Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  requad01 Structured version   Visualization version   GIF version

Theorem requad01 44961
Description: A condition for a quadratic equation with real coefficients to have (at least) one real solution. (Contributed by AV, 23-Jan-2023.)
Hypotheses
Ref Expression
requad2.a (𝜑𝐴 ∈ ℝ)
requad2.z (𝜑𝐴 ≠ 0)
requad2.b (𝜑𝐵 ∈ ℝ)
requad2.c (𝜑𝐶 ∈ ℝ)
requad2.d (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
Assertion
Ref Expression
requad01 (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 0 ≤ 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥

Proof of Theorem requad01
StepHypRef Expression
1 requad2.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
21recnd 10934 . . . . . 6 (𝜑𝐴 ∈ ℂ)
32adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
4 requad2.z . . . . . 6 (𝜑𝐴 ≠ 0)
54adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝐴 ≠ 0)
6 requad2.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
76recnd 10934 . . . . . 6 (𝜑𝐵 ∈ ℂ)
87adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℂ)
9 requad2.c . . . . . . 7 (𝜑𝐶 ∈ ℝ)
109recnd 10934 . . . . . 6 (𝜑𝐶 ∈ ℂ)
1110adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝐶 ∈ ℂ)
12 recn 10892 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
1312adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
14 requad2.d . . . . . 6 (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
1514adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
163, 5, 8, 11, 13, 15quad 25895 . . . 4 ((𝜑𝑥 ∈ ℝ) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
17 eleq1 2826 . . . . . . . . . 10 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (𝑥 ∈ ℝ ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
1817adantl 481 . . . . . . . . 9 ((𝜑𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) → (𝑥 ∈ ℝ ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
19 2re 11977 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
2019a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ)
2120, 1remulcld 10936 . . . . . . . . . . . . . . 15 (𝜑 → (2 · 𝐴) ∈ ℝ)
2221adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (2 · 𝐴) ∈ ℝ)
237negcld 11249 . . . . . . . . . . . . . . . . 17 (𝜑 → -𝐵 ∈ ℂ)
246resqcld 13893 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵↑2) ∈ ℝ)
25 4re 11987 . . . . . . . . . . . . . . . . . . . . . . 23 4 ∈ ℝ
2625a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 4 ∈ ℝ)
271, 9remulcld 10936 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 · 𝐶) ∈ ℝ)
2826, 27remulcld 10936 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (4 · (𝐴 · 𝐶)) ∈ ℝ)
2924, 28resubcld 11333 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ∈ ℝ)
3014, 29eqeltrd 2839 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐷 ∈ ℝ)
3130recnd 10934 . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ∈ ℂ)
3231sqrtcld 15077 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘𝐷) ∈ ℂ)
3323, 32addcld 10925 . . . . . . . . . . . . . . . 16 (𝜑 → (-𝐵 + (√‘𝐷)) ∈ ℂ)
3433adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 + (√‘𝐷)) ∈ ℂ)
356renegcld 11332 . . . . . . . . . . . . . . . . . 18 (𝜑 → -𝐵 ∈ ℝ)
3635adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → -𝐵 ∈ ℝ)
3732adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘𝐷) ∈ ℂ)
3831negnegd 11253 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → --𝐷 = 𝐷)
3938adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → --𝐷 = 𝐷)
4039eqcomd 2744 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → 𝐷 = --𝐷)
4140fveq2d 6760 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘𝐷) = (√‘--𝐷))
4230renegcld 11332 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -𝐷 ∈ ℝ)
4342adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → -𝐷 ∈ ℝ)
44 0red 10909 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 0 ∈ ℝ)
4530, 44ltnled 11052 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐷 < 0 ↔ ¬ 0 ≤ 𝐷))
46 ltle 10994 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐷 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐷 < 0 → 𝐷 ≤ 0))
4730, 44, 46syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐷 < 0 → 𝐷 ≤ 0))
4845, 47sylbird 259 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (¬ 0 ≤ 𝐷𝐷 ≤ 0))
4948imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → 𝐷 ≤ 0)
5030le0neg1d 11476 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐷 ≤ 0 ↔ 0 ≤ -𝐷))
5150adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (𝐷 ≤ 0 ↔ 0 ≤ -𝐷))
5249, 51mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → 0 ≤ -𝐷)
5343, 52sqrtnegd 15061 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘--𝐷) = (i · (√‘-𝐷)))
5441, 53eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘𝐷) = (i · (√‘-𝐷)))
55 ax-icn 10861 . . . . . . . . . . . . . . . . . . . . . 22 i ∈ ℂ
5655a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → i ∈ ℂ)
5731negcld 11249 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → -𝐷 ∈ ℂ)
5857sqrtcld 15077 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (√‘-𝐷) ∈ ℂ)
5958adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘-𝐷) ∈ ℂ)
6056, 59mulcomd 10927 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (i · (√‘-𝐷)) = ((√‘-𝐷) · i))
6143, 52resqrtcld 15057 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘-𝐷) ∈ ℝ)
62 inelr 11893 . . . . . . . . . . . . . . . . . . . . . . . 24 ¬ i ∈ ℝ
63 eldif 3893 . . . . . . . . . . . . . . . . . . . . . . . 24 (i ∈ (ℂ ∖ ℝ) ↔ (i ∈ ℂ ∧ ¬ i ∈ ℝ))
6455, 62, 63mpbir2an 707 . . . . . . . . . . . . . . . . . . . . . . 23 i ∈ (ℂ ∖ ℝ)
6564a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → i ∈ (ℂ ∖ ℝ))
6630lt0neg1d 11474 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐷 < 0 ↔ 0 < -𝐷))
67 ltne 11002 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((0 ∈ ℝ ∧ 0 < -𝐷) → -𝐷 ≠ 0)
6844, 67sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ 0 < -𝐷) → -𝐷 ≠ 0)
6942adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ 0 < -𝐷) → -𝐷 ∈ ℝ)
70 ltle 10994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0 ∈ ℝ ∧ -𝐷 ∈ ℝ) → (0 < -𝐷 → 0 ≤ -𝐷))
7144, 42, 70syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (0 < -𝐷 → 0 ≤ -𝐷))
7271imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ 0 < -𝐷) → 0 ≤ -𝐷)
73 sqrt00 14903 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((-𝐷 ∈ ℝ ∧ 0 ≤ -𝐷) → ((√‘-𝐷) = 0 ↔ -𝐷 = 0))
7469, 72, 73syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ 0 < -𝐷) → ((√‘-𝐷) = 0 ↔ -𝐷 = 0))
7574bicomd 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ 0 < -𝐷) → (-𝐷 = 0 ↔ (√‘-𝐷) = 0))
7675necon3bid 2987 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ 0 < -𝐷) → (-𝐷 ≠ 0 ↔ (√‘-𝐷) ≠ 0))
7768, 76mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ 0 < -𝐷) → (√‘-𝐷) ≠ 0)
7877ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (0 < -𝐷 → (√‘-𝐷) ≠ 0))
7966, 78sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐷 < 0 → (√‘-𝐷) ≠ 0))
8045, 79sylbird 259 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (¬ 0 ≤ 𝐷 → (√‘-𝐷) ≠ 0))
8180imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘-𝐷) ≠ 0)
8261, 65, 81recnmulnred 44685 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ((√‘-𝐷) · i) ∉ ℝ)
83 df-nel 3049 . . . . . . . . . . . . . . . . . . . . 21 (((√‘-𝐷) · i) ∉ ℝ ↔ ¬ ((√‘-𝐷) · i) ∈ ℝ)
8482, 83sylib 217 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ ((√‘-𝐷) · i) ∈ ℝ)
8560, 84eqneltrd 2858 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ (i · (√‘-𝐷)) ∈ ℝ)
8654, 85eqneltrd 2858 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ (√‘𝐷) ∈ ℝ)
8737, 86eldifd 3894 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘𝐷) ∈ (ℂ ∖ ℝ))
8836, 87readdcnnred 44683 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 + (√‘𝐷)) ∉ ℝ)
89 df-nel 3049 . . . . . . . . . . . . . . . 16 ((-𝐵 + (√‘𝐷)) ∉ ℝ ↔ ¬ (-𝐵 + (√‘𝐷)) ∈ ℝ)
9088, 89sylib 217 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ (-𝐵 + (√‘𝐷)) ∈ ℝ)
9134, 90eldifd 3894 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 + (√‘𝐷)) ∈ (ℂ ∖ ℝ))
92 2cnd 11981 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℂ)
93 2ne0 12007 . . . . . . . . . . . . . . . . 17 2 ≠ 0
9493a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≠ 0)
9592, 2, 94, 4mulne0d 11557 . . . . . . . . . . . . . . 15 (𝜑 → (2 · 𝐴) ≠ 0)
9695adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (2 · 𝐴) ≠ 0)
9722, 91, 96cndivrenred 44686 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∉ ℝ)
98 df-nel 3049 . . . . . . . . . . . . 13 (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∉ ℝ ↔ ¬ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
9997, 98sylib 217 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
10099ex 412 . . . . . . . . . . 11 (𝜑 → (¬ 0 ≤ 𝐷 → ¬ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
101100con4d 115 . . . . . . . . . 10 (𝜑 → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ → 0 ≤ 𝐷))
102101adantr 480 . . . . . . . . 9 ((𝜑𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ → 0 ≤ 𝐷))
10318, 102sylbid 239 . . . . . . . 8 ((𝜑𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) → (𝑥 ∈ ℝ → 0 ≤ 𝐷))
104103ex 412 . . . . . . 7 (𝜑 → (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (𝑥 ∈ ℝ → 0 ≤ 𝐷)))
105 eleq1 2826 . . . . . . . . . 10 (𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) → (𝑥 ∈ ℝ ↔ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
106105adantl 481 . . . . . . . . 9 ((𝜑𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → (𝑥 ∈ ℝ ↔ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
10723, 32subcld 11262 . . . . . . . . . . . . . . . 16 (𝜑 → (-𝐵 − (√‘𝐷)) ∈ ℂ)
108107adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 − (√‘𝐷)) ∈ ℂ)
10936, 87resubcnnred 44684 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 − (√‘𝐷)) ∉ ℝ)
110 df-nel 3049 . . . . . . . . . . . . . . . 16 ((-𝐵 − (√‘𝐷)) ∉ ℝ ↔ ¬ (-𝐵 − (√‘𝐷)) ∈ ℝ)
111109, 110sylib 217 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ (-𝐵 − (√‘𝐷)) ∈ ℝ)
112108, 111eldifd 3894 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 − (√‘𝐷)) ∈ (ℂ ∖ ℝ))
11322, 112, 96cndivrenred 44686 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∉ ℝ)
114 df-nel 3049 . . . . . . . . . . . . 13 (((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∉ ℝ ↔ ¬ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
115113, 114sylib 217 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
116115ex 412 . . . . . . . . . . 11 (𝜑 → (¬ 0 ≤ 𝐷 → ¬ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
117116con4d 115 . . . . . . . . . 10 (𝜑 → (((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ → 0 ≤ 𝐷))
118117adantr 480 . . . . . . . . 9 ((𝜑𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → (((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ → 0 ≤ 𝐷))
119106, 118sylbid 239 . . . . . . . 8 ((𝜑𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → (𝑥 ∈ ℝ → 0 ≤ 𝐷))
120119ex 412 . . . . . . 7 (𝜑 → (𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) → (𝑥 ∈ ℝ → 0 ≤ 𝐷)))
121104, 120jaod 855 . . . . . 6 (𝜑 → ((𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → (𝑥 ∈ ℝ → 0 ≤ 𝐷)))
122121com23 86 . . . . 5 (𝜑 → (𝑥 ∈ ℝ → ((𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → 0 ≤ 𝐷)))
123122imp 406 . . . 4 ((𝜑𝑥 ∈ ℝ) → ((𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → 0 ≤ 𝐷))
12416, 123sylbid 239 . . 3 ((𝜑𝑥 ∈ ℝ) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 → 0 ≤ 𝐷))
125124rexlimdva 3212 . 2 (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 → 0 ≤ 𝐷))
12635adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → -𝐵 ∈ ℝ)
12730adantr 480 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐷 ∈ ℝ)
128 simpr 484 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → 0 ≤ 𝐷)
129127, 128resqrtcld 15057 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (√‘𝐷) ∈ ℝ)
130126, 129readdcld 10935 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (-𝐵 + (√‘𝐷)) ∈ ℝ)
13119a1i 11 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 2 ∈ ℝ)
1321adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐴 ∈ ℝ)
133131, 132remulcld 10936 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (2 · 𝐴) ∈ ℝ)
13495adantr 480 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (2 · 𝐴) ≠ 0)
135130, 133, 134redivcld 11733 . . . 4 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
136 oveq1 7262 . . . . . . . 8 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (𝑥↑2) = (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2))
137136oveq2d 7271 . . . . . . 7 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (𝐴 · (𝑥↑2)) = (𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)))
138 oveq2 7263 . . . . . . . 8 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (𝐵 · 𝑥) = (𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))))
139138oveq1d 7270 . . . . . . 7 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → ((𝐵 · 𝑥) + 𝐶) = ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶))
140137, 139oveq12d 7273 . . . . . 6 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = ((𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)) + ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶)))
141140eqeq1d 2740 . . . . 5 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ((𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)) + ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶)) = 0))
142141adantl 481 . . . 4 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ((𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)) + ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶)) = 0))
143 eqidd 2739 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)))
144143orcd 869 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))
1452adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐴 ∈ ℂ)
1464adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐴 ≠ 0)
1477adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐵 ∈ ℂ)
14810adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐶 ∈ ℂ)
14992, 2mulcld 10926 . . . . . . . 8 (𝜑 → (2 · 𝐴) ∈ ℂ)
15033, 149, 95divcld 11681 . . . . . . 7 (𝜑 → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ)
151150adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ)
15214adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
153145, 146, 147, 148, 151, 152quad 25895 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (((𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)) + ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶)) = 0 ↔ (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
154144, 153mpbird 256 . . . 4 ((𝜑 ∧ 0 ≤ 𝐷) → ((𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)) + ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶)) = 0)
155135, 142, 154rspcedvd 3555 . . 3 ((𝜑 ∧ 0 ≤ 𝐷) → ∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0)
156155ex 412 . 2 (𝜑 → (0 ≤ 𝐷 → ∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0))
157125, 156impbid 211 1 (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 0 ≤ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wnel 3048  wrex 3064  cdif 3880   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  ici 10804   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  4c4 11960  cexp 13710  csqrt 14872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  requad1  44962  requad2  44963
  Copyright terms: Public domain W3C validator