Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelqseqdisj5 Structured version   Visualization version   GIF version

Theorem eqvrelqseqdisj5 38159
Description: Lemma for the Partition-Equivalence Theorem pet2 38176. (Contributed by Peter Mazsa, 15-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.)
Assertion
Ref Expression
eqvrelqseqdisj5 (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (𝑆 ⋉ ( E ↾ 𝐴)))

Proof of Theorem eqvrelqseqdisj5
StepHypRef Expression
1 eqvrelqseqdisj3 38157 . 2 (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj ( E ↾ 𝐴))
2 disjimxrn 38075 . 2 ( Disj ( E ↾ 𝐴) → Disj (𝑆 ⋉ ( E ↾ 𝐴)))
31, 2syl 17 1 (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (𝑆 ⋉ ( E ↾ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533   E cep 5569  ccnv 5665  cres 5668   / cqs 8697  cxrn 37498   EqvRel weqvrel 37516   Disj wdisjALTV 37533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-eprel 5570  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-fo 6539  df-fv 6541  df-1st 7968  df-2nd 7969  df-ec 8700  df-qs 8704  df-xrn 37697  df-coss 37737  df-refrel 37838  df-cnvrefrel 37853  df-symrel 37870  df-trrel 37900  df-eqvrel 37911  df-funALTV 38008  df-disjALTV 38031  df-eldisj 38033
This theorem is referenced by:  pet2  38176
  Copyright terms: Public domain W3C validator