MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupthf1o Structured version   Visualization version   GIF version

Theorem eupthf1o 30148
Description: The 𝐹 function in an Eulerian path is a bijection from a half-open range of nonnegative integers to the set of edges. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.)
Hypothesis
Ref Expression
eupths.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
eupthf1o (𝐹(EulerPaths‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)

Proof of Theorem eupthf1o
StepHypRef Expression
1 eupths.i . . 3 𝐼 = (iEdg‘𝐺)
21eupthi 30147 . 2 (𝐹(EulerPaths‘𝐺)𝑃 → (𝐹(Walks‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼))
32simprd 495 1 (𝐹(EulerPaths‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   class class class wbr 5092  dom cdm 5619  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  0cc0 11009  ..^cfzo 13557  chash 14237  iEdgciedg 28942  Walkscwlks 29542  EulerPathsceupth 30141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-wlks 29545  df-trls 29636  df-eupth 30142
This theorem is referenced by:  eupthfi  30149  eupthvdres  30179  eucrctshift  30187
  Copyright terms: Public domain W3C validator