Step | Hyp | Ref
| Expression |
1 | | cshwrnid 32390 |
. . 3
β’ ((π β Word π· β§ π β β€) β ran (π cyclShift π) = ran π) |
2 | 1 | 3adant2 1129 |
. 2
β’ ((π β Word π· β§ π:dom πβ1-1βπ· β§ π β β€) β ran (π cyclShift π) = ran π) |
3 | | wrddm 14477 |
. . . . 5
β’ (π β Word π· β dom π = (0..^(β―βπ))) |
4 | 3 | 3ad2ant1 1131 |
. . . 4
β’ ((π β Word π· β§ π:dom πβ1-1βπ· β§ π β β€) β dom π = (0..^(β―βπ))) |
5 | | simp2 1135 |
. . . . . 6
β’ ((π β Word π· β§ π:dom πβ1-1βπ· β§ π β β€) β π:dom πβ1-1βπ·) |
6 | | f1eq2 6784 |
. . . . . . 7
β’ (dom
π =
(0..^(β―βπ))
β (π:dom πβ1-1βπ· β π:(0..^(β―βπ))β1-1βπ·)) |
7 | 6 | biimpa 475 |
. . . . . 6
β’ ((dom
π =
(0..^(β―βπ))
β§ π:dom πβ1-1βπ·) β π:(0..^(β―βπ))β1-1βπ·) |
8 | 4, 5, 7 | syl2anc 582 |
. . . . 5
β’ ((π β Word π· β§ π:dom πβ1-1βπ· β§ π β β€) β π:(0..^(β―βπ))β1-1βπ·) |
9 | | simp3 1136 |
. . . . 5
β’ ((π β Word π· β§ π:dom πβ1-1βπ· β§ π β β€) β π β β€) |
10 | | eqid 2730 |
. . . . . 6
β’ (π cyclShift π) = (π cyclShift π) |
11 | | cshf1 14766 |
. . . . . 6
β’ ((π:(0..^(β―βπ))β1-1βπ· β§ π β β€ β§ (π cyclShift π) = (π cyclShift π)) β (π cyclShift π):(0..^(β―βπ))β1-1βπ·) |
12 | 10, 11 | mp3an3 1448 |
. . . . 5
β’ ((π:(0..^(β―βπ))β1-1βπ· β§ π β β€) β (π cyclShift π):(0..^(β―βπ))β1-1βπ·) |
13 | 8, 9, 12 | syl2anc 582 |
. . . 4
β’ ((π β Word π· β§ π:dom πβ1-1βπ· β§ π β β€) β (π cyclShift π):(0..^(β―βπ))β1-1βπ·) |
14 | | f1eq2 6784 |
. . . . 5
β’ (dom
π =
(0..^(β―βπ))
β ((π cyclShift π):dom πβ1-1βπ· β (π cyclShift π):(0..^(β―βπ))β1-1βπ·)) |
15 | 14 | biimpar 476 |
. . . 4
β’ ((dom
π =
(0..^(β―βπ))
β§ (π cyclShift π):(0..^(β―βπ))β1-1βπ·) β (π cyclShift π):dom πβ1-1βπ·) |
16 | 4, 13, 15 | syl2anc 582 |
. . 3
β’ ((π β Word π· β§ π:dom πβ1-1βπ· β§ π β β€) β (π cyclShift π):dom πβ1-1βπ·) |
17 | | f1f1orn 6845 |
. . 3
β’ ((π cyclShift π):dom πβ1-1βπ· β (π cyclShift π):dom πβ1-1-ontoβran
(π cyclShift π)) |
18 | 16, 17 | syl 17 |
. 2
β’ ((π β Word π· β§ π:dom πβ1-1βπ· β§ π β β€) β (π cyclShift π):dom πβ1-1-ontoβran
(π cyclShift π)) |
19 | | f1oeq3 6824 |
. . 3
β’ (ran
(π cyclShift π) = ran π β ((π cyclShift π):dom πβ1-1-ontoβran
(π cyclShift π) β (π cyclShift π):dom πβ1-1-ontoβran
π)) |
20 | 19 | biimpa 475 |
. 2
β’ ((ran
(π cyclShift π) = ran π β§ (π cyclShift π):dom πβ1-1-ontoβran
(π cyclShift π)) β (π cyclShift π):dom πβ1-1-ontoβran
π) |
21 | 2, 18, 20 | syl2anc 582 |
1
β’ ((π β Word π· β§ π:dom πβ1-1βπ· β§ π β β€) β (π cyclShift π):dom πβ1-1-ontoβran
π) |