| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ocoima | Structured version Visualization version GIF version | ||
| Description: The composition of two bijections as bijection onto the image of the range of the first bijection. (Contributed by AV, 15-Aug-2025.) |
| Ref | Expression |
|---|---|
| f1ocoima | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of1 6801 | . . . . . 6 ⊢ (𝐺:𝐶–1-1-onto→𝐷 → 𝐺:𝐶–1-1→𝐷) | |
| 2 | 1 | anim1i 615 | . . . . 5 ⊢ ((𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺:𝐶–1-1→𝐷 ∧ 𝐵 ⊆ 𝐶)) |
| 3 | 2 | 3adant1 1130 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺:𝐶–1-1→𝐷 ∧ 𝐵 ⊆ 𝐶)) |
| 4 | f1ores 6816 | . . . 4 ⊢ ((𝐺:𝐶–1-1→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ↾ 𝐵):𝐵–1-1-onto→(𝐺 “ 𝐵)) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ↾ 𝐵):𝐵–1-1-onto→(𝐺 “ 𝐵)) |
| 6 | simp1 1136 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → 𝐹:𝐴–1-1-onto→𝐵) | |
| 7 | f1oco 6825 | . . 3 ⊢ (((𝐺 ↾ 𝐵):𝐵–1-1-onto→(𝐺 “ 𝐵) ∧ 𝐹:𝐴–1-1-onto→𝐵) → ((𝐺 ↾ 𝐵) ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵)) | |
| 8 | 5, 6, 7 | syl2anc 584 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → ((𝐺 ↾ 𝐵) ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵)) |
| 9 | f1ofo 6809 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) | |
| 10 | forn 6777 | . . . . . . 7 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ran 𝐹 = 𝐵) |
| 12 | 11 | eqimssd 4005 | . . . . 5 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ran 𝐹 ⊆ 𝐵) |
| 13 | 12 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → ran 𝐹 ⊆ 𝐵) |
| 14 | cores 6224 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → ((𝐺 ↾ 𝐵) ∘ 𝐹) = (𝐺 ∘ 𝐹)) | |
| 15 | 14 | eqcomd 2736 | . . . 4 ⊢ (ran 𝐹 ⊆ 𝐵 → (𝐺 ∘ 𝐹) = ((𝐺 ↾ 𝐵) ∘ 𝐹)) |
| 16 | 13, 15 | syl 17 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ∘ 𝐹) = ((𝐺 ↾ 𝐵) ∘ 𝐹)) |
| 17 | 16 | f1oeq1d 6797 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵) ↔ ((𝐺 ↾ 𝐵) ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵))) |
| 18 | 8, 17 | mpbird 257 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐵 ⊆ 𝐶) → (𝐺 ∘ 𝐹):𝐴–1-1-onto→(𝐺 “ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ⊆ wss 3916 ran crn 5641 ↾ cres 5642 “ cima 5643 ∘ ccom 5644 –1-1→wf1 6510 –onto→wfo 6511 –1-1-onto→wf1o 6512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 |
| This theorem is referenced by: 3f1oss1 47066 |
| Copyright terms: Public domain | W3C validator |