Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snelsingles Structured version   Visualization version   GIF version

Theorem snelsingles 34203
Description: A singleton is a member of the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.)
Hypothesis
Ref Expression
snelsingles.1 𝐴 ∈ V
Assertion
Ref Expression
snelsingles {𝐴} ∈ Singletons

Proof of Theorem snelsingles
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 snelsingles.1 . . . 4 𝐴 ∈ V
2 isset 3443 . . . . 5 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
3 eqcom 2746 . . . . . 6 (𝑥 = 𝐴𝐴 = 𝑥)
43exbii 1853 . . . . 5 (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥 𝐴 = 𝑥)
52, 4bitri 274 . . . 4 (𝐴 ∈ V ↔ ∃𝑥 𝐴 = 𝑥)
61, 5mpbi 229 . . 3 𝑥 𝐴 = 𝑥
7 sneq 4576 . . 3 (𝐴 = 𝑥 → {𝐴} = {𝑥})
86, 7eximii 1842 . 2 𝑥{𝐴} = {𝑥}
9 elsingles 34199 . 2 ({𝐴} ∈ Singletons ↔ ∃𝑥{𝐴} = {𝑥})
108, 9mpbir 230 1 {𝐴} ∈ Singletons
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wex 1785  wcel 2109  Vcvv 3430  {csn 4566   Singletons csingles 34120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-symdif 4181  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-eprel 5494  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fo 6436  df-fv 6438  df-1st 7817  df-2nd 7818  df-txp 34135  df-singleton 34143  df-singles 34144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator