Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  requad01 Structured version   Visualization version   GIF version

Theorem requad01 47651
Description: A condition for a quadratic equation with real coefficients to have (at least) one real solution. (Contributed by AV, 23-Jan-2023.)
Hypotheses
Ref Expression
requad2.a (𝜑𝐴 ∈ ℝ)
requad2.z (𝜑𝐴 ≠ 0)
requad2.b (𝜑𝐵 ∈ ℝ)
requad2.c (𝜑𝐶 ∈ ℝ)
requad2.d (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
Assertion
Ref Expression
requad01 (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 0 ≤ 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥

Proof of Theorem requad01
StepHypRef Expression
1 requad2.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
21recnd 11137 . . . . . 6 (𝜑𝐴 ∈ ℂ)
32adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
4 requad2.z . . . . . 6 (𝜑𝐴 ≠ 0)
54adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝐴 ≠ 0)
6 requad2.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
76recnd 11137 . . . . . 6 (𝜑𝐵 ∈ ℂ)
87adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℂ)
9 requad2.c . . . . . . 7 (𝜑𝐶 ∈ ℝ)
109recnd 11137 . . . . . 6 (𝜑𝐶 ∈ ℂ)
1110adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝐶 ∈ ℂ)
12 recn 11093 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
1312adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
14 requad2.d . . . . . 6 (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
1514adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
163, 5, 8, 11, 13, 15quad 26775 . . . 4 ((𝜑𝑥 ∈ ℝ) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
17 eleq1 2819 . . . . . . . . . 10 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (𝑥 ∈ ℝ ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
1817adantl 481 . . . . . . . . 9 ((𝜑𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) → (𝑥 ∈ ℝ ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
19 2re 12196 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
2019a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ)
2120, 1remulcld 11139 . . . . . . . . . . . . . . 15 (𝜑 → (2 · 𝐴) ∈ ℝ)
2221adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (2 · 𝐴) ∈ ℝ)
237negcld 11456 . . . . . . . . . . . . . . . . 17 (𝜑 → -𝐵 ∈ ℂ)
246resqcld 14029 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵↑2) ∈ ℝ)
25 4re 12206 . . . . . . . . . . . . . . . . . . . . . . 23 4 ∈ ℝ
2625a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 4 ∈ ℝ)
271, 9remulcld 11139 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 · 𝐶) ∈ ℝ)
2826, 27remulcld 11139 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (4 · (𝐴 · 𝐶)) ∈ ℝ)
2924, 28resubcld 11542 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ∈ ℝ)
3014, 29eqeltrd 2831 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐷 ∈ ℝ)
3130recnd 11137 . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ∈ ℂ)
3231sqrtcld 15344 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘𝐷) ∈ ℂ)
3323, 32addcld 11128 . . . . . . . . . . . . . . . 16 (𝜑 → (-𝐵 + (√‘𝐷)) ∈ ℂ)
3433adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 + (√‘𝐷)) ∈ ℂ)
356renegcld 11541 . . . . . . . . . . . . . . . . . 18 (𝜑 → -𝐵 ∈ ℝ)
3635adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → -𝐵 ∈ ℝ)
3732adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘𝐷) ∈ ℂ)
3831negnegd 11460 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → --𝐷 = 𝐷)
3938adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → --𝐷 = 𝐷)
4039eqcomd 2737 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → 𝐷 = --𝐷)
4140fveq2d 6826 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘𝐷) = (√‘--𝐷))
4230renegcld 11541 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -𝐷 ∈ ℝ)
4342adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → -𝐷 ∈ ℝ)
44 0red 11112 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 0 ∈ ℝ)
4530, 44ltnled 11257 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐷 < 0 ↔ ¬ 0 ≤ 𝐷))
46 ltle 11198 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐷 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐷 < 0 → 𝐷 ≤ 0))
4730, 44, 46syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐷 < 0 → 𝐷 ≤ 0))
4845, 47sylbird 260 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (¬ 0 ≤ 𝐷𝐷 ≤ 0))
4948imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → 𝐷 ≤ 0)
5030le0neg1d 11685 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐷 ≤ 0 ↔ 0 ≤ -𝐷))
5150adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (𝐷 ≤ 0 ↔ 0 ≤ -𝐷))
5249, 51mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → 0 ≤ -𝐷)
5343, 52sqrtnegd 15326 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘--𝐷) = (i · (√‘-𝐷)))
5441, 53eqtrd 2766 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘𝐷) = (i · (√‘-𝐷)))
55 ax-icn 11062 . . . . . . . . . . . . . . . . . . . . . 22 i ∈ ℂ
5655a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → i ∈ ℂ)
5731negcld 11456 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → -𝐷 ∈ ℂ)
5857sqrtcld 15344 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (√‘-𝐷) ∈ ℂ)
5958adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘-𝐷) ∈ ℂ)
6056, 59mulcomd 11130 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (i · (√‘-𝐷)) = ((√‘-𝐷) · i))
6143, 52resqrtcld 15322 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘-𝐷) ∈ ℝ)
62 inelr 12112 . . . . . . . . . . . . . . . . . . . . . . . 24 ¬ i ∈ ℝ
63 eldif 3912 . . . . . . . . . . . . . . . . . . . . . . . 24 (i ∈ (ℂ ∖ ℝ) ↔ (i ∈ ℂ ∧ ¬ i ∈ ℝ))
6455, 62, 63mpbir2an 711 . . . . . . . . . . . . . . . . . . . . . . 23 i ∈ (ℂ ∖ ℝ)
6564a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → i ∈ (ℂ ∖ ℝ))
6630lt0neg1d 11683 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐷 < 0 ↔ 0 < -𝐷))
67 ltne 11207 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((0 ∈ ℝ ∧ 0 < -𝐷) → -𝐷 ≠ 0)
6844, 67sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ 0 < -𝐷) → -𝐷 ≠ 0)
6942adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ 0 < -𝐷) → -𝐷 ∈ ℝ)
70 ltle 11198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0 ∈ ℝ ∧ -𝐷 ∈ ℝ) → (0 < -𝐷 → 0 ≤ -𝐷))
7144, 42, 70syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (0 < -𝐷 → 0 ≤ -𝐷))
7271imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ 0 < -𝐷) → 0 ≤ -𝐷)
73 sqrt00 15167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((-𝐷 ∈ ℝ ∧ 0 ≤ -𝐷) → ((√‘-𝐷) = 0 ↔ -𝐷 = 0))
7469, 72, 73syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ 0 < -𝐷) → ((√‘-𝐷) = 0 ↔ -𝐷 = 0))
7574bicomd 223 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ 0 < -𝐷) → (-𝐷 = 0 ↔ (√‘-𝐷) = 0))
7675necon3bid 2972 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ 0 < -𝐷) → (-𝐷 ≠ 0 ↔ (√‘-𝐷) ≠ 0))
7768, 76mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ 0 < -𝐷) → (√‘-𝐷) ≠ 0)
7877ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (0 < -𝐷 → (√‘-𝐷) ≠ 0))
7966, 78sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐷 < 0 → (√‘-𝐷) ≠ 0))
8045, 79sylbird 260 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (¬ 0 ≤ 𝐷 → (√‘-𝐷) ≠ 0))
8180imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘-𝐷) ≠ 0)
8261, 65, 81recnmulnred 47335 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ((√‘-𝐷) · i) ∉ ℝ)
83 df-nel 3033 . . . . . . . . . . . . . . . . . . . . 21 (((√‘-𝐷) · i) ∉ ℝ ↔ ¬ ((√‘-𝐷) · i) ∈ ℝ)
8482, 83sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ ((√‘-𝐷) · i) ∈ ℝ)
8560, 84eqneltrd 2851 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ (i · (√‘-𝐷)) ∈ ℝ)
8654, 85eqneltrd 2851 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ (√‘𝐷) ∈ ℝ)
8737, 86eldifd 3913 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘𝐷) ∈ (ℂ ∖ ℝ))
8836, 87readdcnnred 47333 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 + (√‘𝐷)) ∉ ℝ)
89 df-nel 3033 . . . . . . . . . . . . . . . 16 ((-𝐵 + (√‘𝐷)) ∉ ℝ ↔ ¬ (-𝐵 + (√‘𝐷)) ∈ ℝ)
9088, 89sylib 218 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ (-𝐵 + (√‘𝐷)) ∈ ℝ)
9134, 90eldifd 3913 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 + (√‘𝐷)) ∈ (ℂ ∖ ℝ))
92 2cnd 12200 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℂ)
93 2ne0 12226 . . . . . . . . . . . . . . . . 17 2 ≠ 0
9493a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≠ 0)
9592, 2, 94, 4mulne0d 11766 . . . . . . . . . . . . . . 15 (𝜑 → (2 · 𝐴) ≠ 0)
9695adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (2 · 𝐴) ≠ 0)
9722, 91, 96cndivrenred 47336 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∉ ℝ)
98 df-nel 3033 . . . . . . . . . . . . 13 (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∉ ℝ ↔ ¬ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
9997, 98sylib 218 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
10099ex 412 . . . . . . . . . . 11 (𝜑 → (¬ 0 ≤ 𝐷 → ¬ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
101100con4d 115 . . . . . . . . . 10 (𝜑 → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ → 0 ≤ 𝐷))
102101adantr 480 . . . . . . . . 9 ((𝜑𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ → 0 ≤ 𝐷))
10318, 102sylbid 240 . . . . . . . 8 ((𝜑𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) → (𝑥 ∈ ℝ → 0 ≤ 𝐷))
104103ex 412 . . . . . . 7 (𝜑 → (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (𝑥 ∈ ℝ → 0 ≤ 𝐷)))
105 eleq1 2819 . . . . . . . . . 10 (𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) → (𝑥 ∈ ℝ ↔ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
106105adantl 481 . . . . . . . . 9 ((𝜑𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → (𝑥 ∈ ℝ ↔ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
10723, 32subcld 11469 . . . . . . . . . . . . . . . 16 (𝜑 → (-𝐵 − (√‘𝐷)) ∈ ℂ)
108107adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 − (√‘𝐷)) ∈ ℂ)
10936, 87resubcnnred 47334 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 − (√‘𝐷)) ∉ ℝ)
110 df-nel 3033 . . . . . . . . . . . . . . . 16 ((-𝐵 − (√‘𝐷)) ∉ ℝ ↔ ¬ (-𝐵 − (√‘𝐷)) ∈ ℝ)
111109, 110sylib 218 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ (-𝐵 − (√‘𝐷)) ∈ ℝ)
112108, 111eldifd 3913 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 − (√‘𝐷)) ∈ (ℂ ∖ ℝ))
11322, 112, 96cndivrenred 47336 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∉ ℝ)
114 df-nel 3033 . . . . . . . . . . . . 13 (((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∉ ℝ ↔ ¬ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
115113, 114sylib 218 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
116115ex 412 . . . . . . . . . . 11 (𝜑 → (¬ 0 ≤ 𝐷 → ¬ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
117116con4d 115 . . . . . . . . . 10 (𝜑 → (((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ → 0 ≤ 𝐷))
118117adantr 480 . . . . . . . . 9 ((𝜑𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → (((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ → 0 ≤ 𝐷))
119106, 118sylbid 240 . . . . . . . 8 ((𝜑𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → (𝑥 ∈ ℝ → 0 ≤ 𝐷))
120119ex 412 . . . . . . 7 (𝜑 → (𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) → (𝑥 ∈ ℝ → 0 ≤ 𝐷)))
121104, 120jaod 859 . . . . . 6 (𝜑 → ((𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → (𝑥 ∈ ℝ → 0 ≤ 𝐷)))
122121com23 86 . . . . 5 (𝜑 → (𝑥 ∈ ℝ → ((𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → 0 ≤ 𝐷)))
123122imp 406 . . . 4 ((𝜑𝑥 ∈ ℝ) → ((𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → 0 ≤ 𝐷))
12416, 123sylbid 240 . . 3 ((𝜑𝑥 ∈ ℝ) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 → 0 ≤ 𝐷))
125124rexlimdva 3133 . 2 (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 → 0 ≤ 𝐷))
12635adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → -𝐵 ∈ ℝ)
12730adantr 480 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐷 ∈ ℝ)
128 simpr 484 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → 0 ≤ 𝐷)
129127, 128resqrtcld 15322 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (√‘𝐷) ∈ ℝ)
130126, 129readdcld 11138 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (-𝐵 + (√‘𝐷)) ∈ ℝ)
13119a1i 11 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 2 ∈ ℝ)
1321adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐴 ∈ ℝ)
133131, 132remulcld 11139 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (2 · 𝐴) ∈ ℝ)
13495adantr 480 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (2 · 𝐴) ≠ 0)
135130, 133, 134redivcld 11946 . . . 4 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
136 oveq1 7353 . . . . . . . 8 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (𝑥↑2) = (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2))
137136oveq2d 7362 . . . . . . 7 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (𝐴 · (𝑥↑2)) = (𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)))
138 oveq2 7354 . . . . . . . 8 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (𝐵 · 𝑥) = (𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))))
139138oveq1d 7361 . . . . . . 7 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → ((𝐵 · 𝑥) + 𝐶) = ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶))
140137, 139oveq12d 7364 . . . . . 6 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = ((𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)) + ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶)))
141140eqeq1d 2733 . . . . 5 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ((𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)) + ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶)) = 0))
142141adantl 481 . . . 4 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ((𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)) + ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶)) = 0))
143 eqidd 2732 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)))
144143orcd 873 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))
1452adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐴 ∈ ℂ)
1464adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐴 ≠ 0)
1477adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐵 ∈ ℂ)
14810adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐶 ∈ ℂ)
14992, 2mulcld 11129 . . . . . . . 8 (𝜑 → (2 · 𝐴) ∈ ℂ)
15033, 149, 95divcld 11894 . . . . . . 7 (𝜑 → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ)
151150adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ)
15214adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
153145, 146, 147, 148, 151, 152quad 26775 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (((𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)) + ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶)) = 0 ↔ (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
154144, 153mpbird 257 . . . 4 ((𝜑 ∧ 0 ≤ 𝐷) → ((𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)) + ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶)) = 0)
155135, 142, 154rspcedvd 3579 . . 3 ((𝜑 ∧ 0 ≤ 𝐷) → ∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0)
156155ex 412 . 2 (𝜑 → (0 ≤ 𝐷 → ∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0))
157125, 156impbid 212 1 (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 0 ≤ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wnel 3032  wrex 3056  cdif 3899   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  ici 11005   + caddc 11006   · cmul 11008   < clt 11143  cle 11144  cmin 11341  -cneg 11342   / cdiv 11771  2c2 12177  4c4 12179  cexp 13965  csqrt 15137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140
This theorem is referenced by:  requad1  47652  requad2  47653
  Copyright terms: Public domain W3C validator