Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  petincnvepres2 Structured version   Visualization version   GIF version

Theorem petincnvepres2 38787
Description: A partition-equivalence theorem with intersection and general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
petincnvepres2 (( Disj (𝑅 ∩ ( E ↾ 𝐴)) ∧ (dom (𝑅 ∩ ( E ↾ 𝐴)) / (𝑅 ∩ ( E ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ∩ ( E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ ( E ↾ 𝐴)) / ≀ (𝑅 ∩ ( E ↾ 𝐴))) = 𝐴))

Proof of Theorem petincnvepres2
StepHypRef Expression
1 eqvrelqseqdisj4 38771 . 2 (( EqvRel ≀ (𝑅 ∩ ( E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ ( E ↾ 𝐴)) / ≀ (𝑅 ∩ ( E ↾ 𝐴))) = 𝐴) → Disj (𝑅 ∩ ( E ↾ 𝐴)))
21petlem 38751 1 (( Disj (𝑅 ∩ ( E ↾ 𝐴)) ∧ (dom (𝑅 ∩ ( E ↾ 𝐴)) / (𝑅 ∩ ( E ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ∩ ( E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ ( E ↾ 𝐴)) / ≀ (𝑅 ∩ ( E ↾ 𝐴))) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  cin 3923   E cep 5549  ccnv 5650  dom cdm 5651  cres 5653   / cqs 8712  ccoss 38120   EqvRel weqvrel 38137   Disj wdisjALTV 38154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-br 5117  df-opab 5179  df-id 5545  df-eprel 5550  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-ec 8715  df-qs 8719  df-coss 38350  df-refrel 38451  df-cnvrefrel 38466  df-symrel 38483  df-trrel 38513  df-eqvrel 38524  df-funALTV 38621  df-disjALTV 38644  df-eldisj 38646
This theorem is referenced by:  petincnvepres  38788
  Copyright terms: Public domain W3C validator