Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cshf1o Structured version   Visualization version   GIF version

Theorem cshf1o 32596
Description: Condition for the cyclic shift to be a bijection. (Contributed by Thierry Arnoux, 4-Oct-2023.)
Assertion
Ref Expression
cshf1o ((𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):dom 𝑊1-1-onto→ran 𝑊)

Proof of Theorem cshf1o
StepHypRef Expression
1 cshwrnid 32595 . . 3 ((𝑊 ∈ Word 𝐷𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = ran 𝑊)
213adant2 1128 . 2 ((𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = ran 𝑊)
3 wrddm 14469 . . . . 5 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
433ad2ant1 1130 . . . 4 ((𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷𝑁 ∈ ℤ) → dom 𝑊 = (0..^(♯‘𝑊)))
5 simp2 1134 . . . . . 6 ((𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷𝑁 ∈ ℤ) → 𝑊:dom 𝑊1-1𝐷)
6 f1eq2 6774 . . . . . . 7 (dom 𝑊 = (0..^(♯‘𝑊)) → (𝑊:dom 𝑊1-1𝐷𝑊:(0..^(♯‘𝑊))–1-1𝐷))
76biimpa 476 . . . . . 6 ((dom 𝑊 = (0..^(♯‘𝑊)) ∧ 𝑊:dom 𝑊1-1𝐷) → 𝑊:(0..^(♯‘𝑊))–1-1𝐷)
84, 5, 7syl2anc 583 . . . . 5 ((𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷𝑁 ∈ ℤ) → 𝑊:(0..^(♯‘𝑊))–1-1𝐷)
9 simp3 1135 . . . . 5 ((𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
10 eqid 2724 . . . . . 6 (𝑊 cyclShift 𝑁) = (𝑊 cyclShift 𝑁)
11 cshf1 14758 . . . . . 6 ((𝑊:(0..^(♯‘𝑊))–1-1𝐷𝑁 ∈ ℤ ∧ (𝑊 cyclShift 𝑁) = (𝑊 cyclShift 𝑁)) → (𝑊 cyclShift 𝑁):(0..^(♯‘𝑊))–1-1𝐷)
1210, 11mp3an3 1446 . . . . 5 ((𝑊:(0..^(♯‘𝑊))–1-1𝐷𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):(0..^(♯‘𝑊))–1-1𝐷)
138, 9, 12syl2anc 583 . . . 4 ((𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):(0..^(♯‘𝑊))–1-1𝐷)
14 f1eq2 6774 . . . . 5 (dom 𝑊 = (0..^(♯‘𝑊)) → ((𝑊 cyclShift 𝑁):dom 𝑊1-1𝐷 ↔ (𝑊 cyclShift 𝑁):(0..^(♯‘𝑊))–1-1𝐷))
1514biimpar 477 . . . 4 ((dom 𝑊 = (0..^(♯‘𝑊)) ∧ (𝑊 cyclShift 𝑁):(0..^(♯‘𝑊))–1-1𝐷) → (𝑊 cyclShift 𝑁):dom 𝑊1-1𝐷)
164, 13, 15syl2anc 583 . . 3 ((𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):dom 𝑊1-1𝐷)
17 f1f1orn 6835 . . 3 ((𝑊 cyclShift 𝑁):dom 𝑊1-1𝐷 → (𝑊 cyclShift 𝑁):dom 𝑊1-1-onto→ran (𝑊 cyclShift 𝑁))
1816, 17syl 17 . 2 ((𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):dom 𝑊1-1-onto→ran (𝑊 cyclShift 𝑁))
19 f1oeq3 6814 . . 3 (ran (𝑊 cyclShift 𝑁) = ran 𝑊 → ((𝑊 cyclShift 𝑁):dom 𝑊1-1-onto→ran (𝑊 cyclShift 𝑁) ↔ (𝑊 cyclShift 𝑁):dom 𝑊1-1-onto→ran 𝑊))
2019biimpa 476 . 2 ((ran (𝑊 cyclShift 𝑁) = ran 𝑊 ∧ (𝑊 cyclShift 𝑁):dom 𝑊1-1-onto→ran (𝑊 cyclShift 𝑁)) → (𝑊 cyclShift 𝑁):dom 𝑊1-1-onto→ran 𝑊)
212, 18, 20syl2anc 583 1 ((𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):dom 𝑊1-1-onto→ran 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  dom cdm 5667  ran crn 5668  1-1wf1 6531  1-1-ontowf1o 6533  cfv 6534  (class class class)co 7402  0cc0 11107  cz 12556  ..^cfzo 13625  chash 14288  Word cword 14462   cyclShift ccsh 14736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-card 9931  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-n0 12471  df-z 12557  df-uz 12821  df-rp 12973  df-fz 13483  df-fzo 13626  df-fl 13755  df-mod 13833  df-hash 14289  df-word 14463  df-concat 14519  df-substr 14589  df-pfx 14619  df-csh 14737
This theorem is referenced by:  cycpmconjslem2  32785
  Copyright terms: Public domain W3C validator