Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelqseqdisj3 Structured version   Visualization version   GIF version

Theorem eqvrelqseqdisj3 38787
Description: Implication of eqvreldisj3 38782, lemma for the Member Partition Equivalence Theorem mpet3 38792. (Contributed by Peter Mazsa, 27-Oct-2020.) (Revised by Peter Mazsa, 24-Sep-2021.)
Assertion
Ref Expression
eqvrelqseqdisj3 (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj ( E ↾ 𝐴))

Proof of Theorem eqvrelqseqdisj3
StepHypRef Expression
1 eqvreldisj3 38782 . . 3 ( EqvRel 𝑅 → Disj ( E ↾ (𝐵 / 𝑅)))
21adantr 480 . 2 (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj ( E ↾ (𝐵 / 𝑅)))
3 reseq2 6004 . . . 4 ((𝐵 / 𝑅) = 𝐴 → ( E ↾ (𝐵 / 𝑅)) = ( E ↾ 𝐴))
43disjeqd 38692 . . 3 ((𝐵 / 𝑅) = 𝐴 → ( Disj ( E ↾ (𝐵 / 𝑅)) ↔ Disj ( E ↾ 𝐴)))
54adantl 481 . 2 (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → ( Disj ( E ↾ (𝐵 / 𝑅)) ↔ Disj ( E ↾ 𝐴)))
62, 5mpbid 232 1 (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj ( E ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537   E cep 5598  ccnv 5699  cres 5702   / cqs 8762   EqvRel weqvrel 38152   Disj wdisjALTV 38169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-eprel 5599  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765  df-qs 8769  df-coss 38367  df-refrel 38468  df-cnvrefrel 38483  df-symrel 38500  df-trrel 38530  df-eqvrel 38541  df-funALTV 38638  df-disjALTV 38661  df-eldisj 38663
This theorem is referenced by:  eqvrelqseqdisj4  38788  eqvrelqseqdisj5  38789  mpet3  38792  cpet2  38793
  Copyright terms: Public domain W3C validator