![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > snelsingles | Structured version Visualization version GIF version |
Description: A singleton is a member of the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
Ref | Expression |
---|---|
snelsingles.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snelsingles | ⊢ {𝐴} ∈ Singletons |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snelsingles.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | isset 3395 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
3 | eqcom 2806 | . . . . . 6 ⊢ (𝑥 = 𝐴 ↔ 𝐴 = 𝑥) | |
4 | 3 | exbii 1944 | . . . . 5 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥 𝐴 = 𝑥) |
5 | 2, 4 | bitri 267 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝐴 = 𝑥) |
6 | 1, 5 | mpbi 222 | . . 3 ⊢ ∃𝑥 𝐴 = 𝑥 |
7 | sneq 4378 | . . 3 ⊢ (𝐴 = 𝑥 → {𝐴} = {𝑥}) | |
8 | 6, 7 | eximii 1932 | . 2 ⊢ ∃𝑥{𝐴} = {𝑥} |
9 | elsingles 32538 | . 2 ⊢ ({𝐴} ∈ Singletons ↔ ∃𝑥{𝐴} = {𝑥}) | |
10 | 8, 9 | mpbir 223 | 1 ⊢ {𝐴} ∈ Singletons |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∃wex 1875 ∈ wcel 2157 Vcvv 3385 {csn 4368 Singletons csingles 32459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-symdif 4041 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-eprel 5225 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fo 6107 df-fv 6109 df-1st 7401 df-2nd 7402 df-txp 32474 df-singleton 32482 df-singles 32483 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |