![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelqseqdisj3 | Structured version Visualization version GIF version |
Description: Implication of eqvreldisj3 38367, lemma for the Member Partition Equivalence Theorem mpet3 38377. (Contributed by Peter Mazsa, 27-Oct-2020.) (Revised by Peter Mazsa, 24-Sep-2021.) |
Ref | Expression |
---|---|
eqvrelqseqdisj3 | ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (◡ E ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvreldisj3 38367 | . . 3 ⊢ ( EqvRel 𝑅 → Disj (◡ E ↾ (𝐵 / 𝑅))) | |
2 | 1 | adantr 479 | . 2 ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (◡ E ↾ (𝐵 / 𝑅))) |
3 | reseq2 5979 | . . . 4 ⊢ ((𝐵 / 𝑅) = 𝐴 → (◡ E ↾ (𝐵 / 𝑅)) = (◡ E ↾ 𝐴)) | |
4 | 3 | disjeqd 38277 | . . 3 ⊢ ((𝐵 / 𝑅) = 𝐴 → ( Disj (◡ E ↾ (𝐵 / 𝑅)) ↔ Disj (◡ E ↾ 𝐴))) |
5 | 4 | adantl 480 | . 2 ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → ( Disj (◡ E ↾ (𝐵 / 𝑅)) ↔ Disj (◡ E ↾ 𝐴))) |
6 | 2, 5 | mpbid 231 | 1 ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (◡ E ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 E cep 5580 ◡ccnv 5676 ↾ cres 5679 / cqs 8722 EqvRel weqvrel 37735 Disj wdisjALTV 37752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-id 5575 df-eprel 5581 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ec 8725 df-qs 8729 df-coss 37952 df-refrel 38053 df-cnvrefrel 38068 df-symrel 38085 df-trrel 38115 df-eqvrel 38126 df-funALTV 38223 df-disjALTV 38246 df-eldisj 38248 |
This theorem is referenced by: eqvrelqseqdisj4 38373 eqvrelqseqdisj5 38374 mpet3 38377 cpet2 38378 |
Copyright terms: Public domain | W3C validator |