MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupthi Structured version   Visualization version   GIF version

Theorem eupthi 30026
Description: Properties of an Eulerian path. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.)
Hypothesis
Ref Expression
eupths.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
eupthi (𝐹(EulerPaths‘𝐺)𝑃 → (𝐹(Walks‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼))

Proof of Theorem eupthi
StepHypRef Expression
1 eupths.i . . 3 𝐼 = (iEdg‘𝐺)
21iseupthf1o 30025 . 2 (𝐹(EulerPaths‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼))
32biimpi 215 1 (𝐹(EulerPaths‘𝐺)𝑃 → (𝐹(Walks‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534   class class class wbr 5148  dom cdm 5678  1-1-ontowf1o 6547  cfv 6548  (class class class)co 7420  0cc0 11139  ..^cfzo 13660  chash 14322  iEdgciedg 28823  Walkscwlks 29423  EulerPathsceupth 30020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-wlks 29426  df-trls 29519  df-eupth 30021
This theorem is referenced by:  eupthf1o  30027  eupthseg  30029  eupthcl  30033  eupthp1  30039
  Copyright terms: Public domain W3C validator