![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eupthvdres | Structured version Visualization version GIF version |
Description: Formerly part of proof of eupth2 30271: The vertex degree remains the same for all vertices if the edges are restricted to the edges of an Eulerian path. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
Ref | Expression |
---|---|
eupthvdres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
eupthvdres.i | ⊢ 𝐼 = (iEdg‘𝐺) |
eupthvdres.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
eupthvdres.f | ⊢ (𝜑 → Fun 𝐼) |
eupthvdres.p | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
eupthvdres.h | ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 |
Ref | Expression |
---|---|
eupthvdres | ⊢ (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupthvdres.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
2 | eupthvdres.h | . . . 4 ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 | |
3 | opex 5484 | . . . 4 ⊢ 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉 ∈ V | |
4 | 2, 3 | eqeltri 2840 | . . 3 ⊢ 𝐻 ∈ V |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐻 ∈ V) |
6 | 2 | fveq2i 6923 | . . . 4 ⊢ (Vtx‘𝐻) = (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) |
7 | eupthvdres.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | 7 | fvexi 6934 | . . . . . . 7 ⊢ 𝑉 ∈ V |
9 | eupthvdres.i | . . . . . . . . 9 ⊢ 𝐼 = (iEdg‘𝐺) | |
10 | 9 | fvexi 6934 | . . . . . . . 8 ⊢ 𝐼 ∈ V |
11 | 10 | resex 6058 | . . . . . . 7 ⊢ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V |
12 | 8, 11 | pm3.2i 470 | . . . . . 6 ⊢ (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) |
13 | 12 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V)) |
14 | opvtxfv 29039 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) → (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = 𝑉) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝜑 → (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = 𝑉) |
16 | 6, 15 | eqtrid 2792 | . . 3 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
17 | 16, 7 | eqtrdi 2796 | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = (Vtx‘𝐺)) |
18 | 2 | fveq2i 6923 | . . . . 5 ⊢ (iEdg‘𝐻) = (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) |
19 | opiedgfv 29042 | . . . . . 6 ⊢ ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) ∈ V) → (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))) | |
20 | 13, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))〉) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))) |
21 | 18, 20 | eqtrid 2792 | . . . 4 ⊢ (𝜑 → (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹))))) |
22 | eupthvdres.p | . . . . . 6 ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) | |
23 | 9 | eupthf1o 30236 | . . . . . 6 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼) |
24 | f1ofo 6869 | . . . . . 6 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 → 𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼) | |
25 | foima 6839 | . . . . . 6 ⊢ (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 → (𝐹 “ (0..^(♯‘𝐹))) = dom 𝐼) | |
26 | 22, 23, 24, 25 | 4syl 19 | . . . . 5 ⊢ (𝜑 → (𝐹 “ (0..^(♯‘𝐹))) = dom 𝐼) |
27 | 26 | reseq2d 6009 | . . . 4 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0..^(♯‘𝐹)))) = (𝐼 ↾ dom 𝐼)) |
28 | eupthvdres.f | . . . . . 6 ⊢ (𝜑 → Fun 𝐼) | |
29 | 28 | funfnd 6609 | . . . . 5 ⊢ (𝜑 → 𝐼 Fn dom 𝐼) |
30 | fnresdm 6699 | . . . . 5 ⊢ (𝐼 Fn dom 𝐼 → (𝐼 ↾ dom 𝐼) = 𝐼) | |
31 | 29, 30 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 ↾ dom 𝐼) = 𝐼) |
32 | 21, 27, 31 | 3eqtrd 2784 | . . 3 ⊢ (𝜑 → (iEdg‘𝐻) = 𝐼) |
33 | 32, 9 | eqtrdi 2796 | . 2 ⊢ (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺)) |
34 | 1, 5, 17, 33 | vtxdeqd 29513 | 1 ⊢ (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 class class class wbr 5166 dom cdm 5700 ↾ cres 5702 “ cima 5703 Fun wfun 6567 Fn wfn 6568 –onto→wfo 6571 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ..^cfzo 13711 ♯chash 14379 Vtxcvtx 29031 iEdgciedg 29032 VtxDegcvtxdg 29501 EulerPathsceupth 30229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-1st 8030 df-2nd 8031 df-vtx 29033 df-iedg 29034 df-vtxdg 29502 df-wlks 29635 df-trls 29728 df-eupth 30230 |
This theorem is referenced by: eupth2 30271 |
Copyright terms: Public domain | W3C validator |