| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ocoima | Structured version Visualization version GIF version | ||
| Description: The composition of two bijections as bijection onto the image of the range of the first bijection. (Contributed by AV, 15-Aug-2025.) |
| Ref | Expression |
|---|---|
| f1ocoima | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of1 6757 | . . . . . 6 ⊢ (𝐺:𝐶–1-1-onto→𝐷 → 𝐺:𝐶–1-1→𝐷) | |
| 2 | 1 | anim1i 615 | . . . . 5 ⊢ ((𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺:𝐶–1-1→𝐷 ∧ 𝐵 ⊆ 𝐶)) |
| 3 | 2 | 3adant1 1130 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺:𝐶–1-1→𝐷 ∧ 𝐵 ⊆ 𝐶)) |
| 4 | f1ores 6772 | . . . 4 ⊢ ((𝐺:𝐶–1-1→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ↾ 𝐵):𝐵–1-1-onto→(𝐺 “ 𝐵)) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ↾ 𝐵):𝐵–1-1-onto→(𝐺 “ 𝐵)) |
| 6 | simp1 1136 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1-onto→𝐵) | |
| 7 | f1oco 6781 | . . 3 ⊢ (((𝐺 ↾ 𝐵):𝐵–1-1-onto→(𝐺 “ 𝐵) ∧ 𝐹:𝐴–1-1-onto→𝐵) → ((𝐺 ↾ 𝐵) ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵)) | |
| 8 | 5, 6, 7 | syl2anc 584 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → ((𝐺 ↾ 𝐵) ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵)) |
| 9 | f1ofo 6765 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) | |
| 10 | forn 6733 | . . . . . . 7 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ran 𝐹 = 𝐵) |
| 12 | 11 | eqimssd 3986 | . . . . 5 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ran 𝐹 ⊆ 𝐵) |
| 13 | 12 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → ran 𝐹 ⊆ 𝐵) |
| 14 | cores 6191 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → ((𝐺 ↾ 𝐵) ∘ 𝐹) = (𝐺 ∘ 𝐹)) | |
| 15 | 14 | eqcomd 2737 | . . . 4 ⊢ (ran 𝐹 ⊆ 𝐵 → (𝐺 ∘ 𝐹) = ((𝐺 ↾ 𝐵) ∘ 𝐹)) |
| 16 | 13, 15 | syl 17 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ∘ 𝐹) = ((𝐺 ↾ 𝐵) ∘ 𝐹)) |
| 17 | 16 | f1oeq1d 6753 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵) ↔ ((𝐺 ↾ 𝐵) ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵))) |
| 18 | 8, 17 | mpbird 257 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ⊆ wss 3897 ran crn 5612 ↾ cres 5613 “ cima 5614 ∘ ccom 5615 –1-1→wf1 6473 –onto→wfo 6474 –1-1-onto→wf1o 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 |
| This theorem is referenced by: 3f1oss1 47106 |
| Copyright terms: Public domain | W3C validator |