![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > snelsingles | Structured version Visualization version GIF version |
Description: A singleton is a member of the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
Ref | Expression |
---|---|
snelsingles.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snelsingles | ⊢ {𝐴} ∈ Singletons |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snelsingles.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | isset 3476 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
3 | eqcom 2732 | . . . . . 6 ⊢ (𝑥 = 𝐴 ↔ 𝐴 = 𝑥) | |
4 | 3 | exbii 1842 | . . . . 5 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥 𝐴 = 𝑥) |
5 | 2, 4 | bitri 274 | . . . 4 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝐴 = 𝑥) |
6 | 1, 5 | mpbi 229 | . . 3 ⊢ ∃𝑥 𝐴 = 𝑥 |
7 | sneq 4634 | . . 3 ⊢ (𝐴 = 𝑥 → {𝐴} = {𝑥}) | |
8 | 6, 7 | eximii 1831 | . 2 ⊢ ∃𝑥{𝐴} = {𝑥} |
9 | elsingles 35570 | . 2 ⊢ ({𝐴} ∈ Singletons ↔ ∃𝑥{𝐴} = {𝑥}) | |
10 | 8, 9 | mpbir 230 | 1 ⊢ {𝐴} ∈ Singletons |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3463 {csn 4624 Singletons csingles 35491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-symdif 4237 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-eprel 5576 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-1st 7989 df-2nd 7990 df-txp 35506 df-singleton 35514 df-singles 35515 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |