MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1o2sn Structured version   Visualization version   GIF version

Theorem f1o2sn 7014
Description: A singleton consisting in a nested ordered pair is a one-to-one function from the cartesian product of two singletons onto a singleton (case where the two singletons are equal). (Contributed by AV, 15-Aug-2019.)
Assertion
Ref Expression
f1o2sn ((𝐸𝑉𝑋𝑊) → {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:({𝐸} × {𝐸})–1-1-onto→{𝑋})

Proof of Theorem f1o2sn
StepHypRef Expression
1 opex 5379 . . 3 𝐸, 𝐸⟩ ∈ V
2 simpr 485 . . 3 ((𝐸𝑉𝑋𝑊) → 𝑋𝑊)
3 f1osng 6757 . . 3 ((⟨𝐸, 𝐸⟩ ∈ V ∧ 𝑋𝑊) → {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:{⟨𝐸, 𝐸⟩}–1-1-onto→{𝑋})
41, 2, 3sylancr 587 . 2 ((𝐸𝑉𝑋𝑊) → {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:{⟨𝐸, 𝐸⟩}–1-1-onto→{𝑋})
5 xpsng 7011 . . . . . 6 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
65anidms 567 . . . . 5 (𝐸𝑉 → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
76eqcomd 2744 . . . 4 (𝐸𝑉 → {⟨𝐸, 𝐸⟩} = ({𝐸} × {𝐸}))
87adantr 481 . . 3 ((𝐸𝑉𝑋𝑊) → {⟨𝐸, 𝐸⟩} = ({𝐸} × {𝐸}))
98f1oeq2d 6712 . 2 ((𝐸𝑉𝑋𝑊) → ({⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:{⟨𝐸, 𝐸⟩}–1-1-onto→{𝑋} ↔ {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:({𝐸} × {𝐸})–1-1-onto→{𝑋}))
104, 9mpbid 231 1 ((𝐸𝑉𝑋𝑊) → {⟨⟨𝐸, 𝐸⟩, 𝑋⟩}:({𝐸} × {𝐸})–1-1-onto→{𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561  cop 4567   × cxp 5587  1-1-ontowf1o 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440
This theorem is referenced by:  mat1dimelbas  21620
  Copyright terms: Public domain W3C validator