| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ocoima | Structured version Visualization version GIF version | ||
| Description: The composition of two bijections as bijection onto the image of the range of the first bijection. (Contributed by AV, 15-Aug-2025.) |
| Ref | Expression |
|---|---|
| f1ocoima | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of1 6827 | . . . . . 6 ⊢ (𝐺:𝐶–1-1-onto→𝐷 → 𝐺:𝐶–1-1→𝐷) | |
| 2 | 1 | anim1i 615 | . . . . 5 ⊢ ((𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺:𝐶–1-1→𝐷 ∧ 𝐵 ⊆ 𝐶)) |
| 3 | 2 | 3adant1 1130 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺:𝐶–1-1→𝐷 ∧ 𝐵 ⊆ 𝐶)) |
| 4 | f1ores 6842 | . . . 4 ⊢ ((𝐺:𝐶–1-1→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ↾ 𝐵):𝐵–1-1-onto→(𝐺 “ 𝐵)) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ↾ 𝐵):𝐵–1-1-onto→(𝐺 “ 𝐵)) |
| 6 | simp1 1136 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1-onto→𝐵) | |
| 7 | f1oco 6851 | . . 3 ⊢ (((𝐺 ↾ 𝐵):𝐵–1-1-onto→(𝐺 “ 𝐵) ∧ 𝐹:𝐴–1-1-onto→𝐵) → ((𝐺 ↾ 𝐵) ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵)) | |
| 8 | 5, 6, 7 | syl2anc 584 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → ((𝐺 ↾ 𝐵) ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵)) |
| 9 | f1ofo 6835 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) | |
| 10 | forn 6803 | . . . . . . 7 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ran 𝐹 = 𝐵) |
| 12 | 11 | eqimssd 4020 | . . . . 5 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ran 𝐹 ⊆ 𝐵) |
| 13 | 12 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → ran 𝐹 ⊆ 𝐵) |
| 14 | cores 6249 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → ((𝐺 ↾ 𝐵) ∘ 𝐹) = (𝐺 ∘ 𝐹)) | |
| 15 | 14 | eqcomd 2740 | . . . 4 ⊢ (ran 𝐹 ⊆ 𝐵 → (𝐺 ∘ 𝐹) = ((𝐺 ↾ 𝐵) ∘ 𝐹)) |
| 16 | 13, 15 | syl 17 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ∘ 𝐹) = ((𝐺 ↾ 𝐵) ∘ 𝐹)) |
| 17 | 16 | f1oeq1d 6823 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵) ↔ ((𝐺 ↾ 𝐵) ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵))) |
| 18 | 8, 17 | mpbird 257 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ⊆ wss 3931 ran crn 5666 ↾ cres 5667 “ cima 5668 ∘ ccom 5669 –1-1→wf1 6538 –onto→wfo 6539 –1-1-onto→wf1o 6540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 |
| This theorem is referenced by: 3f1oss1 47060 |
| Copyright terms: Public domain | W3C validator |