MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupthvdres Structured version   Visualization version   GIF version

Theorem eupthvdres 28500
Description: Formerly part of proof of eupth2 28504: The vertex degree remains the same for all vertices if the edges are restricted to the edges of an Eulerian path. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
eupthvdres.v 𝑉 = (Vtx‘𝐺)
eupthvdres.i 𝐼 = (iEdg‘𝐺)
eupthvdres.g (𝜑𝐺𝑊)
eupthvdres.f (𝜑 → Fun 𝐼)
eupthvdres.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupthvdres.h 𝐻 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩
Assertion
Ref Expression
eupthvdres (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺))

Proof of Theorem eupthvdres
StepHypRef Expression
1 eupthvdres.g . 2 (𝜑𝐺𝑊)
2 eupthvdres.h . . . 4 𝐻 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩
3 opex 5373 . . . 4 𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩ ∈ V
42, 3eqeltri 2835 . . 3 𝐻 ∈ V
54a1i 11 . 2 (𝜑𝐻 ∈ V)
62fveq2i 6759 . . . 4 (Vtx‘𝐻) = (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)
7 eupthvdres.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
87fvexi 6770 . . . . . . 7 𝑉 ∈ V
9 eupthvdres.i . . . . . . . . 9 𝐼 = (iEdg‘𝐺)
109fvexi 6770 . . . . . . . 8 𝐼 ∈ V
1110resex 5928 . . . . . . 7 (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V
128, 11pm3.2i 470 . . . . . 6 (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V)
1312a1i 11 . . . . 5 (𝜑 → (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V))
14 opvtxfv 27277 . . . . 5 ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) → (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩) = 𝑉)
1513, 14syl 17 . . . 4 (𝜑 → (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩) = 𝑉)
166, 15syl5eq 2791 . . 3 (𝜑 → (Vtx‘𝐻) = 𝑉)
1716, 7eqtrdi 2795 . 2 (𝜑 → (Vtx‘𝐻) = (Vtx‘𝐺))
182fveq2i 6759 . . . . 5 (iEdg‘𝐻) = (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩)
19 opiedgfv 27280 . . . . . 6 ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) → (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))))
2013, 19syl 17 . . . . 5 (𝜑 → (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))⟩) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))))
2118, 20syl5eq 2791 . . . 4 (𝜑 → (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))))
22 eupthvdres.p . . . . . . 7 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
239eupthf1o 28469 . . . . . . 7 (𝐹(EulerPaths‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)
2422, 23syl 17 . . . . . 6 (𝜑𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)
25 f1ofo 6707 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼)
26 foima 6677 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 → (𝐹 “ (0..^(♯‘𝐹))) = dom 𝐼)
2724, 25, 263syl 18 . . . . 5 (𝜑 → (𝐹 “ (0..^(♯‘𝐹))) = dom 𝐼)
2827reseq2d 5880 . . . 4 (𝜑 → (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) = (𝐼 ↾ dom 𝐼))
29 eupthvdres.f . . . . . 6 (𝜑 → Fun 𝐼)
3029funfnd 6449 . . . . 5 (𝜑𝐼 Fn dom 𝐼)
31 fnresdm 6535 . . . . 5 (𝐼 Fn dom 𝐼 → (𝐼 ↾ dom 𝐼) = 𝐼)
3230, 31syl 17 . . . 4 (𝜑 → (𝐼 ↾ dom 𝐼) = 𝐼)
3321, 28, 323eqtrd 2782 . . 3 (𝜑 → (iEdg‘𝐻) = 𝐼)
3433, 9eqtrdi 2795 . 2 (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺))
351, 5, 17, 34vtxdeqd 27747 1 (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564   class class class wbr 5070  dom cdm 5580  cres 5582  cima 5583  Fun wfun 6412   Fn wfn 6413  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  0cc0 10802  ..^cfzo 13311  chash 13972  Vtxcvtx 27269  iEdgciedg 27270  VtxDegcvtxdg 27735  EulerPathsceupth 28462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-vtx 27271  df-iedg 27272  df-vtxdg 27736  df-wlks 27869  df-trls 27962  df-eupth 28463
This theorem is referenced by:  eupth2  28504
  Copyright terms: Public domain W3C validator