![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1o2sn | Structured version Visualization version GIF version |
Description: A singleton consisting in a nested ordered pair is a one-to-one function from the cartesian product of two singletons onto a singleton (case where the two singletons are equal). (Contributed by AV, 15-Aug-2019.) |
Ref | Expression |
---|---|
f1o2sn | ⊢ ((𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → {〈〈𝐸, 𝐸〉, 𝑋〉}:({𝐸} × {𝐸})–1-1-onto→{𝑋}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5455 | . . 3 ⊢ 〈𝐸, 𝐸〉 ∈ V | |
2 | simpr 484 | . . 3 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → 𝑋 ∈ 𝑊) | |
3 | f1osng 6865 | . . 3 ⊢ ((〈𝐸, 𝐸〉 ∈ V ∧ 𝑋 ∈ 𝑊) → {〈〈𝐸, 𝐸〉, 𝑋〉}:{〈𝐸, 𝐸〉}–1-1-onto→{𝑋}) | |
4 | 1, 2, 3 | sylancr 586 | . 2 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → {〈〈𝐸, 𝐸〉, 𝑋〉}:{〈𝐸, 𝐸〉}–1-1-onto→{𝑋}) |
5 | xpsng 7130 | . . . . . 6 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) | |
6 | 5 | anidms 566 | . . . . 5 ⊢ (𝐸 ∈ 𝑉 → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) |
7 | 6 | eqcomd 2730 | . . . 4 ⊢ (𝐸 ∈ 𝑉 → {〈𝐸, 𝐸〉} = ({𝐸} × {𝐸})) |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → {〈𝐸, 𝐸〉} = ({𝐸} × {𝐸})) |
9 | 8 | f1oeq2d 6820 | . 2 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → ({〈〈𝐸, 𝐸〉, 𝑋〉}:{〈𝐸, 𝐸〉}–1-1-onto→{𝑋} ↔ {〈〈𝐸, 𝐸〉, 𝑋〉}:({𝐸} × {𝐸})–1-1-onto→{𝑋})) |
10 | 4, 9 | mpbid 231 | 1 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → {〈〈𝐸, 𝐸〉, 𝑋〉}:({𝐸} × {𝐸})–1-1-onto→{𝑋}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 {csn 4621 〈cop 4627 × cxp 5665 –1-1-onto→wf1o 6533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 |
This theorem is referenced by: mat1dimelbas 22297 |
Copyright terms: Public domain | W3C validator |