| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > snelsingles | Structured version Visualization version GIF version | ||
| Description: A singleton is a member of the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| snelsingles.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snelsingles | ⊢ {𝐴} ∈ Singletons |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snelsingles.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | isset 3473 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | eqcom 2742 | . . . . . 6 ⊢ (𝑥 = 𝐴 ↔ 𝐴 = 𝑥) | |
| 4 | 3 | exbii 1848 | . . . . 5 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥 𝐴 = 𝑥) |
| 5 | 2, 4 | bitri 275 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝐴 = 𝑥) |
| 6 | 1, 5 | mpbi 230 | . . 3 ⊢ ∃𝑥 𝐴 = 𝑥 |
| 7 | sneq 4611 | . . 3 ⊢ (𝐴 = 𝑥 → {𝐴} = {𝑥}) | |
| 8 | 6, 7 | eximii 1837 | . 2 ⊢ ∃𝑥{𝐴} = {𝑥} |
| 9 | elsingles 35882 | . 2 ⊢ ({𝐴} ∈ Singletons ↔ ∃𝑥{𝐴} = {𝑥}) | |
| 10 | 8, 9 | mpbir 231 | 1 ⊢ {𝐴} ∈ Singletons |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 {csn 4601 Singletons csingles 35803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-symdif 4228 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-eprel 5553 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fo 6536 df-fv 6538 df-1st 7986 df-2nd 7987 df-txp 35818 df-singleton 35826 df-singles 35827 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |