ) → ((𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) ↔ (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ))))
7669, 75imbi12d 343 . . . . . . 7 (𝑤 = (𝑋 supp 0 ) → ((𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 ))) ↔ ((𝑋 supp 0 ) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )))))
7776imbi2d 339 . . . . . 6 (𝑤 = (𝑋 supp 0 ) → ((𝜑 → (𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )))) ↔ (𝜑 → ((𝑋 supp 0 ) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ))))))
78 mplcoe1.i . . . . . . . . 9 (𝜑𝐼𝑊)
79 mplcoe1.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
80 ringgrp 20221 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
8179, 80syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
821, 4, 15, 40, 78, 81mpl0 22015 . . . . . . . 8 (𝜑 → (0g𝑃) = (𝐷 × { 0 }))
83 fconstmpt 5744 . . . . . . . 8 (𝐷 × { 0 }) = (𝑦𝐷0 )
8482, 83eqtrdi 2782 . . . . . . 7 (𝜑 → (0g𝑃) = (𝑦𝐷0 ))
8584a1d 25 . . . . . 6 (𝜑 → (∅ ⊆ 𝐷 → (0g𝑃) = (𝑦𝐷0 )))
86 ssun1 4173 . . . . . . . . . . 11 𝑥 ⊆ (𝑥 ∪ {𝑧})
87 sstr2 3986 . . . . . . . . . . 11 (𝑥 ⊆ (𝑥 ∪ {𝑧}) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷𝑥𝐷))
8886, 87ax-mp 5 . . . . . . . . . 10 ((𝑥 ∪ {𝑧}) ⊆ 𝐷𝑥𝐷)
8988imim1i 63 . . . . . . . . 9 ((𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))))
90 oveq1 7431 . . . . . . . . . . . 12 ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) → ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) = ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))))
91 eqid 2726 . . . . . . . . . . . . . 14 (+g𝑃) = (+g𝑃)
921, 78, 79mplringd 22032 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ Ring)
93 ringcmn 20261 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
9492, 93syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ CMnd)
9594adantr 479 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑃 ∈ CMnd)
96 simprll 777 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑥 ∈ Fin)
97 simprr 771 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑥 ∪ {𝑧}) ⊆ 𝐷)
9897unssad 4188 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑥𝐷)
9998sselda 3979 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑘𝑥) → 𝑘𝐷)
10078adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝐼𝑊)
10179adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
1021, 100, 101mpllmodd 22033 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐷) → 𝑃 ∈ LMod)
1036ffvelcdmda 7098 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → (𝑋𝑘) ∈ (Base‘𝑅))
1041, 78, 79mplsca 22022 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 = (Scalar‘𝑃))
105104adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐷) → 𝑅 = (Scalar‘𝑃))
106105fveq2d 6905 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
107103, 106eleqtrd 2828 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐷) → (𝑋𝑘) ∈ (Base‘(Scalar‘𝑃)))
108 mplcoe1.o . . . . . . . . . . . . . . . . . 18 1 = (1r𝑅)
109 simpr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝑘𝐷)
1101, 3, 15, 108, 4, 100, 101, 109mplmon 22042 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐷) → (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )) ∈ 𝐵)
111 eqid 2726 . . . . . . . . . . . . . . . . . 18 (Scalar‘𝑃) = (Scalar‘𝑃)
112 mplcoe1.n . . . . . . . . . . . . . . . . . 18 · = ( ·𝑠𝑃)
113 eqid 2726 . . . . . . . . . . . . . . . . . 18 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
1143, 111, 112, 113lmodvscl 20854 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ LMod ∧ (𝑋𝑘) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )) ∈ 𝐵) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) ∈ 𝐵)
115102, 107, 110, 114syl3anc 1368 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐷) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) ∈ 𝐵)
116115adantlr 713 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑘𝐷) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) ∈ 𝐵)
11799, 116syldan 589 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑘𝑥) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) ∈ 𝐵)
118 vex 3466 . . . . . . . . . . . . . . 15 𝑧 ∈ V
119118a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑧 ∈ V)
120 simprlr 778 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ¬ 𝑧𝑥)
1211, 78, 79mpllmodd 22033 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ LMod)
122121adantr 479 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑃 ∈ LMod)
1236adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑋:𝐷⟶(Base‘𝑅))
12497unssbd 4189 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → {𝑧} ⊆ 𝐷)
125118snss 4794 . . . . . . . . . . . . . . . . . 18 (𝑧𝐷 ↔ {𝑧} ⊆ 𝐷)
126124, 125sylibr 233 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑧𝐷)
127123, 126ffvelcdmd 7099 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑋𝑧) ∈ (Base‘𝑅))
128104adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑅 = (Scalar‘𝑃))
129128fveq2d 6905 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
130127, 129eleqtrd 2828 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑋𝑧) ∈ (Base‘(Scalar‘𝑃)))
13178adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝐼𝑊)
13279adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑅 ∈ Ring)
1331, 3, 15, 108, 4, 131, 132, 126mplmon 22042 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )) ∈ 𝐵)
1343, 111, 112, 113lmodvscl 20854 . . . . . . . . . . . . . . 15 ((𝑃 ∈ LMod ∧ (𝑋𝑧) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )) ∈ 𝐵) → ((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) ∈ 𝐵)
135122, 130, 133, 134syl3anc 1368 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) ∈ 𝐵)
136 fveq2 6901 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (𝑋𝑘) = (𝑋𝑧))
137 equequ2 2022 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑧 → (𝑦 = 𝑘𝑦 = 𝑧))
138137ifbid 4556 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → if(𝑦 = 𝑘, 1 , 0 ) = if(𝑦 = 𝑧, 1 , 0 ))
139138mpteq2dv 5255 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))
140136, 139oveq12d 7442 . . . . . . . . . . . . . 14 (𝑘 = 𝑧 → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = ((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))))
1413, 91, 95, 96, 117, 119, 120, 135, 140gsumunsn 19958 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))))
142 eqid 2726 . . . . . . . . . . . . . . 15 (+g𝑅) = (+g𝑅)
143123ffvelcdmda 7098 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → (𝑋𝑦) ∈ (Base‘𝑅))
1442, 15ring0cl 20246 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
14579, 144syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑0 ∈ (Base‘𝑅))
146145ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → 0 ∈ (Base‘𝑅))
147143, 146ifcld 4579 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → if(𝑦𝑥, (𝑋𝑦), 0 ) ∈ (Base‘𝑅))
148147fmpttd 7129 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )):𝐷⟶(Base‘𝑅))
149 fvex 6914 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑅) ∈ V
150149, 13elmap 8900 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ ((Base‘𝑅) ↑m 𝐷) ↔ (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )):𝐷⟶(Base‘𝑅))
151148, 150sylibr 233 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ ((Base‘𝑅) ↑m 𝐷))
15229, 2, 4, 30, 131psrbas 21942 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (Base‘(𝐼 mPwSer 𝑅)) = ((Base‘𝑅) ↑m 𝐷))
153151, 152eleqtrrd 2829 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)))
15413mptex 7240 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ V
155 funmpt 6597 . . . . . . . . . . . . . . . . . . 19 Fun (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))
156154, 155, 163pm3.2i 1336 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∧ 0 ∈ V)
157156a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∧ 0 ∈ V))
158 eldifn 4127 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐷𝑥) → ¬ 𝑦𝑥)
159158adantl 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ (𝐷𝑥)) → ¬ 𝑦𝑥)
160159iffalsed 4544 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ (𝐷𝑥)) → if(𝑦𝑥, (𝑋𝑦), 0 ) = 0 )
16113a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝐷 ∈ V)
162160, 161suppss2 8215 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) supp 0 ) ⊆ 𝑥)
163 suppssfifsupp 9423 . . . . . . . . . . . . . . . . 17 ((((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∧ 0 ∈ V) ∧ (𝑥 ∈ Fin ∧ ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) supp 0 ) ⊆ 𝑥)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) finSupp 0 )
164157, 96, 162, 163syl12anc 835 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) finSupp 0 )
1651, 29, 30, 15, 3mplelbas 22000 . . . . . . . . . . . . . . . 16 ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ 𝐵 ↔ ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) finSupp 0 ))
166153, 164, 165sylanbrc 581 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ 𝐵)
1671, 3, 142, 91, 166, 135mpladd 22018 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) = ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∘f (+g𝑅)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))))
168 ovexd 7459 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )) ∈ V)
169 eqidd 2727 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )))
170 eqid 2726 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
1711, 112, 2, 3, 170, 4, 127, 133mplvsca 22024 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) = ((𝐷 × {(𝑋𝑧)}) ∘f (.r𝑅)(𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))))
172127adantr 479 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → (𝑋𝑧) ∈ (Base‘𝑅))
1732, 108ringidcl 20245 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
174173, 144ifcld 4579 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ Ring → if(𝑦 = 𝑧, 1 , 0 ) ∈ (Base‘𝑅))
17579, 174syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → if(𝑦 = 𝑧, 1 , 0 ) ∈ (Base‘𝑅))
176175ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → if(𝑦 = 𝑧, 1 , 0 ) ∈ (Base‘𝑅))
177 fconstmpt 5744 . . . . . . . . . . . . . . . . . 18 (𝐷 × {(𝑋𝑧)}) = (𝑦𝐷 ↦ (𝑋𝑧))
178177a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝐷 × {(𝑋𝑧)}) = (𝑦𝐷 ↦ (𝑋𝑧)))
179 eqidd 2727 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))
180161, 172, 176, 178, 179offval2 7710 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝐷 × {(𝑋𝑧)}) ∘f (.r𝑅)(𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) = (𝑦𝐷 ↦ ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))))
181171, 180eqtrd 2766 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) = (𝑦𝐷 ↦ ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))))
182161, 147, 168, 169, 181offval2 7710 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∘f (+g𝑅)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) = (𝑦𝐷 ↦ (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )))))
183132, 80syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑅 ∈ Grp)
1842, 142, 15grplid 18962 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Grp ∧ (𝑋𝑧) ∈ (Base‘𝑅)) → ( 0 (+g𝑅)(𝑋𝑧)) = (𝑋𝑧))
185183, 127, 184syl2anc 582 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ( 0 (+g𝑅)(𝑋𝑧)) = (𝑋𝑧))
186185ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ( 0 (+g𝑅)(𝑋𝑧)) = (𝑋𝑧))
187 simpr 483 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → 𝑦 ∈ {𝑧})
188 velsn 4649 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧)
189187, 188sylib 217 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → 𝑦 = 𝑧)
190189fveq2d 6905 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → (𝑋𝑦) = (𝑋𝑧))
191186, 190eqtr4d 2769 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ( 0 (+g𝑅)(𝑋𝑧)) = (𝑋𝑦))
192120ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ¬ 𝑧𝑥)
193189, 192eqneltrd 2846 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ¬ 𝑦𝑥)
194193iffalsed 4544 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → if(𝑦𝑥, (𝑋𝑦), 0 ) = 0 )
195189iftrued 4541 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → if(𝑦 = 𝑧, 1 , 0 ) = 1 )
196195oveq2d 7440 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )) = ((𝑋𝑧)(.r𝑅) 1 ))
1972, 170, 108ringridm 20249 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅) 1 ) = (𝑋𝑧))
198132, 127, 197syl2anc 582 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋𝑧)(.r𝑅) 1 ) = (𝑋𝑧))
199198ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅) 1 ) = (𝑋𝑧))
200196, 199eqtrd 2766 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )) = (𝑋𝑧))
201194, 200oveq12d 7442 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = ( 0 (+g𝑅)(𝑋𝑧)))
202 elun2 4178 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {𝑧} → 𝑦 ∈ (𝑥 ∪ {𝑧}))
203202adantl 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → 𝑦 ∈ (𝑥 ∪ {𝑧}))
204203iftrued 4541 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ) = (𝑋𝑦))
205191, 201, 2043eqtr4d 2776 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))
20681ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → 𝑅 ∈ Grp)
2072, 142, 15grprid 18963 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Grp ∧ if(𝑦𝑥, (𝑋𝑦), 0 ) ∈ (Base‘𝑅)) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅) 0 ) = if(𝑦𝑥, (𝑋𝑦), 0 ))
208206, 147, 207syl2anc 582 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅) 0 ) = if(𝑦𝑥, (𝑋𝑦), 0 ))
209208adantr 479 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅) 0 ) = if(𝑦𝑥, (𝑋𝑦), 0 ))
210 simpr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ¬ 𝑦 ∈ {𝑧})
211210, 188sylnib 327 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ¬ 𝑦 = 𝑧)
212211iffalsed 4544 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → if(𝑦 = 𝑧, 1 , 0 ) = 0 )
213212oveq2d 7440 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )) = ((𝑋𝑧)(.r𝑅) 0 ))
2142, 170, 15ringrz 20273 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
215132, 127, 214syl2anc 582 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
216215ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
217213, 216eqtrd 2766 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )) = 0 )
218217oveq2d 7440 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅) 0 ))
219 elun 4148 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑦𝑥𝑦 ∈ {𝑧}))
220 orcom 868 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑥𝑦 ∈ {𝑧}) ↔ (𝑦 ∈ {𝑧} ∨ 𝑦𝑥))
221219, 220bitri 274 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑦 ∈ {𝑧} ∨ 𝑦𝑥))
222 biorf 934 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ {𝑧} → (𝑦𝑥 ↔ (𝑦 ∈ {𝑧} ∨ 𝑦𝑥)))
223221, 222bitr4id 289 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ {𝑧} → (𝑦 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑦𝑥))
224223adantl 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → (𝑦 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑦𝑥))
225224ifbid 4556 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ) = if(𝑦𝑥, (𝑋𝑦), 0 ))
226209, 218, 2253eqtr4d 2776 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))
227205, 226pm2.61dan 811 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))
228227mpteq2dva 5253 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))
229167, 182, 2283eqtrrd 2771 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )) = ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))))
230141, 229eqeq12d 2742 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )) ↔ ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) = ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))))))
23190, 230imbitrrid 245 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))))
232231expr 455 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))))
233232a2d 29 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → (((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))))
23489, 233syl5 34 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → ((𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))))
235234expcom 412 . . . . . . 7 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → (𝜑 → ((𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))))))
236235a2d 29 . . . . . 6 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → ((𝜑 → (𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )))) → (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))))))
23750, 59, 68, 77, 85, 236findcard2s 9203 . . . . 5 ((𝑋 supp 0 ) ∈ Fin → (𝜑 → ((𝑋 supp 0 ) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )))))
23834, 237mpcom 38 . . . 4 (𝜑 → ((𝑋 supp 0 ) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ))))
23928, 238mpd 15 . . 3 (𝜑 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )))
24026, 239eqtr4d 2769 . 2 (𝜑𝑋 = (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
24128resmptd 6049 . . . 4 (𝜑 → ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ↾ (𝑋 supp 0 )) = (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))
242241oveq2d 7440 . . 3 (𝜑 → (𝑃 Σg ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ↾ (𝑋 supp 0 ))) = (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
243115fmpttd 7129 . . . 4 (𝜑 → (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))):𝐷𝐵)
2446, 11, 14, 17suppssr 8210 . . . . . . 7 ((𝜑𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → (𝑋𝑘) = 0 )
245244oveq1d 7439 . . . . . 6 ((𝜑𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = ( 0 · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))
246 eldifi 4126 . . . . . . 7 (𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 )) → 𝑘𝐷)
247105fveq2d 6905 . . . . . . . . . 10 ((𝜑𝑘𝐷) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
24815, 247eqtrid 2778 . . . . . . . . 9 ((𝜑𝑘𝐷) → 0 = (0g‘(Scalar‘𝑃)))
249248oveq1d 7439 . . . . . . . 8 ((𝜑𝑘𝐷) → ( 0 · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = ((0g‘(Scalar‘𝑃)) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))
250 eqid 2726 . . . . . . . . . 10 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
2513, 111, 112, 250, 40lmod0vs 20871 . . . . . . . . 9 ((𝑃 ∈ LMod ∧ (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )) ∈ 𝐵) → ((0g‘(Scalar‘𝑃)) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = (0g𝑃))
252102, 110, 251syl2anc 582 . . . . . . . 8 ((𝜑𝑘𝐷) → ((0g‘(Scalar‘𝑃)) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = (0g𝑃))
253249, 252eqtrd 2766 . . . . . . 7 ((𝜑𝑘𝐷) → ( 0 · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = (0g𝑃))
254246, 253sylan2 591 . . . . . 6 ((𝜑𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → ( 0 · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = (0g𝑃))
255245, 254eqtrd 2766 . . . . 5 ((𝜑𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = (0g𝑃))
256255, 14suppss2 8215 . . . 4 (𝜑 → ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) supp (0g𝑃)) ⊆ (𝑋 supp 0 ))
25713mptex 7240 . . . . . . 7 (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∈ V
258 funmpt 6597 . . . . . . 7 Fun (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))
259 fvex 6914 . . . . . . 7 (0g𝑃) ∈ V
260257, 258, 2593pm3.2i 1336 . . . . . 6 ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∈ V ∧ Fun (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∧ (0g𝑃) ∈ V)
261260a1i 11 . . . . 5 (𝜑 → ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∈ V ∧ Fun (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∧ (0g𝑃) ∈ V))
262 suppssfifsupp 9423 . . . . 5 ((((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∈ V ∧ Fun (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∧ (0g𝑃) ∈ V) ∧ ((𝑋 supp 0 ) ∈ Fin ∧ ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) supp (0g𝑃)) ⊆ (𝑋 supp 0 ))) → (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) finSupp (0g𝑃))
263261, 34, 256, 262syl12anc 835 . . . 4 (𝜑 → (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) finSupp (0g𝑃))
2643, 40, 94, 14, 243, 256, 263gsumres 19911 . . 3 (𝜑 → (𝑃 Σg ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ↾ (𝑋 supp 0 ))) = (𝑃 Σg (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
265242, 264eqtr3d 2768 . 2 (𝜑 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
266240, 265eqtrd 2766 1 (𝜑𝑋 = (𝑃 Σg (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  {crab 3419  Vcvv 3462  cdif 3944  cun 3945  wss 3947  c0 4325  ifcif 4533  {csn 4633   class class class wbr 5153  cmpt 5236   × cxp 5680  ccnv 5681  cres 5684  cima 5685  Fun wfun 6548  wf 6550  cfv 6554  (class class class)co 7424  f cof 7688   supp csupp 8174  m cmap 8855  Fincfn 8974   finSupp cfsupp 9405  cn 12264  0cn0 12524  Basecbs 17213  +gcplusg 17266  .rcmulr 17267  Scalarcsca 17269   ·𝑠 cvsca 17270  0gc0g 17454   Σg cgsu 17455  Grpcgrp 18928  CMndccmn 19778  1rcur 20164  Ringcrg 20216  LModclmod 20836   mPwSer cmps 21901   mPoly cmpl 21903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-ofr 7691  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-sup 9485  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-fz 13539  df-fzo 13682  df-seq 14022  df-hash 14348  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-hom 17290  df-cco 17291  df-0g 17456  df-gsum 17457  df-prds 17462  df-pws 17464  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-mhm 18773  df-submnd 18774  df-grp 18931  df-minusg 18932  df-sbg 18933  df-mulg 19062  df-subg 19117  df-ghm 19207  df-cntz 19311  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-subrng 20528  df-subrg 20553  df-lmod 20838  df-lss 20909  df-psr 21906  df-mpl 21908
This theorem is referenced by:  mplbas2  22049  mplcoe4  22084  ply1coe  22289
  Copyright terms: Public domain W3C validator