MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupthvdres Structured version   Visualization version   GIF version

Theorem eupthvdres 28017
Description: Formerly part of proof of eupth2 28021: The vertex degree remains the same for all vertices if the edges are restricted to the edges of an Eulerian path. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
eupthvdres.v 𝑉 = (Vtx‘𝐺)
eupthvdres.i 𝐼 = (iEdg‘𝐺)
eupthvdres.g (𝜑𝐺𝑊)
eupthvdres.f (𝜑 → Fun 𝐼)
eupthvdres.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupthvdres.h 𝐻 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩
Assertion
Ref Expression
eupthvdres (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺))

Proof of Theorem eupthvdres
StepHypRef Expression
1 eupthvdres.g . 2 (𝜑𝐺𝑊)
2 eupthvdres.h . . . 4 𝐻 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩
3 opex 5359 . . . 4 𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩ ∈ V
42, 3eqeltri 2912 . . 3 𝐻 ∈ V
54a1i 11 . 2 (𝜑𝐻 ∈ V)
62fveq2i 6676 . . . 4 (Vtx‘𝐻) = (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)
7 eupthvdres.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
87fvexi 6687 . . . . . . 7 𝑉 ∈ V
9 eupthvdres.i . . . . . . . . 9 𝐼 = (iEdg‘𝐺)
109fvexi 6687 . . . . . . . 8 𝐼 ∈ V
1110resex 5902 . . . . . . 7 (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V
128, 11pm3.2i 473 . . . . . 6 (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V)
1312a1i 11 . . . . 5 (𝜑 → (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V))
14 opvtxfv 26792 . . . . 5 ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) → (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩) = 𝑉)
1513, 14syl 17 . . . 4 (𝜑 → (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩) = 𝑉)
166, 15syl5eq 2871 . . 3 (𝜑 → (Vtx‘𝐻) = 𝑉)
1716, 7syl6eq 2875 . 2 (𝜑 → (Vtx‘𝐻) = (Vtx‘𝐺))
182fveq2i 6676 . . . . 5 (iEdg‘𝐻) = (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)
19 opiedgfv 26795 . . . . . 6 ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) → (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))))
2013, 19syl 17 . . . . 5 (𝜑 → (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))))
2118, 20syl5eq 2871 . . . 4 (𝜑 → (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))))
22 eupthvdres.p . . . . . . 7 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
239eupthf1o 27986 . . . . . . 7 (𝐹(EulerPaths‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)
2422, 23syl 17 . . . . . 6 (𝜑𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)
25 f1ofo 6625 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)
26 foima 6598 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 → (𝐹 “ (0..^(♯‘𝐹))) = dom 𝐼)
2724, 25, 263syl 18 . . . . 5 (𝜑 → (𝐹 “ (0..^(♯‘𝐹))) = dom 𝐼)
2827reseq2d 5856 . . . 4 (𝜑 → (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) = (𝐼 ↾ dom 𝐼))
29 eupthvdres.f . . . . . 6 (𝜑 → Fun 𝐼)
3029funfnd 6389 . . . . 5 (𝜑𝐼 Fn dom 𝐼)
31 fnresdm 6469 . . . . 5 (𝐼 Fn dom 𝐼 → (𝐼 ↾ dom 𝐼) = 𝐼)
3230, 31syl 17 . . . 4 (𝜑 → (𝐼 ↾ dom 𝐼) = 𝐼)
3321, 28, 323eqtrd 2863 . . 3 (𝜑 → (iEdg‘𝐻) = 𝐼)
3433, 9syl6eq 2875 . 2 (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺))
351, 5, 17, 34vtxdeqd 27262 1 (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  Vcvv 3497  cop 4576   class class class wbr 5069  dom cdm 5558  cres 5560  cima 5561  Fun wfun 6352   Fn wfn 6353  ontowfo 6356  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7159  0cc0 10540  ..^cfzo 13036  chash 13693  Vtxcvtx 26784  iEdgciedg 26785  VtxDegcvtxdg 27250  EulerPathsceupth 27979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-vtx 26786  df-iedg 26787  df-vtxdg 27251  df-wlks 27384  df-trls 27477  df-eupth 27980
This theorem is referenced by:  eupth2  28021
  Copyright terms: Public domain W3C validator