Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cshf1o | Structured version Visualization version GIF version |
Description: Condition for the cyclic shift to be a bijection. (Contributed by Thierry Arnoux, 4-Oct-2023.) |
Ref | Expression |
---|---|
cshf1o | ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):dom 𝑊–1-1-onto→ran 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cshwrnid 30769 | . . 3 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = ran 𝑊) | |
2 | 1 | 3adant2 1128 | . 2 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = ran 𝑊) |
3 | wrddm 13933 | . . . . 5 ⊢ (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊))) | |
4 | 3 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → dom 𝑊 = (0..^(♯‘𝑊))) |
5 | simp2 1134 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → 𝑊:dom 𝑊–1-1→𝐷) | |
6 | f1eq2 6561 | . . . . . . 7 ⊢ (dom 𝑊 = (0..^(♯‘𝑊)) → (𝑊:dom 𝑊–1-1→𝐷 ↔ 𝑊:(0..^(♯‘𝑊))–1-1→𝐷)) | |
7 | 6 | biimpa 480 | . . . . . 6 ⊢ ((dom 𝑊 = (0..^(♯‘𝑊)) ∧ 𝑊:dom 𝑊–1-1→𝐷) → 𝑊:(0..^(♯‘𝑊))–1-1→𝐷) |
8 | 4, 5, 7 | syl2anc 587 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → 𝑊:(0..^(♯‘𝑊))–1-1→𝐷) |
9 | simp3 1135 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
10 | eqid 2758 | . . . . . 6 ⊢ (𝑊 cyclShift 𝑁) = (𝑊 cyclShift 𝑁) | |
11 | cshf1 14232 | . . . . . 6 ⊢ ((𝑊:(0..^(♯‘𝑊))–1-1→𝐷 ∧ 𝑁 ∈ ℤ ∧ (𝑊 cyclShift 𝑁) = (𝑊 cyclShift 𝑁)) → (𝑊 cyclShift 𝑁):(0..^(♯‘𝑊))–1-1→𝐷) | |
12 | 10, 11 | mp3an3 1447 | . . . . 5 ⊢ ((𝑊:(0..^(♯‘𝑊))–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):(0..^(♯‘𝑊))–1-1→𝐷) |
13 | 8, 9, 12 | syl2anc 587 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):(0..^(♯‘𝑊))–1-1→𝐷) |
14 | f1eq2 6561 | . . . . 5 ⊢ (dom 𝑊 = (0..^(♯‘𝑊)) → ((𝑊 cyclShift 𝑁):dom 𝑊–1-1→𝐷 ↔ (𝑊 cyclShift 𝑁):(0..^(♯‘𝑊))–1-1→𝐷)) | |
15 | 14 | biimpar 481 | . . . 4 ⊢ ((dom 𝑊 = (0..^(♯‘𝑊)) ∧ (𝑊 cyclShift 𝑁):(0..^(♯‘𝑊))–1-1→𝐷) → (𝑊 cyclShift 𝑁):dom 𝑊–1-1→𝐷) |
16 | 4, 13, 15 | syl2anc 587 | . . 3 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):dom 𝑊–1-1→𝐷) |
17 | f1f1orn 6618 | . . 3 ⊢ ((𝑊 cyclShift 𝑁):dom 𝑊–1-1→𝐷 → (𝑊 cyclShift 𝑁):dom 𝑊–1-1-onto→ran (𝑊 cyclShift 𝑁)) | |
18 | 16, 17 | syl 17 | . 2 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):dom 𝑊–1-1-onto→ran (𝑊 cyclShift 𝑁)) |
19 | f1oeq3 6597 | . . 3 ⊢ (ran (𝑊 cyclShift 𝑁) = ran 𝑊 → ((𝑊 cyclShift 𝑁):dom 𝑊–1-1-onto→ran (𝑊 cyclShift 𝑁) ↔ (𝑊 cyclShift 𝑁):dom 𝑊–1-1-onto→ran 𝑊)) | |
20 | 19 | biimpa 480 | . 2 ⊢ ((ran (𝑊 cyclShift 𝑁) = ran 𝑊 ∧ (𝑊 cyclShift 𝑁):dom 𝑊–1-1-onto→ran (𝑊 cyclShift 𝑁)) → (𝑊 cyclShift 𝑁):dom 𝑊–1-1-onto→ran 𝑊) |
21 | 2, 18, 20 | syl2anc 587 | 1 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):dom 𝑊–1-1-onto→ran 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 dom cdm 5528 ran crn 5529 –1-1→wf1 6337 –1-1-onto→wf1o 6339 ‘cfv 6340 (class class class)co 7156 0cc0 10588 ℤcz 12033 ..^cfzo 13095 ♯chash 13753 Word cword 13926 cyclShift ccsh 14210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-sup 8952 df-inf 8953 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-n0 11948 df-z 12034 df-uz 12296 df-rp 12444 df-fz 12953 df-fzo 13096 df-fl 13224 df-mod 13300 df-hash 13754 df-word 13927 df-concat 13983 df-substr 14063 df-pfx 14093 df-csh 14211 |
This theorem is referenced by: cycpmconjslem2 30960 |
Copyright terms: Public domain | W3C validator |