Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  requad01 Structured version   Visualization version   GIF version

Theorem requad01 47545
Description: A condition for a quadratic equation with real coefficients to have (at least) one real solution. (Contributed by AV, 23-Jan-2023.)
Hypotheses
Ref Expression
requad2.a (𝜑𝐴 ∈ ℝ)
requad2.z (𝜑𝐴 ≠ 0)
requad2.b (𝜑𝐵 ∈ ℝ)
requad2.c (𝜑𝐶 ∈ ℝ)
requad2.d (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
Assertion
Ref Expression
requad01 (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 0 ≤ 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥

Proof of Theorem requad01
StepHypRef Expression
1 requad2.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
21recnd 11286 . . . . . 6 (𝜑𝐴 ∈ ℂ)
32adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
4 requad2.z . . . . . 6 (𝜑𝐴 ≠ 0)
54adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝐴 ≠ 0)
6 requad2.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
76recnd 11286 . . . . . 6 (𝜑𝐵 ∈ ℂ)
87adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℂ)
9 requad2.c . . . . . . 7 (𝜑𝐶 ∈ ℝ)
109recnd 11286 . . . . . 6 (𝜑𝐶 ∈ ℂ)
1110adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝐶 ∈ ℂ)
12 recn 11242 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
1312adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
14 requad2.d . . . . . 6 (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
1514adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
163, 5, 8, 11, 13, 15quad 26897 . . . 4 ((𝜑𝑥 ∈ ℝ) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
17 eleq1 2826 . . . . . . . . . 10 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (𝑥 ∈ ℝ ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
1817adantl 481 . . . . . . . . 9 ((𝜑𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) → (𝑥 ∈ ℝ ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
19 2re 12337 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
2019a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ)
2120, 1remulcld 11288 . . . . . . . . . . . . . . 15 (𝜑 → (2 · 𝐴) ∈ ℝ)
2221adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (2 · 𝐴) ∈ ℝ)
237negcld 11604 . . . . . . . . . . . . . . . . 17 (𝜑 → -𝐵 ∈ ℂ)
246resqcld 14161 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵↑2) ∈ ℝ)
25 4re 12347 . . . . . . . . . . . . . . . . . . . . . . 23 4 ∈ ℝ
2625a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 4 ∈ ℝ)
271, 9remulcld 11288 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 · 𝐶) ∈ ℝ)
2826, 27remulcld 11288 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (4 · (𝐴 · 𝐶)) ∈ ℝ)
2924, 28resubcld 11688 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ∈ ℝ)
3014, 29eqeltrd 2838 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐷 ∈ ℝ)
3130recnd 11286 . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ∈ ℂ)
3231sqrtcld 15472 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘𝐷) ∈ ℂ)
3323, 32addcld 11277 . . . . . . . . . . . . . . . 16 (𝜑 → (-𝐵 + (√‘𝐷)) ∈ ℂ)
3433adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 + (√‘𝐷)) ∈ ℂ)
356renegcld 11687 . . . . . . . . . . . . . . . . . 18 (𝜑 → -𝐵 ∈ ℝ)
3635adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → -𝐵 ∈ ℝ)
3732adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘𝐷) ∈ ℂ)
3831negnegd 11608 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → --𝐷 = 𝐷)
3938adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → --𝐷 = 𝐷)
4039eqcomd 2740 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → 𝐷 = --𝐷)
4140fveq2d 6910 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘𝐷) = (√‘--𝐷))
4230renegcld 11687 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -𝐷 ∈ ℝ)
4342adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → -𝐷 ∈ ℝ)
44 0red 11261 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 0 ∈ ℝ)
4530, 44ltnled 11405 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐷 < 0 ↔ ¬ 0 ≤ 𝐷))
46 ltle 11346 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐷 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐷 < 0 → 𝐷 ≤ 0))
4730, 44, 46syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐷 < 0 → 𝐷 ≤ 0))
4845, 47sylbird 260 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (¬ 0 ≤ 𝐷𝐷 ≤ 0))
4948imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → 𝐷 ≤ 0)
5030le0neg1d 11831 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐷 ≤ 0 ↔ 0 ≤ -𝐷))
5150adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (𝐷 ≤ 0 ↔ 0 ≤ -𝐷))
5249, 51mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → 0 ≤ -𝐷)
5343, 52sqrtnegd 15456 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘--𝐷) = (i · (√‘-𝐷)))
5441, 53eqtrd 2774 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘𝐷) = (i · (√‘-𝐷)))
55 ax-icn 11211 . . . . . . . . . . . . . . . . . . . . . 22 i ∈ ℂ
5655a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → i ∈ ℂ)
5731negcld 11604 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → -𝐷 ∈ ℂ)
5857sqrtcld 15472 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (√‘-𝐷) ∈ ℂ)
5958adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘-𝐷) ∈ ℂ)
6056, 59mulcomd 11279 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (i · (√‘-𝐷)) = ((√‘-𝐷) · i))
6143, 52resqrtcld 15452 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘-𝐷) ∈ ℝ)
62 inelr 12253 . . . . . . . . . . . . . . . . . . . . . . . 24 ¬ i ∈ ℝ
63 eldif 3972 . . . . . . . . . . . . . . . . . . . . . . . 24 (i ∈ (ℂ ∖ ℝ) ↔ (i ∈ ℂ ∧ ¬ i ∈ ℝ))
6455, 62, 63mpbir2an 711 . . . . . . . . . . . . . . . . . . . . . . 23 i ∈ (ℂ ∖ ℝ)
6564a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → i ∈ (ℂ ∖ ℝ))
6630lt0neg1d 11829 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐷 < 0 ↔ 0 < -𝐷))
67 ltne 11355 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((0 ∈ ℝ ∧ 0 < -𝐷) → -𝐷 ≠ 0)
6844, 67sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ 0 < -𝐷) → -𝐷 ≠ 0)
6942adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ 0 < -𝐷) → -𝐷 ∈ ℝ)
70 ltle 11346 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0 ∈ ℝ ∧ -𝐷 ∈ ℝ) → (0 < -𝐷 → 0 ≤ -𝐷))
7144, 42, 70syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (0 < -𝐷 → 0 ≤ -𝐷))
7271imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ 0 < -𝐷) → 0 ≤ -𝐷)
73 sqrt00 15298 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((-𝐷 ∈ ℝ ∧ 0 ≤ -𝐷) → ((√‘-𝐷) = 0 ↔ -𝐷 = 0))
7469, 72, 73syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ 0 < -𝐷) → ((√‘-𝐷) = 0 ↔ -𝐷 = 0))
7574bicomd 223 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ 0 < -𝐷) → (-𝐷 = 0 ↔ (√‘-𝐷) = 0))
7675necon3bid 2982 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ 0 < -𝐷) → (-𝐷 ≠ 0 ↔ (√‘-𝐷) ≠ 0))
7768, 76mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ 0 < -𝐷) → (√‘-𝐷) ≠ 0)
7877ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (0 < -𝐷 → (√‘-𝐷) ≠ 0))
7966, 78sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐷 < 0 → (√‘-𝐷) ≠ 0))
8045, 79sylbird 260 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (¬ 0 ≤ 𝐷 → (√‘-𝐷) ≠ 0))
8180imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘-𝐷) ≠ 0)
8261, 65, 81recnmulnred 47254 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ((√‘-𝐷) · i) ∉ ℝ)
83 df-nel 3044 . . . . . . . . . . . . . . . . . . . . 21 (((√‘-𝐷) · i) ∉ ℝ ↔ ¬ ((√‘-𝐷) · i) ∈ ℝ)
8482, 83sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ ((√‘-𝐷) · i) ∈ ℝ)
8560, 84eqneltrd 2858 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ (i · (√‘-𝐷)) ∈ ℝ)
8654, 85eqneltrd 2858 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ (√‘𝐷) ∈ ℝ)
8737, 86eldifd 3973 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (√‘𝐷) ∈ (ℂ ∖ ℝ))
8836, 87readdcnnred 47252 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 + (√‘𝐷)) ∉ ℝ)
89 df-nel 3044 . . . . . . . . . . . . . . . 16 ((-𝐵 + (√‘𝐷)) ∉ ℝ ↔ ¬ (-𝐵 + (√‘𝐷)) ∈ ℝ)
9088, 89sylib 218 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ (-𝐵 + (√‘𝐷)) ∈ ℝ)
9134, 90eldifd 3973 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 + (√‘𝐷)) ∈ (ℂ ∖ ℝ))
92 2cnd 12341 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℂ)
93 2ne0 12367 . . . . . . . . . . . . . . . . 17 2 ≠ 0
9493a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≠ 0)
9592, 2, 94, 4mulne0d 11912 . . . . . . . . . . . . . . 15 (𝜑 → (2 · 𝐴) ≠ 0)
9695adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (2 · 𝐴) ≠ 0)
9722, 91, 96cndivrenred 47255 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∉ ℝ)
98 df-nel 3044 . . . . . . . . . . . . 13 (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∉ ℝ ↔ ¬ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
9997, 98sylib 218 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
10099ex 412 . . . . . . . . . . 11 (𝜑 → (¬ 0 ≤ 𝐷 → ¬ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
101100con4d 115 . . . . . . . . . 10 (𝜑 → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ → 0 ≤ 𝐷))
102101adantr 480 . . . . . . . . 9 ((𝜑𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ → 0 ≤ 𝐷))
10318, 102sylbid 240 . . . . . . . 8 ((𝜑𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) → (𝑥 ∈ ℝ → 0 ≤ 𝐷))
104103ex 412 . . . . . . 7 (𝜑 → (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (𝑥 ∈ ℝ → 0 ≤ 𝐷)))
105 eleq1 2826 . . . . . . . . . 10 (𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) → (𝑥 ∈ ℝ ↔ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
106105adantl 481 . . . . . . . . 9 ((𝜑𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → (𝑥 ∈ ℝ ↔ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
10723, 32subcld 11617 . . . . . . . . . . . . . . . 16 (𝜑 → (-𝐵 − (√‘𝐷)) ∈ ℂ)
108107adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 − (√‘𝐷)) ∈ ℂ)
10936, 87resubcnnred 47253 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 − (√‘𝐷)) ∉ ℝ)
110 df-nel 3044 . . . . . . . . . . . . . . . 16 ((-𝐵 − (√‘𝐷)) ∉ ℝ ↔ ¬ (-𝐵 − (√‘𝐷)) ∈ ℝ)
111109, 110sylib 218 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ (-𝐵 − (√‘𝐷)) ∈ ℝ)
112108, 111eldifd 3973 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → (-𝐵 − (√‘𝐷)) ∈ (ℂ ∖ ℝ))
11322, 112, 96cndivrenred 47255 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∉ ℝ)
114 df-nel 3044 . . . . . . . . . . . . 13 (((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∉ ℝ ↔ ¬ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
115113, 114sylib 218 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ≤ 𝐷) → ¬ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
116115ex 412 . . . . . . . . . . 11 (𝜑 → (¬ 0 ≤ 𝐷 → ¬ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ))
117116con4d 115 . . . . . . . . . 10 (𝜑 → (((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ → 0 ≤ 𝐷))
118117adantr 480 . . . . . . . . 9 ((𝜑𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → (((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ → 0 ≤ 𝐷))
119106, 118sylbid 240 . . . . . . . 8 ((𝜑𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → (𝑥 ∈ ℝ → 0 ≤ 𝐷))
120119ex 412 . . . . . . 7 (𝜑 → (𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) → (𝑥 ∈ ℝ → 0 ≤ 𝐷)))
121104, 120jaod 859 . . . . . 6 (𝜑 → ((𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → (𝑥 ∈ ℝ → 0 ≤ 𝐷)))
122121com23 86 . . . . 5 (𝜑 → (𝑥 ∈ ℝ → ((𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → 0 ≤ 𝐷)))
123122imp 406 . . . 4 ((𝜑𝑥 ∈ ℝ) → ((𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) → 0 ≤ 𝐷))
12416, 123sylbid 240 . . 3 ((𝜑𝑥 ∈ ℝ) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 → 0 ≤ 𝐷))
125124rexlimdva 3152 . 2 (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 → 0 ≤ 𝐷))
12635adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → -𝐵 ∈ ℝ)
12730adantr 480 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐷 ∈ ℝ)
128 simpr 484 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → 0 ≤ 𝐷)
129127, 128resqrtcld 15452 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (√‘𝐷) ∈ ℝ)
130126, 129readdcld 11287 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (-𝐵 + (√‘𝐷)) ∈ ℝ)
13119a1i 11 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 2 ∈ ℝ)
1321adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐴 ∈ ℝ)
133131, 132remulcld 11288 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (2 · 𝐴) ∈ ℝ)
13495adantr 480 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (2 · 𝐴) ≠ 0)
135130, 133, 134redivcld 12092 . . . 4 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
136 oveq1 7437 . . . . . . . 8 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (𝑥↑2) = (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2))
137136oveq2d 7446 . . . . . . 7 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (𝐴 · (𝑥↑2)) = (𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)))
138 oveq2 7438 . . . . . . . 8 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (𝐵 · 𝑥) = (𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))))
139138oveq1d 7445 . . . . . . 7 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → ((𝐵 · 𝑥) + 𝐶) = ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶))
140137, 139oveq12d 7448 . . . . . 6 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = ((𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)) + ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶)))
141140eqeq1d 2736 . . . . 5 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ((𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)) + ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶)) = 0))
142141adantl 481 . . . 4 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ((𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)) + ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶)) = 0))
143 eqidd 2735 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)))
144143orcd 873 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))
1452adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐴 ∈ ℂ)
1464adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐴 ≠ 0)
1477adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐵 ∈ ℂ)
14810adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐶 ∈ ℂ)
14992, 2mulcld 11278 . . . . . . . 8 (𝜑 → (2 · 𝐴) ∈ ℂ)
15033, 149, 95divcld 12040 . . . . . . 7 (𝜑 → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ)
151150adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℂ)
15214adantr 480 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
153145, 146, 147, 148, 151, 152quad 26897 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (((𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)) + ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶)) = 0 ↔ (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
154144, 153mpbird 257 . . . 4 ((𝜑 ∧ 0 ≤ 𝐷) → ((𝐴 · (((-𝐵 + (√‘𝐷)) / (2 · 𝐴))↑2)) + ((𝐵 · ((-𝐵 + (√‘𝐷)) / (2 · 𝐴))) + 𝐶)) = 0)
155135, 142, 154rspcedvd 3623 . . 3 ((𝜑 ∧ 0 ≤ 𝐷) → ∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0)
156155ex 412 . 2 (𝜑 → (0 ≤ 𝐷 → ∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0))
157125, 156impbid 212 1 (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 0 ≤ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  wne 2937  wnel 3043  wrex 3067  cdif 3959   class class class wbr 5147  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  ici 11154   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489  -cneg 11490   / cdiv 11917  2c2 12318  4c4 12320  cexp 14098  csqrt 15268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271
This theorem is referenced by:  requad1  47546  requad2  47547
  Copyright terms: Public domain W3C validator