![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ocoima | Structured version Visualization version GIF version |
Description: The composition of two bijections as bijection onto the image of the range of the first bijection. (Contributed by AV, 15-Aug-2025.) |
Ref | Expression |
---|---|
f1ocoima | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of1 6856 | . . . . . 6 ⊢ (𝐺:𝐶–1-1-onto→𝐷 → 𝐺:𝐶–1-1→𝐷) | |
2 | 1 | anim1i 614 | . . . . 5 ⊢ ((𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺:𝐶–1-1→𝐷 ∧ 𝐵 ⊆ 𝐶)) |
3 | 2 | 3adant1 1130 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺:𝐶–1-1→𝐷 ∧ 𝐵 ⊆ 𝐶)) |
4 | f1ores 6871 | . . . 4 ⊢ ((𝐺:𝐶–1-1→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ↾ 𝐵):𝐵–1-1-onto→(𝐺 “ 𝐵)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ↾ 𝐵):𝐵–1-1-onto→(𝐺 “ 𝐵)) |
6 | simp1 1136 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1-onto→𝐵) | |
7 | f1oco 6880 | . . 3 ⊢ (((𝐺 ↾ 𝐵):𝐵–1-1-onto→(𝐺 “ 𝐵) ∧ 𝐹:𝐴–1-1-onto→𝐵) → ((𝐺 ↾ 𝐵) ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵)) | |
8 | 5, 6, 7 | syl2anc 583 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → ((𝐺 ↾ 𝐵) ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵)) |
9 | f1ofo 6864 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) | |
10 | forn 6832 | . . . . . . 7 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ran 𝐹 = 𝐵) |
12 | 11 | eqimssd 4065 | . . . . 5 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ran 𝐹 ⊆ 𝐵) |
13 | 12 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → ran 𝐹 ⊆ 𝐵) |
14 | cores 6275 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → ((𝐺 ↾ 𝐵) ∘ 𝐹) = (𝐺 ∘ 𝐹)) | |
15 | 14 | eqcomd 2746 | . . . 4 ⊢ (ran 𝐹 ⊆ 𝐵 → (𝐺 ∘ 𝐹) = ((𝐺 ↾ 𝐵) ∘ 𝐹)) |
16 | 13, 15 | syl 17 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ∘ 𝐹) = ((𝐺 ↾ 𝐵) ∘ 𝐹)) |
17 | 16 | f1oeq1d 6852 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵) ↔ ((𝐺 ↾ 𝐵) ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵))) |
18 | 8, 17 | mpbird 257 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ⊆ wss 3976 ran crn 5696 ↾ cres 5697 “ cima 5698 ∘ ccom 5699 –1-1→wf1 6565 –onto→wfo 6566 –1-1-onto→wf1o 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 |
This theorem is referenced by: 3f1oss1 46980 |
Copyright terms: Public domain | W3C validator |