Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snelsingles Structured version   Visualization version   GIF version

Theorem snelsingles 35935
Description: A singleton is a member of the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.)
Hypothesis
Ref Expression
snelsingles.1 𝐴 ∈ V
Assertion
Ref Expression
snelsingles {𝐴} ∈ Singletons

Proof of Theorem snelsingles
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 snelsingles.1 . . . 4 𝐴 ∈ V
2 isset 3448 . . . . 5 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
3 eqcom 2737 . . . . . 6 (𝑥 = 𝐴𝐴 = 𝑥)
43exbii 1849 . . . . 5 (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥 𝐴 = 𝑥)
52, 4bitri 275 . . . 4 (𝐴 ∈ V ↔ ∃𝑥 𝐴 = 𝑥)
61, 5mpbi 230 . . 3 𝑥 𝐴 = 𝑥
7 sneq 4584 . . 3 (𝐴 = 𝑥 → {𝐴} = {𝑥})
86, 7eximii 1838 . 2 𝑥{𝐴} = {𝑥}
9 elsingles 35931 . 2 ({𝐴} ∈ Singletons ↔ ∃𝑥{𝐴} = {𝑥})
108, 9mpbir 231 1 {𝐴} ∈ Singletons
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wex 1780  wcel 2110  Vcvv 3434  {csn 4574   Singletons csingles 35852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-symdif 4201  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fo 6483  df-fv 6485  df-1st 7916  df-2nd 7917  df-txp 35867  df-singleton 35875  df-singles 35876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator