![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelqseqdisj5 | Structured version Visualization version GIF version |
Description: Lemma for the Partition-Equivalence Theorem pet2 37708. (Contributed by Peter Mazsa, 15-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
Ref | Expression |
---|---|
eqvrelqseqdisj5 | ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (𝑆 ⋉ (◡ E ↾ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelqseqdisj3 37689 | . 2 ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (◡ E ↾ 𝐴)) | |
2 | disjimxrn 37607 | . 2 ⊢ ( Disj (◡ E ↾ 𝐴) → Disj (𝑆 ⋉ (◡ E ↾ 𝐴))) | |
3 | 1, 2 | syl 17 | 1 ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (𝑆 ⋉ (◡ E ↾ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 E cep 5578 ◡ccnv 5674 ↾ cres 5677 / cqs 8698 ⋉ cxrn 37030 EqvRel weqvrel 37048 Disj wdisjALTV 37065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-eprel 5579 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fo 6546 df-fv 6548 df-1st 7971 df-2nd 7972 df-ec 8701 df-qs 8705 df-xrn 37229 df-coss 37269 df-refrel 37370 df-cnvrefrel 37385 df-symrel 37402 df-trrel 37432 df-eqvrel 37443 df-funALTV 37540 df-disjALTV 37563 df-eldisj 37565 |
This theorem is referenced by: pet2 37708 |
Copyright terms: Public domain | W3C validator |