| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eupthvdres | Structured version Visualization version GIF version | ||
| Description: Formerly part of proof of eupth2 30219: The vertex degree remains the same for all vertices if the edges are restricted to the edges of an Eulerian path. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
| Ref | Expression |
|---|---|
| eupthvdres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| eupthvdres.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| eupthvdres.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| eupthvdres.f | ⊢ (𝜑 → Fun 𝐼) |
| eupthvdres.p | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
| eupthvdres.h | ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 |
| Ref | Expression |
|---|---|
| eupthvdres | ⊢ (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupthvdres.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 2 | eupthvdres.h | . . . 4 ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 | |
| 3 | opex 5402 | . . . 4 ⊢ 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 ∈ V | |
| 4 | 2, 3 | eqeltri 2827 | . . 3 ⊢ 𝐻 ∈ V |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐻 ∈ V) |
| 6 | 2 | fveq2i 6825 | . . . 4 ⊢ (Vtx‘𝐻) = (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) |
| 7 | eupthvdres.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 8 | 7 | fvexi 6836 | . . . . . . 7 ⊢ 𝑉 ∈ V |
| 9 | eupthvdres.i | . . . . . . . . 9 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 10 | 9 | fvexi 6836 | . . . . . . . 8 ⊢ 𝐼 ∈ V |
| 11 | 10 | resex 5977 | . . . . . . 7 ⊢ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V |
| 12 | 8, 11 | pm3.2i 470 | . . . . . 6 ⊢ (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) |
| 13 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V)) |
| 14 | opvtxfv 28982 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) → (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = 𝑉) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝜑 → (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = 𝑉) |
| 16 | 6, 15 | eqtrid 2778 | . . 3 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| 17 | 16, 7 | eqtrdi 2782 | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = (Vtx‘𝐺)) |
| 18 | 2 | fveq2i 6825 | . . . . 5 ⊢ (iEdg‘𝐻) = (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) |
| 19 | opiedgfv 28985 | . . . . . 6 ⊢ ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) → (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))) | |
| 20 | 13, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))) |
| 21 | 18, 20 | eqtrid 2778 | . . . 4 ⊢ (𝜑 → (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))) |
| 22 | eupthvdres.p | . . . . . 6 ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) | |
| 23 | 9 | eupthf1o 30184 | . . . . . 6 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼) |
| 24 | f1ofo 6770 | . . . . . 6 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 → 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) | |
| 25 | foima 6740 | . . . . . 6 ⊢ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 → (𝐹 “ (0..^(♯‘𝐹))) = dom 𝐼) | |
| 26 | 22, 23, 24, 25 | 4syl 19 | . . . . 5 ⊢ (𝜑 → (𝐹 “ (0..^(♯‘𝐹))) = dom 𝐼) |
| 27 | 26 | reseq2d 5927 | . . . 4 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) = (𝐼 ↾ dom 𝐼)) |
| 28 | eupthvdres.f | . . . . . 6 ⊢ (𝜑 → Fun 𝐼) | |
| 29 | 28 | funfnd 6512 | . . . . 5 ⊢ (𝜑 → 𝐼 Fn dom 𝐼) |
| 30 | fnresdm 6600 | . . . . 5 ⊢ (𝐼 Fn dom 𝐼 → (𝐼 ↾ dom 𝐼) = 𝐼) | |
| 31 | 29, 30 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 ↾ dom 𝐼) = 𝐼) |
| 32 | 21, 27, 31 | 3eqtrd 2770 | . . 3 ⊢ (𝜑 → (iEdg‘𝐻) = 𝐼) |
| 33 | 32, 9 | eqtrdi 2782 | . 2 ⊢ (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺)) |
| 34 | 1, 5, 17, 33 | vtxdeqd 29456 | 1 ⊢ (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 class class class wbr 5089 dom cdm 5614 ↾ cres 5616 “ cima 5617 Fun wfun 6475 Fn wfn 6476 –onto→wfo 6479 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 0cc0 11006 ..^cfzo 13554 ♯chash 14237 Vtxcvtx 28974 iEdgciedg 28975 VtxDegcvtxdg 29444 EulerPathsceupth 30177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-1st 7921 df-2nd 7922 df-vtx 28976 df-iedg 28977 df-vtxdg 29445 df-wlks 29578 df-trls 29669 df-eupth 30178 |
| This theorem is referenced by: eupth2 30219 |
| Copyright terms: Public domain | W3C validator |