![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cshf1o | Structured version Visualization version GIF version |
Description: Condition for the cyclic shift to be a bijection. (Contributed by Thierry Arnoux, 4-Oct-2023.) |
Ref | Expression |
---|---|
cshf1o | ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):dom 𝑊–1-1-onto→ran 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cshwrnid 32963 | . . 3 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = ran 𝑊) | |
2 | 1 | 3adant2 1132 | . 2 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = ran 𝑊) |
3 | wrddm 14565 | . . . . 5 ⊢ (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊))) | |
4 | 3 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → dom 𝑊 = (0..^(♯‘𝑊))) |
5 | simp2 1138 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → 𝑊:dom 𝑊–1-1→𝐷) | |
6 | f1eq2 6808 | . . . . . . 7 ⊢ (dom 𝑊 = (0..^(♯‘𝑊)) → (𝑊:dom 𝑊–1-1→𝐷 ↔ 𝑊:(0..^(♯‘𝑊))–1-1→𝐷)) | |
7 | 6 | biimpa 476 | . . . . . 6 ⊢ ((dom 𝑊 = (0..^(♯‘𝑊)) ∧ 𝑊:dom 𝑊–1-1→𝐷) → 𝑊:(0..^(♯‘𝑊))–1-1→𝐷) |
8 | 4, 5, 7 | syl2anc 584 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → 𝑊:(0..^(♯‘𝑊))–1-1→𝐷) |
9 | simp3 1139 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
10 | eqid 2737 | . . . . . 6 ⊢ (𝑊 cyclShift 𝑁) = (𝑊 cyclShift 𝑁) | |
11 | cshf1 14854 | . . . . . 6 ⊢ ((𝑊:(0..^(♯‘𝑊))–1-1→𝐷 ∧ 𝑁 ∈ ℤ ∧ (𝑊 cyclShift 𝑁) = (𝑊 cyclShift 𝑁)) → (𝑊 cyclShift 𝑁):(0..^(♯‘𝑊))–1-1→𝐷) | |
12 | 10, 11 | mp3an3 1451 | . . . . 5 ⊢ ((𝑊:(0..^(♯‘𝑊))–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):(0..^(♯‘𝑊))–1-1→𝐷) |
13 | 8, 9, 12 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):(0..^(♯‘𝑊))–1-1→𝐷) |
14 | f1eq2 6808 | . . . . 5 ⊢ (dom 𝑊 = (0..^(♯‘𝑊)) → ((𝑊 cyclShift 𝑁):dom 𝑊–1-1→𝐷 ↔ (𝑊 cyclShift 𝑁):(0..^(♯‘𝑊))–1-1→𝐷)) | |
15 | 14 | biimpar 477 | . . . 4 ⊢ ((dom 𝑊 = (0..^(♯‘𝑊)) ∧ (𝑊 cyclShift 𝑁):(0..^(♯‘𝑊))–1-1→𝐷) → (𝑊 cyclShift 𝑁):dom 𝑊–1-1→𝐷) |
16 | 4, 13, 15 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):dom 𝑊–1-1→𝐷) |
17 | f1f1orn 6867 | . . 3 ⊢ ((𝑊 cyclShift 𝑁):dom 𝑊–1-1→𝐷 → (𝑊 cyclShift 𝑁):dom 𝑊–1-1-onto→ran (𝑊 cyclShift 𝑁)) | |
18 | 16, 17 | syl 17 | . 2 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):dom 𝑊–1-1-onto→ran (𝑊 cyclShift 𝑁)) |
19 | f1oeq3 6846 | . . 3 ⊢ (ran (𝑊 cyclShift 𝑁) = ran 𝑊 → ((𝑊 cyclShift 𝑁):dom 𝑊–1-1-onto→ran (𝑊 cyclShift 𝑁) ↔ (𝑊 cyclShift 𝑁):dom 𝑊–1-1-onto→ran 𝑊)) | |
20 | 19 | biimpa 476 | . 2 ⊢ ((ran (𝑊 cyclShift 𝑁) = ran 𝑊 ∧ (𝑊 cyclShift 𝑁):dom 𝑊–1-1-onto→ran (𝑊 cyclShift 𝑁)) → (𝑊 cyclShift 𝑁):dom 𝑊–1-1-onto→ran 𝑊) |
21 | 2, 18, 20 | syl2anc 584 | 1 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):dom 𝑊–1-1-onto→ran 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 dom cdm 5693 ran crn 5694 –1-1→wf1 6566 –1-1-onto→wf1o 6568 ‘cfv 6569 (class class class)co 7438 0cc0 11162 ℤcz 12620 ..^cfzo 13700 ♯chash 14375 Word cword 14558 cyclShift ccsh 14832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-sup 9489 df-inf 9490 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-n0 12534 df-z 12621 df-uz 12886 df-rp 13042 df-fz 13554 df-fzo 13701 df-fl 13838 df-mod 13916 df-hash 14376 df-word 14559 df-concat 14615 df-substr 14685 df-pfx 14715 df-csh 14833 |
This theorem is referenced by: cycpmconjslem2 33190 |
Copyright terms: Public domain | W3C validator |