Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > petincnvepres2 | Structured version Visualization version GIF version |
Description: A partition-equivalence theorem with intersection and general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2021.) |
Ref | Expression |
---|---|
petincnvepres2 | ⊢ (( Disj (𝑅 ∩ (◡ E ↾ 𝐴)) ∧ (dom (𝑅 ∩ (◡ E ↾ 𝐴)) / (𝑅 ∩ (◡ E ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) / ≀ (𝑅 ∩ (◡ E ↾ 𝐴))) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelqseqdisj4 37046 | . 2 ⊢ (( EqvRel ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) / ≀ (𝑅 ∩ (◡ E ↾ 𝐴))) = 𝐴) → Disj (𝑅 ∩ (◡ E ↾ 𝐴))) | |
2 | 1 | petlem 37026 | 1 ⊢ (( Disj (𝑅 ∩ (◡ E ↾ 𝐴)) ∧ (dom (𝑅 ∩ (◡ E ↾ 𝐴)) / (𝑅 ∩ (◡ E ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ (◡ E ↾ 𝐴)) / ≀ (𝑅 ∩ (◡ E ↾ 𝐴))) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1539 ∩ cin 3891 E cep 5505 ◡ccnv 5599 dom cdm 5600 ↾ cres 5602 / cqs 8528 ≀ ccoss 36381 EqvRel weqvrel 36398 Disj wdisjALTV 36415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3331 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-id 5500 df-eprel 5506 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ec 8531 df-qs 8535 df-coss 36625 df-refrel 36726 df-cnvrefrel 36741 df-symrel 36758 df-trrel 36788 df-eqvrel 36799 df-funALTV 36896 df-disjALTV 36919 df-eldisj 36921 |
This theorem is referenced by: petincnvepres 37063 |
Copyright terms: Public domain | W3C validator |