![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelqseqdisj3 | Structured version Visualization version GIF version |
Description: Implication of eqvreldisj3 37696, lemma for the Member Partition Equivalence Theorem mpet3 37706. (Contributed by Peter Mazsa, 27-Oct-2020.) (Revised by Peter Mazsa, 24-Sep-2021.) |
Ref | Expression |
---|---|
eqvrelqseqdisj3 | ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (◡ E ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvreldisj3 37696 | . . 3 ⊢ ( EqvRel 𝑅 → Disj (◡ E ↾ (𝐵 / 𝑅))) | |
2 | 1 | adantr 482 | . 2 ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (◡ E ↾ (𝐵 / 𝑅))) |
3 | reseq2 5977 | . . . 4 ⊢ ((𝐵 / 𝑅) = 𝐴 → (◡ E ↾ (𝐵 / 𝑅)) = (◡ E ↾ 𝐴)) | |
4 | 3 | disjeqd 37606 | . . 3 ⊢ ((𝐵 / 𝑅) = 𝐴 → ( Disj (◡ E ↾ (𝐵 / 𝑅)) ↔ Disj (◡ E ↾ 𝐴))) |
5 | 4 | adantl 483 | . 2 ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → ( Disj (◡ E ↾ (𝐵 / 𝑅)) ↔ Disj (◡ E ↾ 𝐴))) |
6 | 2, 5 | mpbid 231 | 1 ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (◡ E ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 E cep 5580 ◡ccnv 5676 ↾ cres 5679 / cqs 8702 EqvRel weqvrel 37060 Disj wdisjALTV 37077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-eprel 5581 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ec 8705 df-qs 8709 df-coss 37281 df-refrel 37382 df-cnvrefrel 37397 df-symrel 37414 df-trrel 37444 df-eqvrel 37455 df-funALTV 37552 df-disjALTV 37575 df-eldisj 37577 |
This theorem is referenced by: eqvrelqseqdisj4 37702 eqvrelqseqdisj5 37703 mpet3 37706 cpet2 37707 |
Copyright terms: Public domain | W3C validator |