![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1o2sn | Structured version Visualization version GIF version |
Description: A singleton consisting in a nested ordered pair is a one-to-one function from the cartesian product of two singletons onto a singleton (case where the two singletons are equal). (Contributed by AV, 15-Aug-2019.) |
Ref | Expression |
---|---|
f1o2sn | ⊢ ((𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → {〈〈𝐸, 𝐸〉, 𝑋〉}:({𝐸} × {𝐸})–1-1-onto→{𝑋}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5475 | . . 3 ⊢ 〈𝐸, 𝐸〉 ∈ V | |
2 | simpr 484 | . . 3 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → 𝑋 ∈ 𝑊) | |
3 | f1osng 6890 | . . 3 ⊢ ((〈𝐸, 𝐸〉 ∈ V ∧ 𝑋 ∈ 𝑊) → {〈〈𝐸, 𝐸〉, 𝑋〉}:{〈𝐸, 𝐸〉}–1-1-onto→{𝑋}) | |
4 | 1, 2, 3 | sylancr 587 | . 2 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → {〈〈𝐸, 𝐸〉, 𝑋〉}:{〈𝐸, 𝐸〉}–1-1-onto→{𝑋}) |
5 | xpsng 7159 | . . . . . 6 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) | |
6 | 5 | anidms 566 | . . . . 5 ⊢ (𝐸 ∈ 𝑉 → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) |
7 | 6 | eqcomd 2741 | . . . 4 ⊢ (𝐸 ∈ 𝑉 → {〈𝐸, 𝐸〉} = ({𝐸} × {𝐸})) |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → {〈𝐸, 𝐸〉} = ({𝐸} × {𝐸})) |
9 | 8 | f1oeq2d 6845 | . 2 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → ({〈〈𝐸, 𝐸〉, 𝑋〉}:{〈𝐸, 𝐸〉}–1-1-onto→{𝑋} ↔ {〈〈𝐸, 𝐸〉, 𝑋〉}:({𝐸} × {𝐸})–1-1-onto→{𝑋})) |
10 | 4, 9 | mpbid 232 | 1 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → {〈〈𝐸, 𝐸〉, 𝑋〉}:({𝐸} × {𝐸})–1-1-onto→{𝑋}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 {csn 4631 〈cop 4637 × cxp 5687 –1-1-onto→wf1o 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 |
This theorem is referenced by: mat1dimelbas 22493 |
Copyright terms: Public domain | W3C validator |