| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelqseqdisj5 | Structured version Visualization version GIF version | ||
| Description: Lemma for the Partition-Equivalence Theorem pet2 38873. (Contributed by Peter Mazsa, 15-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
| Ref | Expression |
|---|---|
| eqvrelqseqdisj5 | ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (𝑆 ⋉ (◡ E ↾ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelqseqdisj3 38854 | . 2 ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (◡ E ↾ 𝐴)) | |
| 2 | disjimxrn 38772 | . 2 ⊢ ( Disj (◡ E ↾ 𝐴) → Disj (𝑆 ⋉ (◡ E ↾ 𝐴))) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (𝑆 ⋉ (◡ E ↾ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 E cep 5557 ◡ccnv 5658 ↾ cres 5661 / cqs 8723 ⋉ cxrn 38203 EqvRel weqvrel 38221 Disj wdisjALTV 38238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-eprel 5558 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-1st 7993 df-2nd 7994 df-ec 8726 df-qs 8730 df-xrn 38394 df-coss 38434 df-refrel 38535 df-cnvrefrel 38550 df-symrel 38567 df-trrel 38597 df-eqvrel 38608 df-funALTV 38705 df-disjALTV 38728 df-eldisj 38730 |
| This theorem is referenced by: pet2 38873 |
| Copyright terms: Public domain | W3C validator |