Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvnobday Structured version   Visualization version   GIF version

Theorem fvnobday 32701
Description: The value of a surreal at its birthday is . (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by SF, 14-Apr-2012.)
Assertion
Ref Expression
fvnobday (𝐴 No → (𝐴‘( bday 𝐴)) = ∅)

Proof of Theorem fvnobday
StepHypRef Expression
1 bdayval 32673 . . 3 (𝐴 No → ( bday 𝐴) = dom 𝐴)
2 nodmord 32678 . . . 4 (𝐴 No → Ord dom 𝐴)
3 ordirr 6047 . . . 4 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
42, 3syl 17 . . 3 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
51, 4eqneltrd 2886 . 2 (𝐴 No → ¬ ( bday 𝐴) ∈ dom 𝐴)
6 ndmfv 6529 . 2 (¬ ( bday 𝐴) ∈ dom 𝐴 → (𝐴‘( bday 𝐴)) = ∅)
75, 6syl 17 1 (𝐴 No → (𝐴‘( bday 𝐴)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1507  wcel 2050  c0 4179  dom cdm 5407  Ord word 6028  cfv 6188   No csur 32665   bday cbday 32667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-ord 6032  df-on 6033  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-no 32668  df-bday 32670
This theorem is referenced by:  nodense  32714
  Copyright terms: Public domain W3C validator