Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelqseqdisj3 Structured version   Visualization version   GIF version

Theorem eqvrelqseqdisj3 38372
Description: Implication of eqvreldisj3 38367, lemma for the Member Partition Equivalence Theorem mpet3 38377. (Contributed by Peter Mazsa, 27-Oct-2020.) (Revised by Peter Mazsa, 24-Sep-2021.)
Assertion
Ref Expression
eqvrelqseqdisj3 (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj ( E ↾ 𝐴))

Proof of Theorem eqvrelqseqdisj3
StepHypRef Expression
1 eqvreldisj3 38367 . . 3 ( EqvRel 𝑅 → Disj ( E ↾ (𝐵 / 𝑅)))
21adantr 479 . 2 (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj ( E ↾ (𝐵 / 𝑅)))
3 reseq2 5979 . . . 4 ((𝐵 / 𝑅) = 𝐴 → ( E ↾ (𝐵 / 𝑅)) = ( E ↾ 𝐴))
43disjeqd 38277 . . 3 ((𝐵 / 𝑅) = 𝐴 → ( Disj ( E ↾ (𝐵 / 𝑅)) ↔ Disj ( E ↾ 𝐴)))
54adantl 480 . 2 (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → ( Disj ( E ↾ (𝐵 / 𝑅)) ↔ Disj ( E ↾ 𝐴)))
62, 5mpbid 231 1 (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj ( E ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533   E cep 5580  ccnv 5676  cres 5679   / cqs 8722   EqvRel weqvrel 37735   Disj wdisjALTV 37752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-rab 3420  df-v 3465  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-id 5575  df-eprel 5581  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ec 8725  df-qs 8729  df-coss 37952  df-refrel 38053  df-cnvrefrel 38068  df-symrel 38085  df-trrel 38115  df-eqvrel 38126  df-funALTV 38223  df-disjALTV 38246  df-eldisj 38248
This theorem is referenced by:  eqvrelqseqdisj4  38373  eqvrelqseqdisj5  38374  mpet3  38377  cpet2  38378
  Copyright terms: Public domain W3C validator