| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eupthvdres | Structured version Visualization version GIF version | ||
| Description: Formerly part of proof of eupth2 30168: The vertex degree remains the same for all vertices if the edges are restricted to the edges of an Eulerian path. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
| Ref | Expression |
|---|---|
| eupthvdres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| eupthvdres.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| eupthvdres.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| eupthvdres.f | ⊢ (𝜑 → Fun 𝐼) |
| eupthvdres.p | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
| eupthvdres.h | ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 |
| Ref | Expression |
|---|---|
| eupthvdres | ⊢ (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupthvdres.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 2 | eupthvdres.h | . . . 4 ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 | |
| 3 | opex 5424 | . . . 4 ⊢ 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 ∈ V | |
| 4 | 2, 3 | eqeltri 2824 | . . 3 ⊢ 𝐻 ∈ V |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐻 ∈ V) |
| 6 | 2 | fveq2i 6861 | . . . 4 ⊢ (Vtx‘𝐻) = (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) |
| 7 | eupthvdres.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 8 | 7 | fvexi 6872 | . . . . . . 7 ⊢ 𝑉 ∈ V |
| 9 | eupthvdres.i | . . . . . . . . 9 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 10 | 9 | fvexi 6872 | . . . . . . . 8 ⊢ 𝐼 ∈ V |
| 11 | 10 | resex 6000 | . . . . . . 7 ⊢ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V |
| 12 | 8, 11 | pm3.2i 470 | . . . . . 6 ⊢ (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) |
| 13 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V)) |
| 14 | opvtxfv 28931 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) → (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = 𝑉) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝜑 → (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = 𝑉) |
| 16 | 6, 15 | eqtrid 2776 | . . 3 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| 17 | 16, 7 | eqtrdi 2780 | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = (Vtx‘𝐺)) |
| 18 | 2 | fveq2i 6861 | . . . . 5 ⊢ (iEdg‘𝐻) = (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) |
| 19 | opiedgfv 28934 | . . . . . 6 ⊢ ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) → (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))) | |
| 20 | 13, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))) |
| 21 | 18, 20 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))) |
| 22 | eupthvdres.p | . . . . . 6 ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) | |
| 23 | 9 | eupthf1o 30133 | . . . . . 6 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼) |
| 24 | f1ofo 6807 | . . . . . 6 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 → 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) | |
| 25 | foima 6777 | . . . . . 6 ⊢ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 → (𝐹 “ (0..^(♯‘𝐹))) = dom 𝐼) | |
| 26 | 22, 23, 24, 25 | 4syl 19 | . . . . 5 ⊢ (𝜑 → (𝐹 “ (0..^(♯‘𝐹))) = dom 𝐼) |
| 27 | 26 | reseq2d 5950 | . . . 4 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) = (𝐼 ↾ dom 𝐼)) |
| 28 | eupthvdres.f | . . . . . 6 ⊢ (𝜑 → Fun 𝐼) | |
| 29 | 28 | funfnd 6547 | . . . . 5 ⊢ (𝜑 → 𝐼 Fn dom 𝐼) |
| 30 | fnresdm 6637 | . . . . 5 ⊢ (𝐼 Fn dom 𝐼 → (𝐼 ↾ dom 𝐼) = 𝐼) | |
| 31 | 29, 30 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 ↾ dom 𝐼) = 𝐼) |
| 32 | 21, 27, 31 | 3eqtrd 2768 | . . 3 ⊢ (𝜑 → (iEdg‘𝐻) = 𝐼) |
| 33 | 32, 9 | eqtrdi 2780 | . 2 ⊢ (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺)) |
| 34 | 1, 5, 17, 33 | vtxdeqd 29405 | 1 ⊢ (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cop 4595 class class class wbr 5107 dom cdm 5638 ↾ cres 5640 “ cima 5641 Fun wfun 6505 Fn wfn 6506 –onto→wfo 6509 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ..^cfzo 13615 ♯chash 14295 Vtxcvtx 28923 iEdgciedg 28924 VtxDegcvtxdg 29393 EulerPathsceupth 30126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-1st 7968 df-2nd 7969 df-vtx 28925 df-iedg 28926 df-vtxdg 29394 df-wlks 29527 df-trls 29620 df-eupth 30127 |
| This theorem is referenced by: eupth2 30168 |
| Copyright terms: Public domain | W3C validator |