MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe1 Structured version   Visualization version   GIF version

Theorem mplcoe1 20705
Description: Decompose a polynomial into a finite sum of monomials. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplcoe1.p 𝑃 = (𝐼 mPoly 𝑅)
mplcoe1.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplcoe1.z 0 = (0g𝑅)
mplcoe1.o 1 = (1r𝑅)
mplcoe1.i (𝜑𝐼𝑊)
mplcoe1.b 𝐵 = (Base‘𝑃)
mplcoe1.n · = ( ·𝑠𝑃)
mplcoe1.r (𝜑𝑅 ∈ Ring)
mplcoe1.x (𝜑𝑋𝐵)
Assertion
Ref Expression
mplcoe1 (𝜑𝑋 = (𝑃 Σg (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
Distinct variable groups:   𝑦,𝑘, 1   𝐵,𝑘   𝑓,𝑘,𝑦,𝐼   𝜑,𝑘,𝑦   𝑅,𝑓,𝑦   𝐷,𝑘,𝑦   𝑃,𝑘   0 ,𝑓,𝑘,𝑦   𝑓,𝑋,𝑘,𝑦   𝑘,𝑊,𝑦   · ,𝑘
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑦,𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑘)   · (𝑦,𝑓)   1 (𝑓)   𝑊(𝑓)

Proof of Theorem mplcoe1
Dummy variables 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplcoe1.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
2 eqid 2798 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
3 mplcoe1.b . . . . . 6 𝐵 = (Base‘𝑃)
4 mplcoe1.d . . . . . 6 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 mplcoe1.x . . . . . 6 (𝜑𝑋𝐵)
61, 2, 3, 4, 5mplelf 20671 . . . . 5 (𝜑𝑋:𝐷⟶(Base‘𝑅))
76feqmptd 6708 . . . 4 (𝜑𝑋 = (𝑦𝐷 ↦ (𝑋𝑦)))
8 iftrue 4431 . . . . . . 7 (𝑦 ∈ (𝑋 supp 0 ) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
98adantl 485 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑦 ∈ (𝑋 supp 0 )) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
10 eldif 3891 . . . . . . . 8 (𝑦 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ (𝑦𝐷 ∧ ¬ 𝑦 ∈ (𝑋 supp 0 )))
11 ifid 4464 . . . . . . . . 9 if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), (𝑋𝑦)) = (𝑋𝑦)
12 ssidd 3938 . . . . . . . . . . 11 (𝜑 → (𝑋 supp 0 ) ⊆ (𝑋 supp 0 ))
13 ovex 7168 . . . . . . . . . . . . 13 (ℕ0m 𝐼) ∈ V
144, 13rabex2 5201 . . . . . . . . . . . 12 𝐷 ∈ V
1514a1i 11 . . . . . . . . . . 11 (𝜑𝐷 ∈ V)
16 mplcoe1.z . . . . . . . . . . . . 13 0 = (0g𝑅)
1716fvexi 6659 . . . . . . . . . . . 12 0 ∈ V
1817a1i 11 . . . . . . . . . . 11 (𝜑0 ∈ V)
196, 12, 15, 18suppssr 7844 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → (𝑋𝑦) = 0 )
2019ifeq2d 4444 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), (𝑋𝑦)) = if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ))
2111, 20syl5reqr 2848 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
2210, 21sylan2br 597 . . . . . . 7 ((𝜑 ∧ (𝑦𝐷 ∧ ¬ 𝑦 ∈ (𝑋 supp 0 ))) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
2322anassrs 471 . . . . . 6 (((𝜑𝑦𝐷) ∧ ¬ 𝑦 ∈ (𝑋 supp 0 )) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
249, 23pm2.61dan 812 . . . . 5 ((𝜑𝑦𝐷) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
2524mpteq2dva 5125 . . . 4 (𝜑 → (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )) = (𝑦𝐷 ↦ (𝑋𝑦)))
267, 25eqtr4d 2836 . . 3 (𝜑𝑋 = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )))
27 suppssdm 7826 . . . . 5 (𝑋 supp 0 ) ⊆ dom 𝑋
2827, 6fssdm 6504 . . . 4 (𝜑 → (𝑋 supp 0 ) ⊆ 𝐷)
29 eqid 2798 . . . . . . . . 9 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
30 eqid 2798 . . . . . . . . 9 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
311, 29, 30, 16, 3mplelbas 20668 . . . . . . . 8 (𝑋𝐵 ↔ (𝑋 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑋 finSupp 0 ))
3231simprbi 500 . . . . . . 7 (𝑋𝐵𝑋 finSupp 0 )
335, 32syl 17 . . . . . 6 (𝜑𝑋 finSupp 0 )
3433fsuppimpd 8824 . . . . 5 (𝜑 → (𝑋 supp 0 ) ∈ Fin)
35 sseq1 3940 . . . . . . . 8 (𝑤 = ∅ → (𝑤𝐷 ↔ ∅ ⊆ 𝐷))
36 mpteq1 5118 . . . . . . . . . . . 12 (𝑤 = ∅ → (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = (𝑘 ∈ ∅ ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))
37 mpt0 6462 . . . . . . . . . . . 12 (𝑘 ∈ ∅ ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = ∅
3836, 37eqtrdi 2849 . . . . . . . . . . 11 (𝑤 = ∅ → (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = ∅)
3938oveq2d 7151 . . . . . . . . . 10 (𝑤 = ∅ → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg ∅))
40 eqid 2798 . . . . . . . . . . 11 (0g𝑃) = (0g𝑃)
4140gsum0 17886 . . . . . . . . . 10 (𝑃 Σg ∅) = (0g𝑃)
4239, 41eqtrdi 2849 . . . . . . . . 9 (𝑤 = ∅ → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (0g𝑃))
43 noel 4247 . . . . . . . . . . . 12 ¬ 𝑦 ∈ ∅
44 eleq2 2878 . . . . . . . . . . . 12 (𝑤 = ∅ → (𝑦𝑤𝑦 ∈ ∅))
4543, 44mtbiri 330 . . . . . . . . . . 11 (𝑤 = ∅ → ¬ 𝑦𝑤)
4645iffalsed 4436 . . . . . . . . . 10 (𝑤 = ∅ → if(𝑦𝑤, (𝑋𝑦), 0 ) = 0 )
4746mpteq2dv 5126 . . . . . . . . 9 (𝑤 = ∅ → (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) = (𝑦𝐷0 ))
4842, 47eqeq12d 2814 . . . . . . . 8 (𝑤 = ∅ → ((𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) ↔ (0g𝑃) = (𝑦𝐷0 )))
4935, 48imbi12d 348 . . . . . . 7 (𝑤 = ∅ → ((𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 ))) ↔ (∅ ⊆ 𝐷 → (0g𝑃) = (𝑦𝐷0 ))))
5049imbi2d 344 . . . . . 6 (𝑤 = ∅ → ((𝜑 → (𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )))) ↔ (𝜑 → (∅ ⊆ 𝐷 → (0g𝑃) = (𝑦𝐷0 )))))
51 sseq1 3940 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤𝐷𝑥𝐷))
52 mpteq1 5118 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))
5352oveq2d 7151 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
54 eleq2 2878 . . . . . . . . . . 11 (𝑤 = 𝑥 → (𝑦𝑤𝑦𝑥))
5554ifbid 4447 . . . . . . . . . 10 (𝑤 = 𝑥 → if(𝑦𝑤, (𝑋𝑦), 0 ) = if(𝑦𝑥, (𝑋𝑦), 0 ))
5655mpteq2dv 5126 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )))
5753, 56eqeq12d 2814 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) ↔ (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))))
5851, 57imbi12d 348 . . . . . . 7 (𝑤 = 𝑥 → ((𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 ))) ↔ (𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )))))
5958imbi2d 344 . . . . . 6 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )))) ↔ (𝜑 → (𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))))))
60 sseq1 3940 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑤𝐷 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐷))
61 mpteq1 5118 . . . . . . . . . 10 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))
6261oveq2d 7151 . . . . . . . . 9 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
63 eleq2 2878 . . . . . . . . . . 11 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦𝑤𝑦 ∈ (𝑥 ∪ {𝑧})))
6463ifbid 4447 . . . . . . . . . 10 (𝑤 = (𝑥 ∪ {𝑧}) → if(𝑦𝑤, (𝑋𝑦), 0 ) = if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))
6564mpteq2dv 5126 . . . . . . . . 9 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))
6662, 65eqeq12d 2814 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) ↔ (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))))
6760, 66imbi12d 348 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 ))) ↔ ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))))
6867imbi2d 344 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝜑 → (𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )))) ↔ (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))))))
69 sseq1 3940 . . . . . . . 8 (𝑤 = (𝑋 supp 0 ) → (𝑤𝐷 ↔ (𝑋 supp 0 ) ⊆ 𝐷))
70 mpteq1 5118 . . . . . . . . . 10 (𝑤 = (𝑋 supp 0 ) → (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))
7170oveq2d 7151 . . . . . . . . 9 (𝑤 = (𝑋 supp 0 ) → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
72 eleq2 2878 . . . . . . . . . . 11 (𝑤 = (𝑋 supp 0 ) → (𝑦𝑤𝑦 ∈ (𝑋 supp 0 )))
7372ifbid 4447 . . . . . . . . . 10 (𝑤 = (𝑋 supp 0 ) → if(𝑦𝑤, (𝑋𝑦), 0 ) = if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ))
7473mpteq2dv 5126 . . . . . . . . 9 (𝑤 = (𝑋 supp 0 ) → (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )))
7571, 74eqeq12d 2814 . . . . . . . 8 (𝑤 = (𝑋 supp 0 ) → ((𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) ↔ (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ))))
7669, 75imbi12d 348 . . . . . . 7 (𝑤 = (𝑋 supp 0 ) → ((𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 ))) ↔ ((𝑋 supp 0 ) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )))))
7776imbi2d 344 . . . . . 6 (𝑤 = (𝑋 supp 0 ) → ((𝜑 → (𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )))) ↔ (𝜑 → ((𝑋 supp 0 ) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ))))))
78 mplcoe1.i . . . . . . . . 9 (𝜑𝐼𝑊)
79 mplcoe1.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
80 ringgrp 19295 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
8179, 80syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
821, 4, 16, 40, 78, 81mpl0 20679 . . . . . . . 8 (𝜑 → (0g𝑃) = (𝐷 × { 0 }))
83 fconstmpt 5578 . . . . . . . 8 (𝐷 × { 0 }) = (𝑦𝐷0 )
8482, 83eqtrdi 2849 . . . . . . 7 (𝜑 → (0g𝑃) = (𝑦𝐷0 ))
8584a1d 25 . . . . . 6 (𝜑 → (∅ ⊆ 𝐷 → (0g𝑃) = (𝑦𝐷0 )))
86 ssun1 4099 . . . . . . . . . . 11 𝑥 ⊆ (𝑥 ∪ {𝑧})
87 sstr2 3922 . . . . . . . . . . 11 (𝑥 ⊆ (𝑥 ∪ {𝑧}) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷𝑥𝐷))
8886, 87ax-mp 5 . . . . . . . . . 10 ((𝑥 ∪ {𝑧}) ⊆ 𝐷𝑥𝐷)
8988imim1i 63 . . . . . . . . 9 ((𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))))
90 oveq1 7142 . . . . . . . . . . . 12 ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) → ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) = ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))))
91 eqid 2798 . . . . . . . . . . . . . 14 (+g𝑃) = (+g𝑃)
921mplring 20691 . . . . . . . . . . . . . . . . 17 ((𝐼𝑊𝑅 ∈ Ring) → 𝑃 ∈ Ring)
9378, 79, 92syl2anc 587 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ Ring)
94 ringcmn 19327 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
9593, 94syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ CMnd)
9695adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑃 ∈ CMnd)
97 simprll 778 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑥 ∈ Fin)
98 simprr 772 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑥 ∪ {𝑧}) ⊆ 𝐷)
9998unssad 4114 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑥𝐷)
10099sselda 3915 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑘𝑥) → 𝑘𝐷)
10178adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝐼𝑊)
10279adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
1031mpllmod 20690 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑊𝑅 ∈ Ring) → 𝑃 ∈ LMod)
104101, 102, 103syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐷) → 𝑃 ∈ LMod)
1056ffvelrnda 6828 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → (𝑋𝑘) ∈ (Base‘𝑅))
1061, 78, 79mplsca 20684 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 = (Scalar‘𝑃))
107106adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐷) → 𝑅 = (Scalar‘𝑃))
108107fveq2d 6649 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
109105, 108eleqtrd 2892 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐷) → (𝑋𝑘) ∈ (Base‘(Scalar‘𝑃)))
110 mplcoe1.o . . . . . . . . . . . . . . . . . 18 1 = (1r𝑅)
111 simpr 488 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝑘𝐷)
1121, 3, 16, 110, 4, 101, 102, 111mplmon 20703 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐷) → (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )) ∈ 𝐵)
113 eqid 2798 . . . . . . . . . . . . . . . . . 18 (Scalar‘𝑃) = (Scalar‘𝑃)
114 mplcoe1.n . . . . . . . . . . . . . . . . . 18 · = ( ·𝑠𝑃)
115 eqid 2798 . . . . . . . . . . . . . . . . . 18 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
1163, 113, 114, 115lmodvscl 19644 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ LMod ∧ (𝑋𝑘) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )) ∈ 𝐵) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) ∈ 𝐵)
117104, 109, 112, 116syl3anc 1368 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐷) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) ∈ 𝐵)
118117adantlr 714 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑘𝐷) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) ∈ 𝐵)
119100, 118syldan 594 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑘𝑥) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) ∈ 𝐵)
120 vex 3444 . . . . . . . . . . . . . . 15 𝑧 ∈ V
121120a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑧 ∈ V)
122 simprlr 779 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ¬ 𝑧𝑥)
12378, 79, 103syl2anc 587 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ LMod)
124123adantr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑃 ∈ LMod)
1256adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑋:𝐷⟶(Base‘𝑅))
12698unssbd 4115 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → {𝑧} ⊆ 𝐷)
127120snss 4679 . . . . . . . . . . . . . . . . . 18 (𝑧𝐷 ↔ {𝑧} ⊆ 𝐷)
128126, 127sylibr 237 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑧𝐷)
129125, 128ffvelrnd 6829 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑋𝑧) ∈ (Base‘𝑅))
130106adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑅 = (Scalar‘𝑃))
131130fveq2d 6649 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
132129, 131eleqtrd 2892 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑋𝑧) ∈ (Base‘(Scalar‘𝑃)))
13378adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝐼𝑊)
13479adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑅 ∈ Ring)
1351, 3, 16, 110, 4, 133, 134, 128mplmon 20703 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )) ∈ 𝐵)
1363, 113, 114, 115lmodvscl 19644 . . . . . . . . . . . . . . 15 ((𝑃 ∈ LMod ∧ (𝑋𝑧) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )) ∈ 𝐵) → ((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) ∈ 𝐵)
137124, 132, 135, 136syl3anc 1368 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) ∈ 𝐵)
138 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (𝑋𝑘) = (𝑋𝑧))
139 equequ2 2033 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑧 → (𝑦 = 𝑘𝑦 = 𝑧))
140139ifbid 4447 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → if(𝑦 = 𝑘, 1 , 0 ) = if(𝑦 = 𝑧, 1 , 0 ))
141140mpteq2dv 5126 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))
142138, 141oveq12d 7153 . . . . . . . . . . . . . 14 (𝑘 = 𝑧 → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = ((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))))
1433, 91, 96, 97, 119, 121, 122, 137, 142gsumunsn 19073 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))))
144 eqid 2798 . . . . . . . . . . . . . . 15 (+g𝑅) = (+g𝑅)
145125ffvelrnda 6828 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → (𝑋𝑦) ∈ (Base‘𝑅))
1462, 16ring0cl 19315 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
14779, 146syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑0 ∈ (Base‘𝑅))
148147ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → 0 ∈ (Base‘𝑅))
149145, 148ifcld 4470 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → if(𝑦𝑥, (𝑋𝑦), 0 ) ∈ (Base‘𝑅))
150149fmpttd 6856 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )):𝐷⟶(Base‘𝑅))
151 fvex 6658 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑅) ∈ V
152151, 14elmap 8418 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ ((Base‘𝑅) ↑m 𝐷) ↔ (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )):𝐷⟶(Base‘𝑅))
153150, 152sylibr 237 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ ((Base‘𝑅) ↑m 𝐷))
15429, 2, 4, 30, 133psrbas 20616 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (Base‘(𝐼 mPwSer 𝑅)) = ((Base‘𝑅) ↑m 𝐷))
155153, 154eleqtrrd 2893 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)))
15614mptex 6963 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ V
157 funmpt 6362 . . . . . . . . . . . . . . . . . . 19 Fun (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))
158156, 157, 173pm3.2i 1336 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∧ 0 ∈ V)
159158a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∧ 0 ∈ V))
160 eldifn 4055 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐷𝑥) → ¬ 𝑦𝑥)
161160adantl 485 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ (𝐷𝑥)) → ¬ 𝑦𝑥)
162161iffalsed 4436 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ (𝐷𝑥)) → if(𝑦𝑥, (𝑋𝑦), 0 ) = 0 )
16314a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝐷 ∈ V)
164162, 163suppss2 7847 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) supp 0 ) ⊆ 𝑥)
165 suppssfifsupp 8832 . . . . . . . . . . . . . . . . 17 ((((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∧ 0 ∈ V) ∧ (𝑥 ∈ Fin ∧ ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) supp 0 ) ⊆ 𝑥)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) finSupp 0 )
166159, 97, 164, 165syl12anc 835 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) finSupp 0 )
1671, 29, 30, 16, 3mplelbas 20668 . . . . . . . . . . . . . . . 16 ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ 𝐵 ↔ ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) finSupp 0 ))
168155, 166, 167sylanbrc 586 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ 𝐵)
1691, 3, 144, 91, 168, 137mpladd 20680 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) = ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∘f (+g𝑅)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))))
170 ovexd 7170 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )) ∈ V)
171 eqidd 2799 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )))
172 eqid 2798 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
1731, 114, 2, 3, 172, 4, 129, 135mplvsca 20686 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) = ((𝐷 × {(𝑋𝑧)}) ∘f (.r𝑅)(𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))))
174129adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → (𝑋𝑧) ∈ (Base‘𝑅))
1752, 110ringidcl 19314 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
176175, 146ifcld 4470 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ Ring → if(𝑦 = 𝑧, 1 , 0 ) ∈ (Base‘𝑅))
17779, 176syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → if(𝑦 = 𝑧, 1 , 0 ) ∈ (Base‘𝑅))
178177ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → if(𝑦 = 𝑧, 1 , 0 ) ∈ (Base‘𝑅))
179 fconstmpt 5578 . . . . . . . . . . . . . . . . . 18 (𝐷 × {(𝑋𝑧)}) = (𝑦𝐷 ↦ (𝑋𝑧))
180179a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝐷 × {(𝑋𝑧)}) = (𝑦𝐷 ↦ (𝑋𝑧)))
181 eqidd 2799 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))
182163, 174, 178, 180, 181offval2 7406 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝐷 × {(𝑋𝑧)}) ∘f (.r𝑅)(𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) = (𝑦𝐷 ↦ ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))))
183173, 182eqtrd 2833 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) = (𝑦𝐷 ↦ ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))))
184163, 149, 170, 171, 183offval2 7406 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∘f (+g𝑅)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) = (𝑦𝐷 ↦ (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )))))
185134, 80syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑅 ∈ Grp)
1862, 144, 16grplid 18125 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Grp ∧ (𝑋𝑧) ∈ (Base‘𝑅)) → ( 0 (+g𝑅)(𝑋𝑧)) = (𝑋𝑧))
187185, 129, 186syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ( 0 (+g𝑅)(𝑋𝑧)) = (𝑋𝑧))
188187ad2antrr 725 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ( 0 (+g𝑅)(𝑋𝑧)) = (𝑋𝑧))
189 simpr 488 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → 𝑦 ∈ {𝑧})
190 velsn 4541 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧)
191189, 190sylib 221 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → 𝑦 = 𝑧)
192191fveq2d 6649 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → (𝑋𝑦) = (𝑋𝑧))
193188, 192eqtr4d 2836 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ( 0 (+g𝑅)(𝑋𝑧)) = (𝑋𝑦))
194122ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ¬ 𝑧𝑥)
195191, 194eqneltrd 2909 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ¬ 𝑦𝑥)
196195iffalsed 4436 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → if(𝑦𝑥, (𝑋𝑦), 0 ) = 0 )
197191iftrued 4433 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → if(𝑦 = 𝑧, 1 , 0 ) = 1 )
198197oveq2d 7151 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )) = ((𝑋𝑧)(.r𝑅) 1 ))
1992, 172, 110ringridm 19318 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅) 1 ) = (𝑋𝑧))
200134, 129, 199syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋𝑧)(.r𝑅) 1 ) = (𝑋𝑧))
201200ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅) 1 ) = (𝑋𝑧))
202198, 201eqtrd 2833 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )) = (𝑋𝑧))
203196, 202oveq12d 7153 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = ( 0 (+g𝑅)(𝑋𝑧)))
204 elun2 4104 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {𝑧} → 𝑦 ∈ (𝑥 ∪ {𝑧}))
205204adantl 485 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → 𝑦 ∈ (𝑥 ∪ {𝑧}))
206205iftrued 4433 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ) = (𝑋𝑦))
207193, 203, 2063eqtr4d 2843 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))
20881ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → 𝑅 ∈ Grp)
2092, 144, 16grprid 18126 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Grp ∧ if(𝑦𝑥, (𝑋𝑦), 0 ) ∈ (Base‘𝑅)) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅) 0 ) = if(𝑦𝑥, (𝑋𝑦), 0 ))
210208, 149, 209syl2anc 587 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅) 0 ) = if(𝑦𝑥, (𝑋𝑦), 0 ))
211210adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅) 0 ) = if(𝑦𝑥, (𝑋𝑦), 0 ))
212 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ¬ 𝑦 ∈ {𝑧})
213212, 190sylnib 331 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ¬ 𝑦 = 𝑧)
214213iffalsed 4436 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → if(𝑦 = 𝑧, 1 , 0 ) = 0 )
215214oveq2d 7151 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )) = ((𝑋𝑧)(.r𝑅) 0 ))
2162, 172, 16ringrz 19334 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
217134, 129, 216syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
218217ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
219215, 218eqtrd 2833 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )) = 0 )
220219oveq2d 7151 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅) 0 ))
221 elun 4076 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑦𝑥𝑦 ∈ {𝑧}))
222 orcom 867 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑥𝑦 ∈ {𝑧}) ↔ (𝑦 ∈ {𝑧} ∨ 𝑦𝑥))
223221, 222bitri 278 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑦 ∈ {𝑧} ∨ 𝑦𝑥))
224 biorf 934 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ {𝑧} → (𝑦𝑥 ↔ (𝑦 ∈ {𝑧} ∨ 𝑦𝑥)))
225223, 224bitr4id 293 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ {𝑧} → (𝑦 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑦𝑥))
226225adantl 485 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → (𝑦 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑦𝑥))
227226ifbid 4447 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ) = if(𝑦𝑥, (𝑋𝑦), 0 ))
228211, 220, 2273eqtr4d 2843 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))
229207, 228pm2.61dan 812 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))
230229mpteq2dva 5125 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))
231169, 184, 2303eqtrrd 2838 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )) = ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))))
232143, 231eqeq12d 2814 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )) ↔ ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) = ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))))))
23390, 232syl5ibr 249 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))))
234233expr 460 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))))
235234a2d 29 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → (((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))))
23689, 235syl5 34 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → ((𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))))
237236expcom 417 . . . . . . 7 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → (𝜑 → ((𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))))))
238237a2d 29 . . . . . 6 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → ((𝜑 → (𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )))) → (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))))))
23950, 59, 68, 77, 85, 238findcard2s 8743 . . . . 5 ((𝑋 supp 0 ) ∈ Fin → (𝜑 → ((𝑋 supp 0 ) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )))))
24034, 239mpcom 38 . . . 4 (𝜑 → ((𝑋 supp 0 ) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ))))
24128, 240mpd 15 . . 3 (𝜑 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )))
24226, 241eqtr4d 2836 . 2 (𝜑𝑋 = (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
24328resmptd 5875 . . . 4 (𝜑 → ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ↾ (𝑋 supp 0 )) = (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))
244243oveq2d 7151 . . 3 (𝜑 → (𝑃 Σg ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ↾ (𝑋 supp 0 ))) = (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
245117fmpttd 6856 . . . 4 (𝜑 → (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))):𝐷𝐵)
2466, 12, 15, 18suppssr 7844 . . . . . . 7 ((𝜑𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → (𝑋𝑘) = 0 )
247246oveq1d 7150 . . . . . 6 ((𝜑𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = ( 0 · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))
248 eldifi 4054 . . . . . . 7 (𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 )) → 𝑘𝐷)
249107fveq2d 6649 . . . . . . . . . 10 ((𝜑𝑘𝐷) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
25016, 249syl5eq 2845 . . . . . . . . 9 ((𝜑𝑘𝐷) → 0 = (0g‘(Scalar‘𝑃)))
251250oveq1d 7150 . . . . . . . 8 ((𝜑𝑘𝐷) → ( 0 · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = ((0g‘(Scalar‘𝑃)) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))
252 eqid 2798 . . . . . . . . . 10 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
2533, 113, 114, 252, 40lmod0vs 19660 . . . . . . . . 9 ((𝑃 ∈ LMod ∧ (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )) ∈ 𝐵) → ((0g‘(Scalar‘𝑃)) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = (0g𝑃))
254104, 112, 253syl2anc 587 . . . . . . . 8 ((𝜑𝑘𝐷) → ((0g‘(Scalar‘𝑃)) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = (0g𝑃))
255251, 254eqtrd 2833 . . . . . . 7 ((𝜑𝑘𝐷) → ( 0 · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = (0g𝑃))
256248, 255sylan2 595 . . . . . 6 ((𝜑𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → ( 0 · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = (0g𝑃))
257247, 256eqtrd 2833 . . . . 5 ((𝜑𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = (0g𝑃))
258257, 15suppss2 7847 . . . 4 (𝜑 → ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) supp (0g𝑃)) ⊆ (𝑋 supp 0 ))
25914mptex 6963 . . . . . . 7 (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∈ V
260 funmpt 6362 . . . . . . 7 Fun (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))
261 fvex 6658 . . . . . . 7 (0g𝑃) ∈ V
262259, 260, 2613pm3.2i 1336 . . . . . 6 ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∈ V ∧ Fun (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∧ (0g𝑃) ∈ V)
263262a1i 11 . . . . 5 (𝜑 → ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∈ V ∧ Fun (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∧ (0g𝑃) ∈ V))
264 suppssfifsupp 8832 . . . . 5 ((((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∈ V ∧ Fun (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∧ (0g𝑃) ∈ V) ∧ ((𝑋 supp 0 ) ∈ Fin ∧ ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) supp (0g𝑃)) ⊆ (𝑋 supp 0 ))) → (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) finSupp (0g𝑃))
265263, 34, 258, 264syl12anc 835 . . . 4 (𝜑 → (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) finSupp (0g𝑃))
2663, 40, 95, 15, 245, 258, 265gsumres 19026 . . 3 (𝜑 → (𝑃 Σg ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ↾ (𝑋 supp 0 ))) = (𝑃 Σg (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
267244, 266eqtr3d 2835 . 2 (𝜑 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
268242, 267eqtrd 2833 1 (𝜑𝑋 = (𝑃 Σg (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  cdif 3878  cun 3879  wss 3881  c0 4243  ifcif 4425  {csn 4525   class class class wbr 5030  cmpt 5110   × cxp 5517  ccnv 5518  cres 5521  cima 5522  Fun wfun 6318  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387   supp csupp 7813  m cmap 8389  Fincfn 8492   finSupp cfsupp 8817  cn 11625  0cn0 11885  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705   Σg cgsu 16706  Grpcgrp 18095  CMndccmn 18898  1rcur 19244  Ringcrg 19290  LModclmod 19627   mPwSer cmps 20589   mPoly cmpl 20591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-subrg 19526  df-lmod 19629  df-lss 19697  df-psr 20594  df-mpl 20596
This theorem is referenced by:  mplbas2  20710  mplcoe4  20742  ply1coe  20925
  Copyright terms: Public domain W3C validator