MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvnobday Structured version   Visualization version   GIF version

Theorem fvnobday 27588
Description: The value of a surreal at its birthday is . (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by SF, 14-Apr-2012.)
Assertion
Ref Expression
fvnobday (𝐴 No → (𝐴‘( bday 𝐴)) = ∅)

Proof of Theorem fvnobday
StepHypRef Expression
1 bdayval 27558 . . 3 (𝐴 No → ( bday 𝐴) = dom 𝐴)
2 nodmord 27563 . . . 4 (𝐴 No → Ord dom 𝐴)
3 ordirr 6325 . . . 4 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
42, 3syl 17 . . 3 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
51, 4eqneltrd 2848 . 2 (𝐴 No → ¬ ( bday 𝐴) ∈ dom 𝐴)
6 ndmfv 6855 . 2 (¬ ( bday 𝐴) ∈ dom 𝐴 → (𝐴‘( bday 𝐴)) = ∅)
75, 6syl 17 1 (𝐴 No → (𝐴‘( bday 𝐴)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  c0 4284  dom cdm 5619  Ord word 6306  cfv 6482   No csur 27549   bday cbday 27551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-ord 6310  df-on 6311  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-no 27552  df-bday 27554
This theorem is referenced by:  nodense  27602
  Copyright terms: Public domain W3C validator