MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe1 Structured version   Visualization version   GIF version

Theorem mplcoe1 21238
Description: Decompose a polynomial into a finite sum of monomials. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplcoe1.p 𝑃 = (𝐼 mPoly 𝑅)
mplcoe1.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplcoe1.z 0 = (0g𝑅)
mplcoe1.o 1 = (1r𝑅)
mplcoe1.i (𝜑𝐼𝑊)
mplcoe1.b 𝐵 = (Base‘𝑃)
mplcoe1.n · = ( ·𝑠𝑃)
mplcoe1.r (𝜑𝑅 ∈ Ring)
mplcoe1.x (𝜑𝑋𝐵)
Assertion
Ref Expression
mplcoe1 (𝜑𝑋 = (𝑃 Σg (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
Distinct variable groups:   𝑦,𝑘, 1   𝐵,𝑘   𝑓,𝑘,𝑦,𝐼   𝜑,𝑘,𝑦   𝑅,𝑓,𝑦   𝐷,𝑘,𝑦   𝑃,𝑘   0 ,𝑓,𝑘,𝑦   𝑓,𝑋,𝑘,𝑦   𝑘,𝑊,𝑦   · ,𝑘
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑦,𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑘)   · (𝑦,𝑓)   1 (𝑓)   𝑊(𝑓)

Proof of Theorem mplcoe1
Dummy variables 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplcoe1.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
2 eqid 2738 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
3 mplcoe1.b . . . . . 6 𝐵 = (Base‘𝑃)
4 mplcoe1.d . . . . . 6 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 mplcoe1.x . . . . . 6 (𝜑𝑋𝐵)
61, 2, 3, 4, 5mplelf 21204 . . . . 5 (𝜑𝑋:𝐷⟶(Base‘𝑅))
76feqmptd 6837 . . . 4 (𝜑𝑋 = (𝑦𝐷 ↦ (𝑋𝑦)))
8 iftrue 4465 . . . . . . 7 (𝑦 ∈ (𝑋 supp 0 ) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
98adantl 482 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑦 ∈ (𝑋 supp 0 )) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
10 eldif 3897 . . . . . . . 8 (𝑦 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ (𝑦𝐷 ∧ ¬ 𝑦 ∈ (𝑋 supp 0 )))
11 ssidd 3944 . . . . . . . . . . 11 (𝜑 → (𝑋 supp 0 ) ⊆ (𝑋 supp 0 ))
12 ovex 7308 . . . . . . . . . . . . 13 (ℕ0m 𝐼) ∈ V
134, 12rabex2 5258 . . . . . . . . . . . 12 𝐷 ∈ V
1413a1i 11 . . . . . . . . . . 11 (𝜑𝐷 ∈ V)
15 mplcoe1.z . . . . . . . . . . . . 13 0 = (0g𝑅)
1615fvexi 6788 . . . . . . . . . . . 12 0 ∈ V
1716a1i 11 . . . . . . . . . . 11 (𝜑0 ∈ V)
186, 11, 14, 17suppssr 8012 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → (𝑋𝑦) = 0 )
1918ifeq2d 4479 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), (𝑋𝑦)) = if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ))
20 ifid 4499 . . . . . . . . 9 if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), (𝑋𝑦)) = (𝑋𝑦)
2119, 20eqtr3di 2793 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
2210, 21sylan2br 595 . . . . . . 7 ((𝜑 ∧ (𝑦𝐷 ∧ ¬ 𝑦 ∈ (𝑋 supp 0 ))) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
2322anassrs 468 . . . . . 6 (((𝜑𝑦𝐷) ∧ ¬ 𝑦 ∈ (𝑋 supp 0 )) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
249, 23pm2.61dan 810 . . . . 5 ((𝜑𝑦𝐷) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
2524mpteq2dva 5174 . . . 4 (𝜑 → (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )) = (𝑦𝐷 ↦ (𝑋𝑦)))
267, 25eqtr4d 2781 . . 3 (𝜑𝑋 = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )))
27 suppssdm 7993 . . . . 5 (𝑋 supp 0 ) ⊆ dom 𝑋
2827, 6fssdm 6620 . . . 4 (𝜑 → (𝑋 supp 0 ) ⊆ 𝐷)
29 eqid 2738 . . . . . . . . 9 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
30 eqid 2738 . . . . . . . . 9 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
311, 29, 30, 15, 3mplelbas 21199 . . . . . . . 8 (𝑋𝐵 ↔ (𝑋 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑋 finSupp 0 ))
3231simprbi 497 . . . . . . 7 (𝑋𝐵𝑋 finSupp 0 )
335, 32syl 17 . . . . . 6 (𝜑𝑋 finSupp 0 )
3433fsuppimpd 9135 . . . . 5 (𝜑 → (𝑋 supp 0 ) ∈ Fin)
35 sseq1 3946 . . . . . . . 8 (𝑤 = ∅ → (𝑤𝐷 ↔ ∅ ⊆ 𝐷))
36 mpteq1 5167 . . . . . . . . . . . 12 (𝑤 = ∅ → (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = (𝑘 ∈ ∅ ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))
37 mpt0 6575 . . . . . . . . . . . 12 (𝑘 ∈ ∅ ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = ∅
3836, 37eqtrdi 2794 . . . . . . . . . . 11 (𝑤 = ∅ → (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = ∅)
3938oveq2d 7291 . . . . . . . . . 10 (𝑤 = ∅ → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg ∅))
40 eqid 2738 . . . . . . . . . . 11 (0g𝑃) = (0g𝑃)
4140gsum0 18368 . . . . . . . . . 10 (𝑃 Σg ∅) = (0g𝑃)
4239, 41eqtrdi 2794 . . . . . . . . 9 (𝑤 = ∅ → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (0g𝑃))
43 noel 4264 . . . . . . . . . . . 12 ¬ 𝑦 ∈ ∅
44 eleq2 2827 . . . . . . . . . . . 12 (𝑤 = ∅ → (𝑦𝑤𝑦 ∈ ∅))
4543, 44mtbiri 327 . . . . . . . . . . 11 (𝑤 = ∅ → ¬ 𝑦𝑤)
4645iffalsed 4470 . . . . . . . . . 10 (𝑤 = ∅ → if(𝑦𝑤, (𝑋𝑦), 0 ) = 0 )
4746mpteq2dv 5176 . . . . . . . . 9 (𝑤 = ∅ → (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) = (𝑦𝐷0 ))
4842, 47eqeq12d 2754 . . . . . . . 8 (𝑤 = ∅ → ((𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) ↔ (0g𝑃) = (𝑦𝐷0 )))
4935, 48imbi12d 345 . . . . . . 7 (𝑤 = ∅ → ((𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 ))) ↔ (∅ ⊆ 𝐷 → (0g𝑃) = (𝑦𝐷0 ))))
5049imbi2d 341 . . . . . 6 (𝑤 = ∅ → ((𝜑 → (𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )))) ↔ (𝜑 → (∅ ⊆ 𝐷 → (0g𝑃) = (𝑦𝐷0 )))))
51 sseq1 3946 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤𝐷𝑥𝐷))
52 mpteq1 5167 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))
5352oveq2d 7291 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
54 eleq2 2827 . . . . . . . . . . 11 (𝑤 = 𝑥 → (𝑦𝑤𝑦𝑥))
5554ifbid 4482 . . . . . . . . . 10 (𝑤 = 𝑥 → if(𝑦𝑤, (𝑋𝑦), 0 ) = if(𝑦𝑥, (𝑋𝑦), 0 ))
5655mpteq2dv 5176 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )))
5753, 56eqeq12d 2754 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) ↔ (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))))
5851, 57imbi12d 345 . . . . . . 7 (𝑤 = 𝑥 → ((𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 ))) ↔ (𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )))))
5958imbi2d 341 . . . . . 6 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )))) ↔ (𝜑 → (𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))))))
60 sseq1 3946 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑤𝐷 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐷))
61 mpteq1 5167 . . . . . . . . . 10 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))
6261oveq2d 7291 . . . . . . . . 9 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
63 eleq2 2827 . . . . . . . . . . 11 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦𝑤𝑦 ∈ (𝑥 ∪ {𝑧})))
6463ifbid 4482 . . . . . . . . . 10 (𝑤 = (𝑥 ∪ {𝑧}) → if(𝑦𝑤, (𝑋𝑦), 0 ) = if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))
6564mpteq2dv 5176 . . . . . . . . 9 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))
6662, 65eqeq12d 2754 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) ↔ (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))))
6760, 66imbi12d 345 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 ))) ↔ ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))))
6867imbi2d 341 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝜑 → (𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )))) ↔ (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))))))
69 sseq1 3946 . . . . . . . 8 (𝑤 = (𝑋 supp 0 ) → (𝑤𝐷 ↔ (𝑋 supp 0 ) ⊆ 𝐷))
70 mpteq1 5167 . . . . . . . . . 10 (𝑤 = (𝑋 supp 0 ) → (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))
7170oveq2d 7291 . . . . . . . . 9 (𝑤 = (𝑋 supp 0 ) → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
72 eleq2 2827 . . . . . . . . . . 11 (𝑤 = (𝑋 supp 0 ) → (𝑦𝑤𝑦 ∈ (𝑋 supp 0 )))
7372ifbid 4482 . . . . . . . . . 10 (𝑤 = (𝑋 supp 0 ) → if(𝑦𝑤, (𝑋𝑦), 0 ) = if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ))
7473mpteq2dv 5176 . . . . . . . . 9 (𝑤 = (𝑋 supp 0 ) → (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )))
7571, 74eqeq12d 2754 . . . . . . . 8 (𝑤 = (𝑋 supp 0 ) → ((𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) ↔ (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ))))
7669, 75imbi12d 345 . . . . . . 7 (𝑤 = (𝑋 supp 0 ) → ((𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 ))) ↔ ((𝑋 supp 0 ) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )))))
7776imbi2d 341 . . . . . 6 (𝑤 = (𝑋 supp 0 ) → ((𝜑 → (𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )))) ↔ (𝜑 → ((𝑋 supp 0 ) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ))))))
78 mplcoe1.i . . . . . . . . 9 (𝜑𝐼𝑊)
79 mplcoe1.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
80 ringgrp 19788 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
8179, 80syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
821, 4, 15, 40, 78, 81mpl0 21212 . . . . . . . 8 (𝜑 → (0g𝑃) = (𝐷 × { 0 }))
83 fconstmpt 5649 . . . . . . . 8 (𝐷 × { 0 }) = (𝑦𝐷0 )
8482, 83eqtrdi 2794 . . . . . . 7 (𝜑 → (0g𝑃) = (𝑦𝐷0 ))
8584a1d 25 . . . . . 6 (𝜑 → (∅ ⊆ 𝐷 → (0g𝑃) = (𝑦𝐷0 )))
86 ssun1 4106 . . . . . . . . . . 11 𝑥 ⊆ (𝑥 ∪ {𝑧})
87 sstr2 3928 . . . . . . . . . . 11 (𝑥 ⊆ (𝑥 ∪ {𝑧}) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷𝑥𝐷))
8886, 87ax-mp 5 . . . . . . . . . 10 ((𝑥 ∪ {𝑧}) ⊆ 𝐷𝑥𝐷)
8988imim1i 63 . . . . . . . . 9 ((𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))))
90 oveq1 7282 . . . . . . . . . . . 12 ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) → ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) = ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))))
91 eqid 2738 . . . . . . . . . . . . . 14 (+g𝑃) = (+g𝑃)
921mplring 21224 . . . . . . . . . . . . . . . . 17 ((𝐼𝑊𝑅 ∈ Ring) → 𝑃 ∈ Ring)
9378, 79, 92syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ Ring)
94 ringcmn 19820 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
9593, 94syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ CMnd)
9695adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑃 ∈ CMnd)
97 simprll 776 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑥 ∈ Fin)
98 simprr 770 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑥 ∪ {𝑧}) ⊆ 𝐷)
9998unssad 4121 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑥𝐷)
10099sselda 3921 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑘𝑥) → 𝑘𝐷)
10178adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝐼𝑊)
10279adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
1031mpllmod 21223 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑊𝑅 ∈ Ring) → 𝑃 ∈ LMod)
104101, 102, 103syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐷) → 𝑃 ∈ LMod)
1056ffvelrnda 6961 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → (𝑋𝑘) ∈ (Base‘𝑅))
1061, 78, 79mplsca 21217 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 = (Scalar‘𝑃))
107106adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐷) → 𝑅 = (Scalar‘𝑃))
108107fveq2d 6778 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
109105, 108eleqtrd 2841 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐷) → (𝑋𝑘) ∈ (Base‘(Scalar‘𝑃)))
110 mplcoe1.o . . . . . . . . . . . . . . . . . 18 1 = (1r𝑅)
111 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝑘𝐷)
1121, 3, 15, 110, 4, 101, 102, 111mplmon 21236 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐷) → (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )) ∈ 𝐵)
113 eqid 2738 . . . . . . . . . . . . . . . . . 18 (Scalar‘𝑃) = (Scalar‘𝑃)
114 mplcoe1.n . . . . . . . . . . . . . . . . . 18 · = ( ·𝑠𝑃)
115 eqid 2738 . . . . . . . . . . . . . . . . . 18 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
1163, 113, 114, 115lmodvscl 20140 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ LMod ∧ (𝑋𝑘) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )) ∈ 𝐵) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) ∈ 𝐵)
117104, 109, 112, 116syl3anc 1370 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐷) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) ∈ 𝐵)
118117adantlr 712 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑘𝐷) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) ∈ 𝐵)
119100, 118syldan 591 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑘𝑥) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) ∈ 𝐵)
120 vex 3436 . . . . . . . . . . . . . . 15 𝑧 ∈ V
121120a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑧 ∈ V)
122 simprlr 777 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ¬ 𝑧𝑥)
12378, 79, 103syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ LMod)
124123adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑃 ∈ LMod)
1256adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑋:𝐷⟶(Base‘𝑅))
12698unssbd 4122 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → {𝑧} ⊆ 𝐷)
127120snss 4719 . . . . . . . . . . . . . . . . . 18 (𝑧𝐷 ↔ {𝑧} ⊆ 𝐷)
128126, 127sylibr 233 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑧𝐷)
129125, 128ffvelrnd 6962 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑋𝑧) ∈ (Base‘𝑅))
130106adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑅 = (Scalar‘𝑃))
131130fveq2d 6778 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
132129, 131eleqtrd 2841 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑋𝑧) ∈ (Base‘(Scalar‘𝑃)))
13378adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝐼𝑊)
13479adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑅 ∈ Ring)
1351, 3, 15, 110, 4, 133, 134, 128mplmon 21236 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )) ∈ 𝐵)
1363, 113, 114, 115lmodvscl 20140 . . . . . . . . . . . . . . 15 ((𝑃 ∈ LMod ∧ (𝑋𝑧) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )) ∈ 𝐵) → ((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) ∈ 𝐵)
137124, 132, 135, 136syl3anc 1370 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) ∈ 𝐵)
138 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (𝑋𝑘) = (𝑋𝑧))
139 equequ2 2029 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑧 → (𝑦 = 𝑘𝑦 = 𝑧))
140139ifbid 4482 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → if(𝑦 = 𝑘, 1 , 0 ) = if(𝑦 = 𝑧, 1 , 0 ))
141140mpteq2dv 5176 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))
142138, 141oveq12d 7293 . . . . . . . . . . . . . 14 (𝑘 = 𝑧 → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = ((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))))
1433, 91, 96, 97, 119, 121, 122, 137, 142gsumunsn 19561 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))))
144 eqid 2738 . . . . . . . . . . . . . . 15 (+g𝑅) = (+g𝑅)
145125ffvelrnda 6961 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → (𝑋𝑦) ∈ (Base‘𝑅))
1462, 15ring0cl 19808 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
14779, 146syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑0 ∈ (Base‘𝑅))
148147ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → 0 ∈ (Base‘𝑅))
149145, 148ifcld 4505 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → if(𝑦𝑥, (𝑋𝑦), 0 ) ∈ (Base‘𝑅))
150149fmpttd 6989 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )):𝐷⟶(Base‘𝑅))
151 fvex 6787 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑅) ∈ V
152151, 13elmap 8659 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ ((Base‘𝑅) ↑m 𝐷) ↔ (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )):𝐷⟶(Base‘𝑅))
153150, 152sylibr 233 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ ((Base‘𝑅) ↑m 𝐷))
15429, 2, 4, 30, 133psrbas 21147 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (Base‘(𝐼 mPwSer 𝑅)) = ((Base‘𝑅) ↑m 𝐷))
155153, 154eleqtrrd 2842 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)))
15613mptex 7099 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ V
157 funmpt 6472 . . . . . . . . . . . . . . . . . . 19 Fun (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))
158156, 157, 163pm3.2i 1338 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∧ 0 ∈ V)
159158a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∧ 0 ∈ V))
160 eldifn 4062 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐷𝑥) → ¬ 𝑦𝑥)
161160adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ (𝐷𝑥)) → ¬ 𝑦𝑥)
162161iffalsed 4470 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ (𝐷𝑥)) → if(𝑦𝑥, (𝑋𝑦), 0 ) = 0 )
16313a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝐷 ∈ V)
164162, 163suppss2 8016 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) supp 0 ) ⊆ 𝑥)
165 suppssfifsupp 9143 . . . . . . . . . . . . . . . . 17 ((((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∧ 0 ∈ V) ∧ (𝑥 ∈ Fin ∧ ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) supp 0 ) ⊆ 𝑥)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) finSupp 0 )
166159, 97, 164, 165syl12anc 834 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) finSupp 0 )
1671, 29, 30, 15, 3mplelbas 21199 . . . . . . . . . . . . . . . 16 ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ 𝐵 ↔ ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) finSupp 0 ))
168155, 166, 167sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ 𝐵)
1691, 3, 144, 91, 168, 137mpladd 21213 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) = ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∘f (+g𝑅)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))))
170 ovexd 7310 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )) ∈ V)
171 eqidd 2739 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )))
172 eqid 2738 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
1731, 114, 2, 3, 172, 4, 129, 135mplvsca 21219 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) = ((𝐷 × {(𝑋𝑧)}) ∘f (.r𝑅)(𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))))
174129adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → (𝑋𝑧) ∈ (Base‘𝑅))
1752, 110ringidcl 19807 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
176175, 146ifcld 4505 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ Ring → if(𝑦 = 𝑧, 1 , 0 ) ∈ (Base‘𝑅))
17779, 176syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → if(𝑦 = 𝑧, 1 , 0 ) ∈ (Base‘𝑅))
178177ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → if(𝑦 = 𝑧, 1 , 0 ) ∈ (Base‘𝑅))
179 fconstmpt 5649 . . . . . . . . . . . . . . . . . 18 (𝐷 × {(𝑋𝑧)}) = (𝑦𝐷 ↦ (𝑋𝑧))
180179a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝐷 × {(𝑋𝑧)}) = (𝑦𝐷 ↦ (𝑋𝑧)))
181 eqidd 2739 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))
182163, 174, 178, 180, 181offval2 7553 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝐷 × {(𝑋𝑧)}) ∘f (.r𝑅)(𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) = (𝑦𝐷 ↦ ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))))
183173, 182eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) = (𝑦𝐷 ↦ ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))))
184163, 149, 170, 171, 183offval2 7553 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∘f (+g𝑅)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) = (𝑦𝐷 ↦ (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )))))
185134, 80syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑅 ∈ Grp)
1862, 144, 15grplid 18609 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Grp ∧ (𝑋𝑧) ∈ (Base‘𝑅)) → ( 0 (+g𝑅)(𝑋𝑧)) = (𝑋𝑧))
187185, 129, 186syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ( 0 (+g𝑅)(𝑋𝑧)) = (𝑋𝑧))
188187ad2antrr 723 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ( 0 (+g𝑅)(𝑋𝑧)) = (𝑋𝑧))
189 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → 𝑦 ∈ {𝑧})
190 velsn 4577 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧)
191189, 190sylib 217 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → 𝑦 = 𝑧)
192191fveq2d 6778 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → (𝑋𝑦) = (𝑋𝑧))
193188, 192eqtr4d 2781 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ( 0 (+g𝑅)(𝑋𝑧)) = (𝑋𝑦))
194122ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ¬ 𝑧𝑥)
195191, 194eqneltrd 2858 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ¬ 𝑦𝑥)
196195iffalsed 4470 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → if(𝑦𝑥, (𝑋𝑦), 0 ) = 0 )
197191iftrued 4467 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → if(𝑦 = 𝑧, 1 , 0 ) = 1 )
198197oveq2d 7291 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )) = ((𝑋𝑧)(.r𝑅) 1 ))
1992, 172, 110ringridm 19811 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅) 1 ) = (𝑋𝑧))
200134, 129, 199syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋𝑧)(.r𝑅) 1 ) = (𝑋𝑧))
201200ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅) 1 ) = (𝑋𝑧))
202198, 201eqtrd 2778 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )) = (𝑋𝑧))
203196, 202oveq12d 7293 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = ( 0 (+g𝑅)(𝑋𝑧)))
204 elun2 4111 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {𝑧} → 𝑦 ∈ (𝑥 ∪ {𝑧}))
205204adantl 482 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → 𝑦 ∈ (𝑥 ∪ {𝑧}))
206205iftrued 4467 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ) = (𝑋𝑦))
207193, 203, 2063eqtr4d 2788 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))
20881ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → 𝑅 ∈ Grp)
2092, 144, 15grprid 18610 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Grp ∧ if(𝑦𝑥, (𝑋𝑦), 0 ) ∈ (Base‘𝑅)) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅) 0 ) = if(𝑦𝑥, (𝑋𝑦), 0 ))
210208, 149, 209syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅) 0 ) = if(𝑦𝑥, (𝑋𝑦), 0 ))
211210adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅) 0 ) = if(𝑦𝑥, (𝑋𝑦), 0 ))
212 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ¬ 𝑦 ∈ {𝑧})
213212, 190sylnib 328 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ¬ 𝑦 = 𝑧)
214213iffalsed 4470 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → if(𝑦 = 𝑧, 1 , 0 ) = 0 )
215214oveq2d 7291 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )) = ((𝑋𝑧)(.r𝑅) 0 ))
2162, 172, 15ringrz 19827 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
217134, 129, 216syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
218217ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
219215, 218eqtrd 2778 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )) = 0 )
220219oveq2d 7291 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅) 0 ))
221 elun 4083 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑦𝑥𝑦 ∈ {𝑧}))
222 orcom 867 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑥𝑦 ∈ {𝑧}) ↔ (𝑦 ∈ {𝑧} ∨ 𝑦𝑥))
223221, 222bitri 274 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑦 ∈ {𝑧} ∨ 𝑦𝑥))
224 biorf 934 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ {𝑧} → (𝑦𝑥 ↔ (𝑦 ∈ {𝑧} ∨ 𝑦𝑥)))
225223, 224bitr4id 290 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ {𝑧} → (𝑦 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑦𝑥))
226225adantl 482 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → (𝑦 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑦𝑥))
227226ifbid 4482 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ) = if(𝑦𝑥, (𝑋𝑦), 0 ))
228211, 220, 2273eqtr4d 2788 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))
229207, 228pm2.61dan 810 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))
230229mpteq2dva 5174 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))
231169, 184, 2303eqtrrd 2783 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )) = ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))))
232143, 231eqeq12d 2754 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )) ↔ ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) = ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))))))
23390, 232syl5ibr 245 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))))
234233expr 457 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))))
235234a2d 29 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → (((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))))
23689, 235syl5 34 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → ((𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))))
237236expcom 414 . . . . . . 7 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → (𝜑 → ((𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))))))
238237a2d 29 . . . . . 6 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → ((𝜑 → (𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )))) → (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))))))
23950, 59, 68, 77, 85, 238findcard2s 8948 . . . . 5 ((𝑋 supp 0 ) ∈ Fin → (𝜑 → ((𝑋 supp 0 ) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )))))
24034, 239mpcom 38 . . . 4 (𝜑 → ((𝑋 supp 0 ) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ))))
24128, 240mpd 15 . . 3 (𝜑 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )))
24226, 241eqtr4d 2781 . 2 (𝜑𝑋 = (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
24328resmptd 5948 . . . 4 (𝜑 → ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ↾ (𝑋 supp 0 )) = (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))
244243oveq2d 7291 . . 3 (𝜑 → (𝑃 Σg ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ↾ (𝑋 supp 0 ))) = (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
245117fmpttd 6989 . . . 4 (𝜑 → (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))):𝐷𝐵)
2466, 11, 14, 17suppssr 8012 . . . . . . 7 ((𝜑𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → (𝑋𝑘) = 0 )
247246oveq1d 7290 . . . . . 6 ((𝜑𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = ( 0 · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))
248 eldifi 4061 . . . . . . 7 (𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 )) → 𝑘𝐷)
249107fveq2d 6778 . . . . . . . . . 10 ((𝜑𝑘𝐷) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
25015, 249eqtrid 2790 . . . . . . . . 9 ((𝜑𝑘𝐷) → 0 = (0g‘(Scalar‘𝑃)))
251250oveq1d 7290 . . . . . . . 8 ((𝜑𝑘𝐷) → ( 0 · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = ((0g‘(Scalar‘𝑃)) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))
252 eqid 2738 . . . . . . . . . 10 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
2533, 113, 114, 252, 40lmod0vs 20156 . . . . . . . . 9 ((𝑃 ∈ LMod ∧ (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )) ∈ 𝐵) → ((0g‘(Scalar‘𝑃)) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = (0g𝑃))
254104, 112, 253syl2anc 584 . . . . . . . 8 ((𝜑𝑘𝐷) → ((0g‘(Scalar‘𝑃)) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = (0g𝑃))
255251, 254eqtrd 2778 . . . . . . 7 ((𝜑𝑘𝐷) → ( 0 · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = (0g𝑃))
256248, 255sylan2 593 . . . . . 6 ((𝜑𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → ( 0 · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = (0g𝑃))
257247, 256eqtrd 2778 . . . . 5 ((𝜑𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = (0g𝑃))
258257, 14suppss2 8016 . . . 4 (𝜑 → ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) supp (0g𝑃)) ⊆ (𝑋 supp 0 ))
25913mptex 7099 . . . . . . 7 (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∈ V
260 funmpt 6472 . . . . . . 7 Fun (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))
261 fvex 6787 . . . . . . 7 (0g𝑃) ∈ V
262259, 260, 2613pm3.2i 1338 . . . . . 6 ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∈ V ∧ Fun (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∧ (0g𝑃) ∈ V)
263262a1i 11 . . . . 5 (𝜑 → ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∈ V ∧ Fun (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∧ (0g𝑃) ∈ V))
264 suppssfifsupp 9143 . . . . 5 ((((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∈ V ∧ Fun (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∧ (0g𝑃) ∈ V) ∧ ((𝑋 supp 0 ) ∈ Fin ∧ ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) supp (0g𝑃)) ⊆ (𝑋 supp 0 ))) → (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) finSupp (0g𝑃))
265263, 34, 258, 264syl12anc 834 . . . 4 (𝜑 → (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) finSupp (0g𝑃))
2663, 40, 95, 14, 245, 258, 265gsumres 19514 . . 3 (𝜑 → (𝑃 Σg ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ↾ (𝑋 supp 0 ))) = (𝑃 Σg (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
267244, 266eqtr3d 2780 . 2 (𝜑 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
268242, 267eqtrd 2778 1 (𝜑𝑋 = (𝑃 Σg (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cdif 3884  cun 3885  wss 3887  c0 4256  ifcif 4459  {csn 4561   class class class wbr 5074  cmpt 5157   × cxp 5587  ccnv 5588  cres 5591  cima 5592  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531   supp csupp 7977  m cmap 8615  Fincfn 8733   finSupp cfsupp 9128  cn 11973  0cn0 12233  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150   Σg cgsu 17151  Grpcgrp 18577  CMndccmn 19386  1rcur 19737  Ringcrg 19783  LModclmod 20123   mPwSer cmps 21107   mPoly cmpl 21109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-tset 16981  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-subrg 20022  df-lmod 20125  df-lss 20194  df-psr 21112  df-mpl 21114
This theorem is referenced by:  mplbas2  21243  mplcoe4  21279  ply1coe  21467
  Copyright terms: Public domain W3C validator