Proof of Theorem fveqf1o
Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . . 4
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) |
2 | | f1oi 6737 |
. . . . . . . 8
⊢ ( I
↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})):(𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})–1-1-onto→(𝐴 ∖ {𝐶, (◡𝐹‘𝐷)}) |
3 | 2 | a1i 11 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})):(𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})–1-1-onto→(𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) |
4 | | simp2 1135 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐶 ∈ 𝐴) |
5 | | f1ocnv 6712 |
. . . . . . . . . 10
⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) |
6 | | f1of 6700 |
. . . . . . . . . 10
⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) |
7 | 1, 5, 6 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ◡𝐹:𝐵⟶𝐴) |
8 | | simp3 1136 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐷 ∈ 𝐵) |
9 | 7, 8 | ffvelrnd 6944 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (◡𝐹‘𝐷) ∈ 𝐴) |
10 | | f1oprswap 6743 |
. . . . . . . 8
⊢ ((𝐶 ∈ 𝐴 ∧ (◡𝐹‘𝐷) ∈ 𝐴) → {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}:{𝐶, (◡𝐹‘𝐷)}–1-1-onto→{𝐶, (◡𝐹‘𝐷)}) |
11 | 4, 9, 10 | syl2anc 583 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}:{𝐶, (◡𝐹‘𝐷)}–1-1-onto→{𝐶, (◡𝐹‘𝐷)}) |
12 | | disjdifr 4403 |
. . . . . . . 8
⊢ ((𝐴 ∖ {𝐶, (◡𝐹‘𝐷)}) ∩ {𝐶, (◡𝐹‘𝐷)}) = ∅ |
13 | 12 | a1i 11 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐴 ∖ {𝐶, (◡𝐹‘𝐷)}) ∩ {𝐶, (◡𝐹‘𝐷)}) = ∅) |
14 | | f1oun 6719 |
. . . . . . 7
⊢ (((( I
↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})):(𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})–1-1-onto→(𝐴 ∖ {𝐶, (◡𝐹‘𝐷)}) ∧ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}:{𝐶, (◡𝐹‘𝐷)}–1-1-onto→{𝐶, (◡𝐹‘𝐷)}) ∧ (((𝐴 ∖ {𝐶, (◡𝐹‘𝐷)}) ∩ {𝐶, (◡𝐹‘𝐷)}) = ∅ ∧ ((𝐴 ∖ {𝐶, (◡𝐹‘𝐷)}) ∩ {𝐶, (◡𝐹‘𝐷)}) = ∅)) → (( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}):((𝐴 ∖ {𝐶, (◡𝐹‘𝐷)}) ∪ {𝐶, (◡𝐹‘𝐷)})–1-1-onto→((𝐴 ∖ {𝐶, (◡𝐹‘𝐷)}) ∪ {𝐶, (◡𝐹‘𝐷)})) |
15 | 3, 11, 13, 13, 14 | syl22anc 835 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}):((𝐴 ∖ {𝐶, (◡𝐹‘𝐷)}) ∪ {𝐶, (◡𝐹‘𝐷)})–1-1-onto→((𝐴 ∖ {𝐶, (◡𝐹‘𝐷)}) ∪ {𝐶, (◡𝐹‘𝐷)})) |
16 | | uncom 4083 |
. . . . . . . 8
⊢ ((𝐴 ∖ {𝐶, (◡𝐹‘𝐷)}) ∪ {𝐶, (◡𝐹‘𝐷)}) = ({𝐶, (◡𝐹‘𝐷)} ∪ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) |
17 | 4, 9 | prssd 4752 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → {𝐶, (◡𝐹‘𝐷)} ⊆ 𝐴) |
18 | | undif 4412 |
. . . . . . . . 9
⊢ ({𝐶, (◡𝐹‘𝐷)} ⊆ 𝐴 ↔ ({𝐶, (◡𝐹‘𝐷)} ∪ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) = 𝐴) |
19 | 17, 18 | sylib 217 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ({𝐶, (◡𝐹‘𝐷)} ∪ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) = 𝐴) |
20 | 16, 19 | eqtrid 2790 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐴 ∖ {𝐶, (◡𝐹‘𝐷)}) ∪ {𝐶, (◡𝐹‘𝐷)}) = 𝐴) |
21 | 20 | f1oeq2d 6696 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}):((𝐴 ∖ {𝐶, (◡𝐹‘𝐷)}) ∪ {𝐶, (◡𝐹‘𝐷)})–1-1-onto→((𝐴 ∖ {𝐶, (◡𝐹‘𝐷)}) ∪ {𝐶, (◡𝐹‘𝐷)}) ↔ (( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}):𝐴–1-1-onto→((𝐴 ∖ {𝐶, (◡𝐹‘𝐷)}) ∪ {𝐶, (◡𝐹‘𝐷)}))) |
22 | 15, 21 | mpbid 231 |
. . . . 5
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}):𝐴–1-1-onto→((𝐴 ∖ {𝐶, (◡𝐹‘𝐷)}) ∪ {𝐶, (◡𝐹‘𝐷)})) |
23 | 20 | f1oeq3d 6697 |
. . . . 5
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}):𝐴–1-1-onto→((𝐴 ∖ {𝐶, (◡𝐹‘𝐷)}) ∪ {𝐶, (◡𝐹‘𝐷)}) ↔ (( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}):𝐴–1-1-onto→𝐴)) |
24 | 22, 23 | mpbid 231 |
. . . 4
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}):𝐴–1-1-onto→𝐴) |
25 | | f1oco 6722 |
. . . 4
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ (( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}):𝐴–1-1-onto→𝐴) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉})):𝐴–1-1-onto→𝐵) |
26 | 1, 24, 25 | syl2anc 583 |
. . 3
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉})):𝐴–1-1-onto→𝐵) |
27 | | fveqf1o.1 |
. . . 4
⊢ 𝐺 = (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉})) |
28 | | f1oeq1 6688 |
. . . 4
⊢ (𝐺 = (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉})) → (𝐺:𝐴–1-1-onto→𝐵 ↔ (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉})):𝐴–1-1-onto→𝐵)) |
29 | 27, 28 | ax-mp 5 |
. . 3
⊢ (𝐺:𝐴–1-1-onto→𝐵 ↔ (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉})):𝐴–1-1-onto→𝐵) |
30 | 26, 29 | sylibr 233 |
. 2
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐺:𝐴–1-1-onto→𝐵) |
31 | 27 | fveq1i 6757 |
. . . 4
⊢ (𝐺‘𝐶) = ((𝐹 ∘ (( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}))‘𝐶) |
32 | | f1of 6700 |
. . . . . 6
⊢ ((( I
↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}):𝐴–1-1-onto→𝐴 → (( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}):𝐴⟶𝐴) |
33 | 24, 32 | syl 17 |
. . . . 5
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}):𝐴⟶𝐴) |
34 | | fvco3 6849 |
. . . . 5
⊢ (((( I
↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}):𝐴⟶𝐴 ∧ 𝐶 ∈ 𝐴) → ((𝐹 ∘ (( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}))‘𝐶) = (𝐹‘((( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉})‘𝐶))) |
35 | 33, 4, 34 | syl2anc 583 |
. . . 4
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐹 ∘ (( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}))‘𝐶) = (𝐹‘((( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉})‘𝐶))) |
36 | 31, 35 | eqtrid 2790 |
. . 3
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐺‘𝐶) = (𝐹‘((( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉})‘𝐶))) |
37 | | fnresi 6545 |
. . . . . . . 8
⊢ ( I
↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) Fn (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)}) |
38 | 37 | a1i 11 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) Fn (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) |
39 | | f1ofn 6701 |
. . . . . . . 8
⊢
({〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}:{𝐶, (◡𝐹‘𝐷)}–1-1-onto→{𝐶, (◡𝐹‘𝐷)} → {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉} Fn {𝐶, (◡𝐹‘𝐷)}) |
40 | 11, 39 | syl 17 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉} Fn {𝐶, (◡𝐹‘𝐷)}) |
41 | | prid1g 4693 |
. . . . . . . 8
⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ {𝐶, (◡𝐹‘𝐷)}) |
42 | 4, 41 | syl 17 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐶 ∈ {𝐶, (◡𝐹‘𝐷)}) |
43 | | fvun2 6842 |
. . . . . . 7
⊢ ((( I
↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) Fn (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)}) ∧ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉} Fn {𝐶, (◡𝐹‘𝐷)} ∧ (((𝐴 ∖ {𝐶, (◡𝐹‘𝐷)}) ∩ {𝐶, (◡𝐹‘𝐷)}) = ∅ ∧ 𝐶 ∈ {𝐶, (◡𝐹‘𝐷)})) → ((( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉})‘𝐶) = ({〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}‘𝐶)) |
44 | 38, 40, 13, 42, 43 | syl112anc 1372 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉})‘𝐶) = ({〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}‘𝐶)) |
45 | | f1ofun 6702 |
. . . . . . . 8
⊢
({〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}:{𝐶, (◡𝐹‘𝐷)}–1-1-onto→{𝐶, (◡𝐹‘𝐷)} → Fun {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}) |
46 | 11, 45 | syl 17 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → Fun {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}) |
47 | | opex 5373 |
. . . . . . . 8
⊢
〈𝐶, (◡𝐹‘𝐷)〉 ∈ V |
48 | 47 | prid1 4695 |
. . . . . . 7
⊢
〈𝐶, (◡𝐹‘𝐷)〉 ∈ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉} |
49 | | funopfv 6803 |
. . . . . . 7
⊢ (Fun
{〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉} → (〈𝐶, (◡𝐹‘𝐷)〉 ∈ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉} → ({〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}‘𝐶) = (◡𝐹‘𝐷))) |
50 | 46, 48, 49 | mpisyl 21 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ({〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉}‘𝐶) = (◡𝐹‘𝐷)) |
51 | 44, 50 | eqtrd 2778 |
. . . . 5
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉})‘𝐶) = (◡𝐹‘𝐷)) |
52 | 51 | fveq2d 6760 |
. . . 4
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐹‘((( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉})‘𝐶)) = (𝐹‘(◡𝐹‘𝐷))) |
53 | | f1ocnvfv2 7130 |
. . . . 5
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐷 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝐷)) = 𝐷) |
54 | 1, 8, 53 | syl2anc 583 |
. . . 4
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝐷)) = 𝐷) |
55 | 52, 54 | eqtrd 2778 |
. . 3
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐹‘((( I ↾ (𝐴 ∖ {𝐶, (◡𝐹‘𝐷)})) ∪ {〈𝐶, (◡𝐹‘𝐷)〉, 〈(◡𝐹‘𝐷), 𝐶〉})‘𝐶)) = 𝐷) |
56 | 36, 55 | eqtrd 2778 |
. 2
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐺‘𝐶) = 𝐷) |
57 | 30, 56 | jca 511 |
1
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐺:𝐴–1-1-onto→𝐵 ∧ (𝐺‘𝐶) = 𝐷)) |