MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocoima Structured version   Visualization version   GIF version

Theorem f1ocoima 7280
Description: The composition of two bijections as bijection onto the image of the range of the first bijection. (Contributed by AV, 15-Aug-2025.)
Assertion
Ref Expression
f1ocoima ((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐵𝐶) → (𝐺𝐹):𝐴1-1-onto→(𝐺𝐵))

Proof of Theorem f1ocoima
StepHypRef Expression
1 f1of1 6801 . . . . . 6 (𝐺:𝐶1-1-onto𝐷𝐺:𝐶1-1𝐷)
21anim1i 615 . . . . 5 ((𝐺:𝐶1-1-onto𝐷𝐵𝐶) → (𝐺:𝐶1-1𝐷𝐵𝐶))
323adant1 1130 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐵𝐶) → (𝐺:𝐶1-1𝐷𝐵𝐶))
4 f1ores 6816 . . . 4 ((𝐺:𝐶1-1𝐷𝐵𝐶) → (𝐺𝐵):𝐵1-1-onto→(𝐺𝐵))
53, 4syl 17 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐵𝐶) → (𝐺𝐵):𝐵1-1-onto→(𝐺𝐵))
6 simp1 1136 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐵𝐶) → 𝐹:𝐴1-1-onto𝐵)
7 f1oco 6825 . . 3 (((𝐺𝐵):𝐵1-1-onto→(𝐺𝐵) ∧ 𝐹:𝐴1-1-onto𝐵) → ((𝐺𝐵) ∘ 𝐹):𝐴1-1-onto→(𝐺𝐵))
85, 6, 7syl2anc 584 . 2 ((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐵𝐶) → ((𝐺𝐵) ∘ 𝐹):𝐴1-1-onto→(𝐺𝐵))
9 f1ofo 6809 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
10 forn 6777 . . . . . . 7 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
119, 10syl 17 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 → ran 𝐹 = 𝐵)
1211eqimssd 4005 . . . . 5 (𝐹:𝐴1-1-onto𝐵 → ran 𝐹𝐵)
13123ad2ant1 1133 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐵𝐶) → ran 𝐹𝐵)
14 cores 6224 . . . . 5 (ran 𝐹𝐵 → ((𝐺𝐵) ∘ 𝐹) = (𝐺𝐹))
1514eqcomd 2736 . . . 4 (ran 𝐹𝐵 → (𝐺𝐹) = ((𝐺𝐵) ∘ 𝐹))
1613, 15syl 17 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐵𝐶) → (𝐺𝐹) = ((𝐺𝐵) ∘ 𝐹))
1716f1oeq1d 6797 . 2 ((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐵𝐶) → ((𝐺𝐹):𝐴1-1-onto→(𝐺𝐵) ↔ ((𝐺𝐵) ∘ 𝐹):𝐴1-1-onto→(𝐺𝐵)))
188, 17mpbird 257 1 ((𝐹:𝐴1-1-onto𝐵𝐺:𝐶1-1-onto𝐷𝐵𝐶) → (𝐺𝐹):𝐴1-1-onto→(𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wss 3916  ran crn 5641  cres 5642  cima 5643  ccom 5644  1-1wf1 6510  ontowfo 6511  1-1-ontowf1o 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520
This theorem is referenced by:  3f1oss1  47066
  Copyright terms: Public domain W3C validator