Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eupthvdres | Structured version Visualization version GIF version |
Description: Formerly part of proof of eupth2 28603: The vertex degree remains the same for all vertices if the edges are restricted to the edges of an Eulerian path. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
Ref | Expression |
---|---|
eupthvdres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
eupthvdres.i | ⊢ 𝐼 = (iEdg‘𝐺) |
eupthvdres.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
eupthvdres.f | ⊢ (𝜑 → Fun 𝐼) |
eupthvdres.p | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
eupthvdres.h | ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 |
Ref | Expression |
---|---|
eupthvdres | ⊢ (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupthvdres.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
2 | eupthvdres.h | . . . 4 ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 | |
3 | opex 5379 | . . . 4 ⊢ 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 ∈ V | |
4 | 2, 3 | eqeltri 2835 | . . 3 ⊢ 𝐻 ∈ V |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐻 ∈ V) |
6 | 2 | fveq2i 6777 | . . . 4 ⊢ (Vtx‘𝐻) = (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) |
7 | eupthvdres.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | 7 | fvexi 6788 | . . . . . . 7 ⊢ 𝑉 ∈ V |
9 | eupthvdres.i | . . . . . . . . 9 ⊢ 𝐼 = (iEdg‘𝐺) | |
10 | 9 | fvexi 6788 | . . . . . . . 8 ⊢ 𝐼 ∈ V |
11 | 10 | resex 5939 | . . . . . . 7 ⊢ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V |
12 | 8, 11 | pm3.2i 471 | . . . . . 6 ⊢ (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) |
13 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V)) |
14 | opvtxfv 27374 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) → (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = 𝑉) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝜑 → (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = 𝑉) |
16 | 6, 15 | eqtrid 2790 | . . 3 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
17 | 16, 7 | eqtrdi 2794 | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = (Vtx‘𝐺)) |
18 | 2 | fveq2i 6777 | . . . . 5 ⊢ (iEdg‘𝐻) = (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) |
19 | opiedgfv 27377 | . . . . . 6 ⊢ ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) → (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))) | |
20 | 13, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))) |
21 | 18, 20 | eqtrid 2790 | . . . 4 ⊢ (𝜑 → (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))) |
22 | eupthvdres.p | . . . . . . 7 ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) | |
23 | 9 | eupthf1o 28568 | . . . . . . 7 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼) |
24 | 22, 23 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼) |
25 | f1ofo 6723 | . . . . . 6 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 → 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) | |
26 | foima 6693 | . . . . . 6 ⊢ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 → (𝐹 “ (0..^(♯‘𝐹))) = dom 𝐼) | |
27 | 24, 25, 26 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝐹 “ (0..^(♯‘𝐹))) = dom 𝐼) |
28 | 27 | reseq2d 5891 | . . . 4 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) = (𝐼 ↾ dom 𝐼)) |
29 | eupthvdres.f | . . . . . 6 ⊢ (𝜑 → Fun 𝐼) | |
30 | 29 | funfnd 6465 | . . . . 5 ⊢ (𝜑 → 𝐼 Fn dom 𝐼) |
31 | fnresdm 6551 | . . . . 5 ⊢ (𝐼 Fn dom 𝐼 → (𝐼 ↾ dom 𝐼) = 𝐼) | |
32 | 30, 31 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 ↾ dom 𝐼) = 𝐼) |
33 | 21, 28, 32 | 3eqtrd 2782 | . . 3 ⊢ (𝜑 → (iEdg‘𝐻) = 𝐼) |
34 | 33, 9 | eqtrdi 2794 | . 2 ⊢ (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺)) |
35 | 1, 5, 17, 34 | vtxdeqd 27844 | 1 ⊢ (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 〈cop 4567 class class class wbr 5074 dom cdm 5589 ↾ cres 5591 “ cima 5592 Fun wfun 6427 Fn wfn 6428 –onto→wfo 6431 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 0cc0 10871 ..^cfzo 13382 ♯chash 14044 Vtxcvtx 27366 iEdgciedg 27367 VtxDegcvtxdg 27832 EulerPathsceupth 28561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-1st 7831 df-2nd 7832 df-vtx 27368 df-iedg 27369 df-vtxdg 27833 df-wlks 27966 df-trls 28060 df-eupth 28562 |
This theorem is referenced by: eupth2 28603 |
Copyright terms: Public domain | W3C validator |