Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eupthvdres | Structured version Visualization version GIF version |
Description: Formerly part of proof of eupth2 28504: The vertex degree remains the same for all vertices if the edges are restricted to the edges of an Eulerian path. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
Ref | Expression |
---|---|
eupthvdres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
eupthvdres.i | ⊢ 𝐼 = (iEdg‘𝐺) |
eupthvdres.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
eupthvdres.f | ⊢ (𝜑 → Fun 𝐼) |
eupthvdres.p | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
eupthvdres.h | ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 |
Ref | Expression |
---|---|
eupthvdres | ⊢ (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupthvdres.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
2 | eupthvdres.h | . . . 4 ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 | |
3 | opex 5373 | . . . 4 ⊢ 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 ∈ V | |
4 | 2, 3 | eqeltri 2835 | . . 3 ⊢ 𝐻 ∈ V |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐻 ∈ V) |
6 | 2 | fveq2i 6759 | . . . 4 ⊢ (Vtx‘𝐻) = (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) |
7 | eupthvdres.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | 7 | fvexi 6770 | . . . . . . 7 ⊢ 𝑉 ∈ V |
9 | eupthvdres.i | . . . . . . . . 9 ⊢ 𝐼 = (iEdg‘𝐺) | |
10 | 9 | fvexi 6770 | . . . . . . . 8 ⊢ 𝐼 ∈ V |
11 | 10 | resex 5928 | . . . . . . 7 ⊢ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V |
12 | 8, 11 | pm3.2i 470 | . . . . . 6 ⊢ (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) |
13 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V)) |
14 | opvtxfv 27277 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) → (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = 𝑉) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝜑 → (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = 𝑉) |
16 | 6, 15 | syl5eq 2791 | . . 3 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
17 | 16, 7 | eqtrdi 2795 | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = (Vtx‘𝐺)) |
18 | 2 | fveq2i 6759 | . . . . 5 ⊢ (iEdg‘𝐻) = (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) |
19 | opiedgfv 27280 | . . . . . 6 ⊢ ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) → (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))) | |
20 | 13, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))) |
21 | 18, 20 | syl5eq 2791 | . . . 4 ⊢ (𝜑 → (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))) |
22 | eupthvdres.p | . . . . . . 7 ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) | |
23 | 9 | eupthf1o 28469 | . . . . . . 7 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼) |
24 | 22, 23 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼) |
25 | f1ofo 6707 | . . . . . 6 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 → 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) | |
26 | foima 6677 | . . . . . 6 ⊢ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 → (𝐹 “ (0..^(♯‘𝐹))) = dom 𝐼) | |
27 | 24, 25, 26 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝐹 “ (0..^(♯‘𝐹))) = dom 𝐼) |
28 | 27 | reseq2d 5880 | . . . 4 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) = (𝐼 ↾ dom 𝐼)) |
29 | eupthvdres.f | . . . . . 6 ⊢ (𝜑 → Fun 𝐼) | |
30 | 29 | funfnd 6449 | . . . . 5 ⊢ (𝜑 → 𝐼 Fn dom 𝐼) |
31 | fnresdm 6535 | . . . . 5 ⊢ (𝐼 Fn dom 𝐼 → (𝐼 ↾ dom 𝐼) = 𝐼) | |
32 | 30, 31 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 ↾ dom 𝐼) = 𝐼) |
33 | 21, 28, 32 | 3eqtrd 2782 | . . 3 ⊢ (𝜑 → (iEdg‘𝐻) = 𝐼) |
34 | 33, 9 | eqtrdi 2795 | . 2 ⊢ (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺)) |
35 | 1, 5, 17, 34 | vtxdeqd 27747 | 1 ⊢ (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 class class class wbr 5070 dom cdm 5580 ↾ cres 5582 “ cima 5583 Fun wfun 6412 Fn wfn 6413 –onto→wfo 6416 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ..^cfzo 13311 ♯chash 13972 Vtxcvtx 27269 iEdgciedg 27270 VtxDegcvtxdg 27735 EulerPathsceupth 28462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-vtx 27271 df-iedg 27272 df-vtxdg 27736 df-wlks 27869 df-trls 27962 df-eupth 28463 |
This theorem is referenced by: eupth2 28504 |
Copyright terms: Public domain | W3C validator |