| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelqseqdisj4 | Structured version Visualization version GIF version | ||
| Description: Lemma for petincnvepres2 39019. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| Ref | Expression |
|---|---|
| eqvrelqseqdisj4 | ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (𝑆 ∩ (◡ E ↾ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelqseqdisj3 39002 | . 2 ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (◡ E ↾ 𝐴)) | |
| 2 | disjimin 38922 | . 2 ⊢ ( Disj (◡ E ↾ 𝐴) → Disj (𝑆 ∩ (◡ E ↾ 𝐴))) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (𝑆 ∩ (◡ E ↾ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∩ cin 3897 E cep 5520 ◡ccnv 5620 ↾ cres 5623 / cqs 8630 EqvRel weqvrel 38312 Disj wdisjALTV 38329 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-eprel 5521 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ec 8633 df-qs 8637 df-coss 38586 df-refrel 38677 df-cnvrefrel 38692 df-symrel 38709 df-trrel 38743 df-eqvrel 38754 df-funALTV 38853 df-disjALTV 38876 df-eldisj 38878 |
| This theorem is referenced by: petincnvepres2 39019 |
| Copyright terms: Public domain | W3C validator |