![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelqseqdisj3 | Structured version Visualization version GIF version |
Description: Implication of eqvreldisj3 38235, lemma for the Member Partition Equivalence Theorem mpet3 38245. (Contributed by Peter Mazsa, 27-Oct-2020.) (Revised by Peter Mazsa, 24-Sep-2021.) |
Ref | Expression |
---|---|
eqvrelqseqdisj3 | ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (◡ E ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvreldisj3 38235 | . . 3 ⊢ ( EqvRel 𝑅 → Disj (◡ E ↾ (𝐵 / 𝑅))) | |
2 | 1 | adantr 480 | . 2 ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (◡ E ↾ (𝐵 / 𝑅))) |
3 | reseq2 5974 | . . . 4 ⊢ ((𝐵 / 𝑅) = 𝐴 → (◡ E ↾ (𝐵 / 𝑅)) = (◡ E ↾ 𝐴)) | |
4 | 3 | disjeqd 38145 | . . 3 ⊢ ((𝐵 / 𝑅) = 𝐴 → ( Disj (◡ E ↾ (𝐵 / 𝑅)) ↔ Disj (◡ E ↾ 𝐴))) |
5 | 4 | adantl 481 | . 2 ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → ( Disj (◡ E ↾ (𝐵 / 𝑅)) ↔ Disj (◡ E ↾ 𝐴))) |
6 | 2, 5 | mpbid 231 | 1 ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (◡ E ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 E cep 5575 ◡ccnv 5671 ↾ cres 5674 / cqs 8717 EqvRel weqvrel 37600 Disj wdisjALTV 37617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-id 5570 df-eprel 5576 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ec 8720 df-qs 8724 df-coss 37820 df-refrel 37921 df-cnvrefrel 37936 df-symrel 37953 df-trrel 37983 df-eqvrel 37994 df-funALTV 38091 df-disjALTV 38114 df-eldisj 38116 |
This theorem is referenced by: eqvrelqseqdisj4 38241 eqvrelqseqdisj5 38242 mpet3 38245 cpet2 38246 |
Copyright terms: Public domain | W3C validator |