| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eupthvdres | Structured version Visualization version GIF version | ||
| Description: Formerly part of proof of eupth2 30141: The vertex degree remains the same for all vertices if the edges are restricted to the edges of an Eulerian path. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
| Ref | Expression |
|---|---|
| eupthvdres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| eupthvdres.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| eupthvdres.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| eupthvdres.f | ⊢ (𝜑 → Fun 𝐼) |
| eupthvdres.p | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
| eupthvdres.h | ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 |
| Ref | Expression |
|---|---|
| eupthvdres | ⊢ (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupthvdres.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 2 | eupthvdres.h | . . . 4 ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 | |
| 3 | opex 5419 | . . . 4 ⊢ 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 ∈ V | |
| 4 | 2, 3 | eqeltri 2824 | . . 3 ⊢ 𝐻 ∈ V |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐻 ∈ V) |
| 6 | 2 | fveq2i 6843 | . . . 4 ⊢ (Vtx‘𝐻) = (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) |
| 7 | eupthvdres.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 8 | 7 | fvexi 6854 | . . . . . . 7 ⊢ 𝑉 ∈ V |
| 9 | eupthvdres.i | . . . . . . . . 9 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 10 | 9 | fvexi 6854 | . . . . . . . 8 ⊢ 𝐼 ∈ V |
| 11 | 10 | resex 5989 | . . . . . . 7 ⊢ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V |
| 12 | 8, 11 | pm3.2i 470 | . . . . . 6 ⊢ (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) |
| 13 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V)) |
| 14 | opvtxfv 28907 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) → (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = 𝑉) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝜑 → (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = 𝑉) |
| 16 | 6, 15 | eqtrid 2776 | . . 3 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| 17 | 16, 7 | eqtrdi 2780 | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = (Vtx‘𝐺)) |
| 18 | 2 | fveq2i 6843 | . . . . 5 ⊢ (iEdg‘𝐻) = (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) |
| 19 | opiedgfv 28910 | . . . . . 6 ⊢ ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) → (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))) | |
| 20 | 13, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))) |
| 21 | 18, 20 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))) |
| 22 | eupthvdres.p | . . . . . 6 ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) | |
| 23 | 9 | eupthf1o 30106 | . . . . . 6 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼) |
| 24 | f1ofo 6789 | . . . . . 6 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 → 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) | |
| 25 | foima 6759 | . . . . . 6 ⊢ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 → (𝐹 “ (0..^(♯‘𝐹))) = dom 𝐼) | |
| 26 | 22, 23, 24, 25 | 4syl 19 | . . . . 5 ⊢ (𝜑 → (𝐹 “ (0..^(♯‘𝐹))) = dom 𝐼) |
| 27 | 26 | reseq2d 5939 | . . . 4 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) = (𝐼 ↾ dom 𝐼)) |
| 28 | eupthvdres.f | . . . . . 6 ⊢ (𝜑 → Fun 𝐼) | |
| 29 | 28 | funfnd 6531 | . . . . 5 ⊢ (𝜑 → 𝐼 Fn dom 𝐼) |
| 30 | fnresdm 6619 | . . . . 5 ⊢ (𝐼 Fn dom 𝐼 → (𝐼 ↾ dom 𝐼) = 𝐼) | |
| 31 | 29, 30 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 ↾ dom 𝐼) = 𝐼) |
| 32 | 21, 27, 31 | 3eqtrd 2768 | . . 3 ⊢ (𝜑 → (iEdg‘𝐻) = 𝐼) |
| 33 | 32, 9 | eqtrdi 2780 | . 2 ⊢ (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺)) |
| 34 | 1, 5, 17, 33 | vtxdeqd 29381 | 1 ⊢ (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 〈cop 4591 class class class wbr 5102 dom cdm 5631 ↾ cres 5633 “ cima 5634 Fun wfun 6493 Fn wfn 6494 –onto→wfo 6497 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 0cc0 11044 ..^cfzo 13591 ♯chash 14271 Vtxcvtx 28899 iEdgciedg 28900 VtxDegcvtxdg 29369 EulerPathsceupth 30099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-1st 7947 df-2nd 7948 df-vtx 28901 df-iedg 28902 df-vtxdg 29370 df-wlks 29503 df-trls 29594 df-eupth 30100 |
| This theorem is referenced by: eupth2 30141 |
| Copyright terms: Public domain | W3C validator |