| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > snelsingles | Structured version Visualization version GIF version | ||
| Description: A singleton is a member of the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| snelsingles.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snelsingles | ⊢ {𝐴} ∈ Singletons |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snelsingles.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | isset 3464 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | eqcom 2737 | . . . . . 6 ⊢ (𝑥 = 𝐴 ↔ 𝐴 = 𝑥) | |
| 4 | 3 | exbii 1848 | . . . . 5 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥 𝐴 = 𝑥) |
| 5 | 2, 4 | bitri 275 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝐴 = 𝑥) |
| 6 | 1, 5 | mpbi 230 | . . 3 ⊢ ∃𝑥 𝐴 = 𝑥 |
| 7 | sneq 4602 | . . 3 ⊢ (𝐴 = 𝑥 → {𝐴} = {𝑥}) | |
| 8 | 6, 7 | eximii 1837 | . 2 ⊢ ∃𝑥{𝐴} = {𝑥} |
| 9 | elsingles 35913 | . 2 ⊢ ({𝐴} ∈ Singletons ↔ ∃𝑥{𝐴} = {𝑥}) | |
| 10 | 8, 9 | mpbir 231 | 1 ⊢ {𝐴} ∈ Singletons |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 {csn 4592 Singletons csingles 35834 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-symdif 4219 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-eprel 5541 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-1st 7971 df-2nd 7972 df-txp 35849 df-singleton 35857 df-singles 35858 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |