Proof of Theorem 3f1oss1
| Step | Hyp | Ref
| Expression |
| 1 | | f1ocnv 6840 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) |
| 2 | | f1of1 6827 |
. . . . . . . 8
⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵–1-1→𝐴) |
| 3 | 1, 2 | syl 17 |
. . . . . . 7
⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1→𝐴) |
| 4 | 3 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) → ◡𝐹:𝐵–1-1→𝐴) |
| 5 | 4 | adantr 480 |
. . . . 5
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → ◡𝐹:𝐵–1-1→𝐴) |
| 6 | | cnvimass 6080 |
. . . . . . . 8
⊢ (◡◡𝐹 “ 𝐶) ⊆ dom ◡𝐹 |
| 7 | | f1of 6828 |
. . . . . . . . 9
⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) |
| 8 | | fdm 6725 |
. . . . . . . . . 10
⊢ (◡𝐹:𝐵⟶𝐴 → dom ◡𝐹 = 𝐵) |
| 9 | 8 | eqcomd 2740 |
. . . . . . . . 9
⊢ (◡𝐹:𝐵⟶𝐴 → 𝐵 = dom ◡𝐹) |
| 10 | 1, 7, 9 | 3syl 18 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐵 = dom ◡𝐹) |
| 11 | 6, 10 | sseqtrrid 4007 |
. . . . . . 7
⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡◡𝐹 “ 𝐶) ⊆ 𝐵) |
| 12 | 11 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) → (◡◡𝐹 “ 𝐶) ⊆ 𝐵) |
| 13 | 12 | adantr 480 |
. . . . 5
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → (◡◡𝐹 “ 𝐶) ⊆ 𝐵) |
| 14 | | f1ofn 6829 |
. . . . . . . . . 10
⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹 Fn 𝐵) |
| 15 | 1, 14 | syl 17 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹 Fn 𝐵) |
| 16 | 15 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) → ◡𝐹 Fn 𝐵) |
| 17 | 16 | adantr 480 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → ◡𝐹 Fn 𝐵) |
| 18 | | eqidd 2735 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → (ran ◡𝐹 ∩ 𝐶) = (ran ◡𝐹 ∩ 𝐶)) |
| 19 | | eqidd 2735 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → (◡◡𝐹 “ 𝐶) = (◡◡𝐹 “ 𝐶)) |
| 20 | 17, 18, 19 | rescnvimafod 7073 |
. . . . . 6
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → (◡𝐹 ↾ (◡◡𝐹 “ 𝐶)):(◡◡𝐹 “ 𝐶)–onto→(ran ◡𝐹 ∩ 𝐶)) |
| 21 | | fof 6800 |
. . . . . 6
⊢ ((◡𝐹 ↾ (◡◡𝐹 “ 𝐶)):(◡◡𝐹 “ 𝐶)–onto→(ran ◡𝐹 ∩ 𝐶) → (◡𝐹 ↾ (◡◡𝐹 “ 𝐶)):(◡◡𝐹 “ 𝐶)⟶(ran ◡𝐹 ∩ 𝐶)) |
| 22 | 20, 21 | syl 17 |
. . . . 5
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → (◡𝐹 ↾ (◡◡𝐹 “ 𝐶)):(◡◡𝐹 “ 𝐶)⟶(ran ◡𝐹 ∩ 𝐶)) |
| 23 | | f1resf1 6792 |
. . . . 5
⊢ ((◡𝐹:𝐵–1-1→𝐴 ∧ (◡◡𝐹 “ 𝐶) ⊆ 𝐵 ∧ (◡𝐹 ↾ (◡◡𝐹 “ 𝐶)):(◡◡𝐹 “ 𝐶)⟶(ran ◡𝐹 ∩ 𝐶)) → (◡𝐹 ↾ (◡◡𝐹 “ 𝐶)):(◡◡𝐹 “ 𝐶)–1-1→(ran ◡𝐹 ∩ 𝐶)) |
| 24 | 5, 13, 22, 23 | syl3anc 1372 |
. . . 4
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → (◡𝐹 ↾ (◡◡𝐹 “ 𝐶)):(◡◡𝐹 “ 𝐶)–1-1→(ran ◡𝐹 ∩ 𝐶)) |
| 25 | | f1of1 6827 |
. . . . . . . 8
⊢ (𝐺:𝐶–1-1-onto→𝐷 → 𝐺:𝐶–1-1→𝐷) |
| 26 | 25 | 3ad2ant2 1134 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) → 𝐺:𝐶–1-1→𝐷) |
| 27 | 26 | adantr 480 |
. . . . . 6
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → 𝐺:𝐶–1-1→𝐷) |
| 28 | | inss2 4218 |
. . . . . 6
⊢ (ran
◡𝐹 ∩ 𝐶) ⊆ 𝐶 |
| 29 | | f1ores 6842 |
. . . . . 6
⊢ ((𝐺:𝐶–1-1→𝐷 ∧ (ran ◡𝐹 ∩ 𝐶) ⊆ 𝐶) → (𝐺 ↾ (ran ◡𝐹 ∩ 𝐶)):(ran ◡𝐹 ∩ 𝐶)–1-1-onto→(𝐺 “ (ran ◡𝐹 ∩ 𝐶))) |
| 30 | 27, 28, 29 | sylancl 586 |
. . . . 5
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → (𝐺 ↾ (ran ◡𝐹 ∩ 𝐶)):(ran ◡𝐹 ∩ 𝐶)–1-1-onto→(𝐺 “ (ran ◡𝐹 ∩ 𝐶))) |
| 31 | | f1ofo 6835 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵–onto→𝐴) |
| 32 | | forn 6803 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹:𝐵–onto→𝐴 → ran ◡𝐹 = 𝐴) |
| 33 | 1, 31, 32 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐴–1-1-onto→𝐵 → ran ◡𝐹 = 𝐴) |
| 34 | 33 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) → ran ◡𝐹 = 𝐴) |
| 35 | 34 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → ran ◡𝐹 = 𝐴) |
| 36 | 35 | ineq1d 4199 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → (ran ◡𝐹 ∩ 𝐶) = (𝐴 ∩ 𝐶)) |
| 37 | | incom 4189 |
. . . . . . . . . . . 12
⊢ (𝐴 ∩ 𝐶) = (𝐶 ∩ 𝐴) |
| 38 | | dfss2 3949 |
. . . . . . . . . . . . 13
⊢ (𝐶 ⊆ 𝐴 ↔ (𝐶 ∩ 𝐴) = 𝐶) |
| 39 | 38 | biimpi 216 |
. . . . . . . . . . . 12
⊢ (𝐶 ⊆ 𝐴 → (𝐶 ∩ 𝐴) = 𝐶) |
| 40 | 37, 39 | eqtrid 2781 |
. . . . . . . . . . 11
⊢ (𝐶 ⊆ 𝐴 → (𝐴 ∩ 𝐶) = 𝐶) |
| 41 | 40 | ad2antrl 728 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → (𝐴 ∩ 𝐶) = 𝐶) |
| 42 | 36, 41 | eqtrd 2769 |
. . . . . . . . 9
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → (ran ◡𝐹 ∩ 𝐶) = 𝐶) |
| 43 | 42 | imaeq2d 6058 |
. . . . . . . 8
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → (𝐺 “ (ran ◡𝐹 ∩ 𝐶)) = (𝐺 “ 𝐶)) |
| 44 | | f1ofn 6829 |
. . . . . . . . . . . 12
⊢ (𝐺:𝐶–1-1-onto→𝐷 → 𝐺 Fn 𝐶) |
| 45 | | fnima 6678 |
. . . . . . . . . . . 12
⊢ (𝐺 Fn 𝐶 → (𝐺 “ 𝐶) = ran 𝐺) |
| 46 | 44, 45 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐺:𝐶–1-1-onto→𝐷 → (𝐺 “ 𝐶) = ran 𝐺) |
| 47 | | f1ofo 6835 |
. . . . . . . . . . . 12
⊢ (𝐺:𝐶–1-1-onto→𝐷 → 𝐺:𝐶–onto→𝐷) |
| 48 | | forn 6803 |
. . . . . . . . . . . 12
⊢ (𝐺:𝐶–onto→𝐷 → ran 𝐺 = 𝐷) |
| 49 | 47, 48 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐺:𝐶–1-1-onto→𝐷 → ran 𝐺 = 𝐷) |
| 50 | 46, 49 | eqtrd 2769 |
. . . . . . . . . 10
⊢ (𝐺:𝐶–1-1-onto→𝐷 → (𝐺 “ 𝐶) = 𝐷) |
| 51 | 50 | 3ad2ant2 1134 |
. . . . . . . . 9
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) → (𝐺 “ 𝐶) = 𝐷) |
| 52 | 51 | adantr 480 |
. . . . . . . 8
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → (𝐺 “ 𝐶) = 𝐷) |
| 53 | 43, 52 | eqtrd 2769 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → (𝐺 “ (ran ◡𝐹 ∩ 𝐶)) = 𝐷) |
| 54 | 53 | eqcomd 2740 |
. . . . . 6
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → 𝐷 = (𝐺 “ (ran ◡𝐹 ∩ 𝐶))) |
| 55 | 54 | f1oeq3d 6825 |
. . . . 5
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → ((𝐺 ↾ (ran ◡𝐹 ∩ 𝐶)):(ran ◡𝐹 ∩ 𝐶)–1-1-onto→𝐷 ↔ (𝐺 ↾ (ran ◡𝐹 ∩ 𝐶)):(ran ◡𝐹 ∩ 𝐶)–1-1-onto→(𝐺 “ (ran ◡𝐹 ∩ 𝐶)))) |
| 56 | 30, 55 | mpbird 257 |
. . . 4
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → (𝐺 ↾ (ran ◡𝐹 ∩ 𝐶)):(ran ◡𝐹 ∩ 𝐶)–1-1-onto→𝐷) |
| 57 | | f1orel 6831 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) |
| 58 | 57 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) → Rel 𝐹) |
| 59 | 58 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → Rel 𝐹) |
| 60 | | dfrel2 6189 |
. . . . . . . . 9
⊢ (Rel
𝐹 ↔ ◡◡𝐹 = 𝐹) |
| 61 | 59, 60 | sylib 218 |
. . . . . . . 8
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → ◡◡𝐹 = 𝐹) |
| 62 | 61 | eqcomd 2740 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → 𝐹 = ◡◡𝐹) |
| 63 | 62 | imaeq1d 6057 |
. . . . . 6
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → (𝐹 “ 𝐶) = (◡◡𝐹 “ 𝐶)) |
| 64 | 63 | f1oeq2d 6824 |
. . . . 5
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → ((𝐺 ∘ ◡𝐹):(𝐹 “ 𝐶)–1-1-onto→𝐷 ↔ (𝐺 ∘ ◡𝐹):(◡◡𝐹 “ 𝐶)–1-1-onto→𝐷)) |
| 65 | 1, 7 | syl 17 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
| 66 | 65 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) → ◡𝐹:𝐵⟶𝐴) |
| 67 | 66 | adantr 480 |
. . . . . 6
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → ◡𝐹:𝐵⟶𝐴) |
| 68 | | eqid 2734 |
. . . . . 6
⊢ (ran
◡𝐹 ∩ 𝐶) = (ran ◡𝐹 ∩ 𝐶) |
| 69 | | eqid 2734 |
. . . . . 6
⊢ (◡◡𝐹 “ 𝐶) = (◡◡𝐹 “ 𝐶) |
| 70 | | eqid 2734 |
. . . . . 6
⊢ (◡𝐹 ↾ (◡◡𝐹 “ 𝐶)) = (◡𝐹 ↾ (◡◡𝐹 “ 𝐶)) |
| 71 | | f1of 6828 |
. . . . . . . 8
⊢ (𝐺:𝐶–1-1-onto→𝐷 → 𝐺:𝐶⟶𝐷) |
| 72 | 71 | 3ad2ant2 1134 |
. . . . . . 7
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) → 𝐺:𝐶⟶𝐷) |
| 73 | 72 | adantr 480 |
. . . . . 6
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → 𝐺:𝐶⟶𝐷) |
| 74 | | eqid 2734 |
. . . . . 6
⊢ (𝐺 ↾ (ran ◡𝐹 ∩ 𝐶)) = (𝐺 ↾ (ran ◡𝐹 ∩ 𝐶)) |
| 75 | 67, 68, 69, 70, 73, 74 | fcoresf1ob 47058 |
. . . . 5
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → ((𝐺 ∘ ◡𝐹):(◡◡𝐹 “ 𝐶)–1-1-onto→𝐷 ↔ ((◡𝐹 ↾ (◡◡𝐹 “ 𝐶)):(◡◡𝐹 “ 𝐶)–1-1→(ran ◡𝐹 ∩ 𝐶) ∧ (𝐺 ↾ (ran ◡𝐹 ∩ 𝐶)):(ran ◡𝐹 ∩ 𝐶)–1-1-onto→𝐷))) |
| 76 | 64, 75 | bitrd 279 |
. . . 4
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → ((𝐺 ∘ ◡𝐹):(𝐹 “ 𝐶)–1-1-onto→𝐷 ↔ ((◡𝐹 ↾ (◡◡𝐹 “ 𝐶)):(◡◡𝐹 “ 𝐶)–1-1→(ran ◡𝐹 ∩ 𝐶) ∧ (𝐺 ↾ (ran ◡𝐹 ∩ 𝐶)):(ran ◡𝐹 ∩ 𝐶)–1-1-onto→𝐷))) |
| 77 | 24, 56, 76 | mpbir2and 713 |
. . 3
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → (𝐺 ∘ ◡𝐹):(𝐹 “ 𝐶)–1-1-onto→𝐷) |
| 78 | | simpl3 1193 |
. . 3
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → 𝐻:𝐸–1-1-onto→𝐼) |
| 79 | | simprr 772 |
. . 3
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → 𝐷 ⊆ 𝐸) |
| 80 | | f1ocoima 7305 |
. . 3
⊢ (((𝐺 ∘ ◡𝐹):(𝐹 “ 𝐶)–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼 ∧ 𝐷 ⊆ 𝐸) → (𝐻 ∘ (𝐺 ∘ ◡𝐹)):(𝐹 “ 𝐶)–1-1-onto→(𝐻 “ 𝐷)) |
| 81 | 77, 78, 79, 80 | syl3anc 1372 |
. 2
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → (𝐻 ∘ (𝐺 ∘ ◡𝐹)):(𝐹 “ 𝐶)–1-1-onto→(𝐻 “ 𝐷)) |
| 82 | | coass 6265 |
. . 3
⊢ ((𝐻 ∘ 𝐺) ∘ ◡𝐹) = (𝐻 ∘ (𝐺 ∘ ◡𝐹)) |
| 83 | | f1oeq1 6816 |
. . 3
⊢ (((𝐻 ∘ 𝐺) ∘ ◡𝐹) = (𝐻 ∘ (𝐺 ∘ ◡𝐹)) → (((𝐻 ∘ 𝐺) ∘ ◡𝐹):(𝐹 “ 𝐶)–1-1-onto→(𝐻 “ 𝐷) ↔ (𝐻 ∘ (𝐺 ∘ ◡𝐹)):(𝐹 “ 𝐶)–1-1-onto→(𝐻 “ 𝐷))) |
| 84 | 82, 83 | ax-mp 5 |
. 2
⊢ (((𝐻 ∘ 𝐺) ∘ ◡𝐹):(𝐹 “ 𝐶)–1-1-onto→(𝐻 “ 𝐷) ↔ (𝐻 ∘ (𝐺 ∘ ◡𝐹)):(𝐹 “ 𝐶)–1-1-onto→(𝐻 “ 𝐷)) |
| 85 | 81, 84 | sylibr 234 |
1
⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → ((𝐻 ∘ 𝐺) ∘ ◡𝐹):(𝐹 “ 𝐶)–1-1-onto→(𝐻 “ 𝐷)) |