| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvnobday | Structured version Visualization version GIF version | ||
| Description: The value of a surreal at its birthday is ∅. (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by SF, 14-Apr-2012.) |
| Ref | Expression |
|---|---|
| fvnobday | ⊢ (𝐴 ∈ No → (𝐴‘( bday ‘𝐴)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayval 27560 | . . 3 ⊢ (𝐴 ∈ No → ( bday ‘𝐴) = dom 𝐴) | |
| 2 | nodmord 27565 | . . . 4 ⊢ (𝐴 ∈ No → Ord dom 𝐴) | |
| 3 | ordirr 6350 | . . . 4 ⊢ (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ∈ No → ¬ dom 𝐴 ∈ dom 𝐴) |
| 5 | 1, 4 | eqneltrd 2848 | . 2 ⊢ (𝐴 ∈ No → ¬ ( bday ‘𝐴) ∈ dom 𝐴) |
| 6 | ndmfv 6893 | . 2 ⊢ (¬ ( bday ‘𝐴) ∈ dom 𝐴 → (𝐴‘( bday ‘𝐴)) = ∅) | |
| 7 | 5, 6 | syl 17 | 1 ⊢ (𝐴 ∈ No → (𝐴‘( bday ‘𝐴)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4296 dom cdm 5638 Ord word 6331 ‘cfv 6511 No csur 27551 bday cbday 27553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-ord 6335 df-on 6336 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-no 27554 df-bday 27556 |
| This theorem is referenced by: nodense 27604 |
| Copyright terms: Public domain | W3C validator |