Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  requad01 Structured version   Visualization version   GIF version

Theorem requad01 47602
Description: A condition for a quadratic equation with real coefficients to have (at least) one real solution. (Contributed by AV, 23-Jan-2023.)
Hypotheses
Ref Expression
requad2.a (𝜑𝐴 ∈ ℝ)
requad2.z (𝜑𝐴 ≠ 0)
requad2.b (𝜑𝐵 ∈ ℝ)
requad2.c (𝜑𝐶 ∈ ℝ)
requad2.d (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
Assertion
Ref Expression
requad01 (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 0 ≤ 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥

Proof of Theorem requad01
StepHypRef Expression
1 requad2.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
21recnd 11268 . . . . . 6 (𝜑𝐴 ∈ ℂ)
32adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
4 requad2.z . . . . . 6 (𝜑𝐴 ≠ 0)
54adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝐴 ≠ 0)
6 requad2.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
76recnd 11268 . . . . . 6 (𝜑𝐵 ∈ ℂ)
87adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℂ)
9 requad2.c . . . . . . 7 (𝜑𝐶 ∈ ℝ)
109recnd 11268 . . . . . 6 (𝜑𝐶 ∈ ℂ)
1110adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝐶 ∈ ℂ)
12 recn 11224 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
1312adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
14 requad2.d . . . . . 6 (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
1514adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
163, 5, 8, 11, 13, 15quad 26807 . . . 4 ((𝜑𝑥 ∈ ℝ) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
17 eleq1 2823 . . . . . . . . . 10 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (𝑥 ∈ ℝ ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
1817adantl 481 . . . . . . . . 9 ((𝜑𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) → (𝑥 ∈ ℝ ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
19 2re 12319 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
2019a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ)
2120, 1remulcld 11270 . . . . . . . . . . . . . . 15 (𝜑 → (2 · 𝐴) ∈ ℝ)
2221adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (2 · 𝐴) ∈ ℝ)
237negcld 11586 . . . . . . . . . . . . . . . . 17 (𝜑 → -𝐵 ∈ ℂ)
246resqcld 14148 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵↑2) ∈ ℝ)
25 4re 12329 . . . . . . . . . . . . . . . . . . . . . . 23 4 ∈ ℝ
2625a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 4 ∈ ℝ)
271, 9remulcld 11270 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 · 𝐶) ∈ ℝ)
2826, 27remulcld 11270 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (4 · (𝐴 · 𝐶)) ∈ ℝ)
2924, 28resubcld 11670 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ∈ ℝ)
3014, 29eqeltrd 2835 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐷 ∈ ℝ)
3130recnd 11268 . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ∈ ℂ)
3231sqrtcld 15461 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘𝐷) ∈ ℂ)
3323, 32addcld 11259 . . . . . . . . . . . . . . . 16 (𝜑 → (-𝐵 + (√‘𝐷)) ∈ ℂ)
3433adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 + (√‘𝐷)) ∈ ℂ)
356renegcld 11669 . . . . . . . . . . . . . . . . . 18 (𝜑 → -𝐵 ∈ ℝ)
3635adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → -𝐵 ∈ ℝ)
3732adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘𝐷) ∈ ℂ)
3831negnegd 11590 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → --𝐷 = 𝐷)
3938adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → --𝐷 = 𝐷)
4039eqcomd 2742 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → 𝐷 = --𝐷)
4140fveq2d 6885 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘𝐷) = (√‘--𝐷))
4230renegcld 11669 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -𝐷 ∈ ℝ)
4342adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → -𝐷 ∈ ℝ)
44 0red 11243 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 0 ∈ ℝ)
4530, 44ltnled 11387 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐷 < 0 ↔ ¬ 0 ≤ 𝐷))
46 ltle 11328 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐷 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐷 < 0 → 𝐷 ≤ 0))
4730, 44, 46syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐷 < 0 → 𝐷 ≤ 0))
4845, 47sylbird 260 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (¬ 0 ≤ 𝐷𝐷 ≤ 0))
4948imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → 𝐷 ≤ 0)
5030le0neg1d 11813 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐷 ≤ 0 ↔ 0 ≤ -𝐷))
5150adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (𝐷 ≤ 0 ↔ 0 ≤ -𝐷))
5249, 51mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → 0 ≤ -𝐷)
5343, 52sqrtnegd 15445 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘--𝐷) = (i · (√‘-𝐷)))
5441, 53eqtrd 2771 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘𝐷) = (i · (√‘-𝐷)))
55 ax-icn 11193 . . . . . . . . . . . . . . . . . . . . . 22 i ∈ ℂ
5655a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → i ∈ ℂ)
5731negcld 11586 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → -𝐷 ∈ ℂ)
5857sqrtcld 15461 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (√‘-𝐷) ∈ ℂ)
5958adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘-𝐷) ∈ ℂ)
6056, 59mulcomd 11261 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (i · (√‘-𝐷)) = ((√‘-𝐷) · i))
6143, 52resqrtcld 15441 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘-𝐷) ∈ ℝ)
62 inelr 12235 . . . . . . . . . . . . . . . . . . . . . . . 24 ¬ i ∈ ℝ
63 eldif 3941 . . . . . . . . . . . . . . . . . . . . . . . 24 (i ∈ (ℂ ∖ ℝ) ↔ (i ∈ ℂ ∧ ¬ i ∈ ℝ))
6455, 62, 63mpbir2an 711 . . . . . . . . . . . . . . . . . . . . . . 23 i ∈ (ℂ ∖ ℝ)
6564a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → i ∈ (ℂ ∖ ℝ))
6630lt0neg1d 11811 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐷 < 0 ↔ 0 < -𝐷))
67 ltne 11337 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((0 ∈ ℝ ∧ 0 < -𝐷) → -𝐷 ≠ 0)
6844, 67sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ 0 < -𝐷) → -𝐷 ≠ 0)
6942adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ 0 < -𝐷) → -𝐷 ∈ ℝ)
70 ltle 11328 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0 ∈ ℝ ∧ -𝐷 ∈ ℝ) → (0 < -𝐷 → 0 ≤ -𝐷))
7144, 42, 70syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (0 < -𝐷 → 0 ≤ -𝐷))
7271imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ 0 < -𝐷) → 0 ≤ -𝐷)
73 sqrt00 15287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((-𝐷 ∈ ℝ ∧ 0 ≤ -𝐷) → ((√‘-𝐷) = 0 ↔ -𝐷 = 0))
7469, 72, 73syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ 0 < -𝐷) → ((√‘-𝐷) = 0 ↔ -𝐷 = 0))
7574bicomd 223 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ 0 < -𝐷) → (-𝐷 = 0 ↔ (√‘-𝐷) = 0))
7675necon3bid 2977 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ 0 < -𝐷) → (-𝐷 ≠ 0 ↔ (√‘-𝐷) ≠ 0))
7768, 76mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ 0 < -𝐷) → (√‘-𝐷) ≠ 0)
7877ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (0 < -𝐷 → (√‘-𝐷) ≠ 0))
7966, 78sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐷 < 0 → (√‘-𝐷) ≠ 0))
8045, 79sylbird 260 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (¬ 0 ≤ 𝐷 → (√‘-𝐷) ≠ 0))
8180imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘-𝐷) ≠ 0)
8261, 65, 81recnmulnred 47301 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ((√‘-𝐷) · i) ∉ ℝ)
83 df-nel 3038 . . . . . . . . . . . . . . . . . . . . 21 (((√‘-𝐷) · i) ∉ ℝ ↔ ¬ ((√‘-𝐷) · i) ∈ ℝ)
8482, 83sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ ((√‘-𝐷) · i) ∈ ℝ)
8560, 84eqneltrd 2855 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ (i · (√‘-𝐷)) ∈ ℝ)
8654, 85eqneltrd 2855 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ (√‘𝐷) ∈ ℝ)
8737, 86eldifd 3942 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘𝐷) ∈ (ℂ ∖ ℝ))
8836, 87readdcnnred 47299 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 + (√‘𝐷)) ∉ ℝ)
89 df-nel 3038 . . . . . . . . . . . . . . . 16 ((-𝐵 + (√‘𝐷)) ∉ ℝ ↔ ¬ (-𝐵 + (√‘𝐷)) ∈ ℝ)
9088, 89sylib 218 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ (-𝐵 + (√‘𝐷)) ∈ ℝ)
9134, 90eldifd 3942 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 + (√‘𝐷)) ∈ (ℂ ∖ ℝ))
92 2cnd 12323 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℂ)
93 2ne0 12349 . . . . . . . . . . . . . . . . 17 2 ≠ 0
9493a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≠ 0)
9592, 2, 94, 4mulne0d 11894 . . . . . . . . . . . . . . 15 (𝜑 → (2 · 𝐴) ≠ 0)
9695adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (2 · 𝐴) ≠ 0)
9722, 91, 96cndivrenred 47302 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∉ ℝ)
98 df-nel 3038 . . . . . . . . . . . . 13 (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∉ ℝ ↔ ¬ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
9997, 98sylib 218 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
10099ex 412 . . . . . . . . . . 11 (𝜑 → (¬ 0 ≤ 𝐷 → ¬ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
101100con4d 115 . . . . . . . . . 10 (𝜑 → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ → 0 ≤ 𝐷))
102101adantr 480 . . . . . . . . 9 ((𝜑𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ → 0 ≤ 𝐷))
10318, 102sylbid 240 . . . . . . . 8 ((𝜑𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) → (𝑥 ∈ ℝ → 0 ≤ 𝐷))
104103ex 412 . . . . . . 7 (𝜑 → (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (𝑥 ∈ ℝ → 0 ≤ 𝐷)))
105 eleq1 2823 . . . . . . . . . 10 (𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) → (𝑥 ∈ ℝ ↔ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
106105adantl 481 . . . . . . . . 9 ((𝜑𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → (𝑥 ∈ ℝ ↔ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
10723, 32subcld 11599 . . . . . . . . . . . . . . . 16 (𝜑 → (-𝐵 − (√‘𝐷)) ∈ ℂ)
108107adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 − (√‘𝐷)) ∈ ℂ)
10936, 87resubcnnred 47300 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 − (√‘𝐷)) ∉ ℝ)
110 df-nel 3038 . . . . . . . . . . . . . . . 16 ((-𝐵 − (√‘𝐷)) ∉ ℝ ↔ ¬ (-𝐵 − (√‘𝐷)) ∈ ℝ)
111109, 110sylib 218 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ (-𝐵 − (√‘𝐷)) ∈ ℝ)
112108, 111eldifd 3942 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 − (√‘𝐷)) ∈ (ℂ ∖ ℝ))
11322, 112, 96cndivrenred 47302 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∉ ℝ)
114 df-nel 3038 . . . . . . . . . . . . 13 (((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∉ ℝ ↔ ¬ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
115113, 114sylib 218 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
116115ex 412 . . . . . . . . . . 11 (𝜑 → (¬ 0 ≤ 𝐷 → ¬ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
117116con4d 115 . . . . . . . . . 10 (𝜑 → (((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ → 0 ≤ 𝐷))
118117adantr 480 . . . . . . . . 9 ((𝜑𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → (((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ → 0 ≤ 𝐷))
119106, 118sylbid 240 . . . . . . . 8 ((𝜑𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → (𝑥 ∈ ℝ → 0 ≤ 𝐷))
120119ex 412 . . . . . . 7 (𝜑 → (𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) → (𝑥 ∈ ℝ → 0 ≤ 𝐷)))
121104, 120jaod 859 . . . . . 6 (𝜑 → ((𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → (𝑥 ∈ ℝ → 0 ≤ 𝐷)))
122121com23 86 . . . . 5 (𝜑 → (𝑥 ∈ ℝ → ((𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → 0 ≤ 𝐷)))
123122imp 406 . . . 4 ((𝜑𝑥 ∈ ℝ) → ((𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → 0 ≤ 𝐷))
12416, 123sylbid 240 . . 3 ((𝜑𝑥 ∈ ℝ) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 → 0 ≤ 𝐷))
125124rexlimdva 3142 . 2 (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 → 0 ≤ 𝐷))
12635adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → -𝐵 ∈ ℝ)
12730adantr 480 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐷 ∈ ℝ)
128 simpr 484 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → 0 ≤ 𝐷)
129127, 128resqrtcld 15441 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (√‘𝐷) ∈ ℝ)
130126, 129readdcld 11269 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (-𝐵 + (√‘𝐷)) ∈ ℝ)
13119a1i 11 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 2 ∈ ℝ)
1321adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐴 ∈ ℝ)
133131, 132remulcld 11270 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (2 · 𝐴) ∈ ℝ)
13495adantr 480 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (2 · 𝐴) ≠ 0)
135130, 133, 134redivcld 12074 . . . 4 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
136 oveq1 7417 . . . . . . . 8 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (𝑥↑2) = (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2))
137136oveq2d 7426 . . . . . . 7 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (𝐴 · (𝑥↑2)) = (𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)))
138 oveq2 7418 . . . . . . . 8 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (𝐵 · 𝑥) = (𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))))
139138oveq1d 7425 . . . . . . 7 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → ((𝐵 · 𝑥) + 𝐶) = ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶))
140137, 139oveq12d 7428 . . . . . 6 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = ((𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)) + ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶)))
141140eqeq1d 2738 . . . . 5 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ((𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)) + ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶)) = 0))
142141adantl 481 . . . 4 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ((𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)) + ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶)) = 0))
143 eqidd 2737 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)))
144143orcd 873 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))
1452adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐴 ∈ ℂ)
1464adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐴 ≠ 0)
1477adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐵 ∈ ℂ)
14810adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐶 ∈ ℂ)
14992, 2mulcld 11260 . . . . . . . 8 (𝜑 → (2 · 𝐴) ∈ ℂ)
15033, 149, 95divcld 12022 . . . . . . 7 (𝜑 → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ)
151150adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ)
15214adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
153145, 146, 147, 148, 151, 152quad 26807 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (((𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)) + ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶)) = 0 ↔ (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
154144, 153mpbird 257 . . . 4 ((𝜑 ∧ 0 ≤ 𝐷) → ((𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)) + ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶)) = 0)
155135, 142, 154rspcedvd 3608 . . 3 ((𝜑 ∧ 0 ≤ 𝐷) → ∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0)
156155ex 412 . 2 (𝜑 → (0 ≤ 𝐷 → ∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0))
157125, 156impbid 212 1 (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 0 ≤ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2933  wnel 3037  wrex 3061  cdif 3928   class class class wbr 5124  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  ici 11136   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  cmin 11471  -cneg 11472   / cdiv 11899  2c2 12300  4c4 12302  cexp 14084  csqrt 15257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260
This theorem is referenced by:  requad1  47603  requad2  47604
  Copyright terms: Public domain W3C validator