| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > snelsingles | Structured version Visualization version GIF version | ||
| Description: A singleton is a member of the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| snelsingles.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snelsingles | ⊢ {𝐴} ∈ Singletons |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snelsingles.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | isset 3458 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | eqcom 2736 | . . . . . 6 ⊢ (𝑥 = 𝐴 ↔ 𝐴 = 𝑥) | |
| 4 | 3 | exbii 1848 | . . . . 5 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥 𝐴 = 𝑥) |
| 5 | 2, 4 | bitri 275 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝐴 = 𝑥) |
| 6 | 1, 5 | mpbi 230 | . . 3 ⊢ ∃𝑥 𝐴 = 𝑥 |
| 7 | sneq 4595 | . . 3 ⊢ (𝐴 = 𝑥 → {𝐴} = {𝑥}) | |
| 8 | 6, 7 | eximii 1837 | . 2 ⊢ ∃𝑥{𝐴} = {𝑥} |
| 9 | elsingles 35899 | . 2 ⊢ ({𝐴} ∈ Singletons ↔ ∃𝑥{𝐴} = {𝑥}) | |
| 10 | 8, 9 | mpbir 231 | 1 ⊢ {𝐴} ∈ Singletons |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3444 {csn 4585 Singletons csingles 35820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-symdif 4212 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-eprel 5531 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-fv 6507 df-1st 7947 df-2nd 7948 df-txp 35835 df-singleton 35843 df-singles 35844 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |