| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imasgim | Structured version Visualization version GIF version | ||
| Description: A relabeling of the elements of a group induces an isomorphism to the relabeled group. MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015.) (Revised by Mario Carneiro, 11-Aug-2015.) |
| Ref | Expression |
|---|---|
| imasgim.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imasgim.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imasgim.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
| imasgim.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Ref | Expression |
|---|---|
| imasgim | ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpIso 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2731 | . . 3 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 3 | eqid 2731 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | eqid 2731 | . . 3 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
| 5 | imasgim.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 6 | imasgim.u | . . . . 5 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 7 | imasgim.v | . . . . 5 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 8 | eqidd 2732 | . . . . 5 ⊢ (𝜑 → (+g‘𝑅) = (+g‘𝑅)) | |
| 9 | imasgim.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) | |
| 10 | f1ofo 6770 | . . . . . 6 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–onto→𝐵) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| 12 | 9 | f1ocpbl 17429 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑐) ∧ (𝐹‘𝑏) = (𝐹‘𝑑)) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = (𝐹‘(𝑐(+g‘𝑅)𝑑)))) |
| 13 | eqid 2731 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 14 | 6, 7, 8, 11, 12, 5, 13 | imasgrp 18969 | . . . 4 ⊢ (𝜑 → (𝑈 ∈ Grp ∧ (𝐹‘(0g‘𝑅)) = (0g‘𝑈))) |
| 15 | 14 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑈 ∈ Grp) |
| 16 | 6, 7, 11, 5 | imasbas 17416 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
| 17 | f1oeq3 6753 | . . . . . . 7 ⊢ (𝐵 = (Base‘𝑈) → (𝐹:𝑉–1-1-onto→𝐵 ↔ 𝐹:𝑉–1-1-onto→(Base‘𝑈))) | |
| 18 | 16, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐹:𝑉–1-1-onto→𝐵 ↔ 𝐹:𝑉–1-1-onto→(Base‘𝑈))) |
| 19 | 9, 18 | mpbid 232 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→(Base‘𝑈)) |
| 20 | 7 | f1oeq2d 6759 | . . . . 5 ⊢ (𝜑 → (𝐹:𝑉–1-1-onto→(Base‘𝑈) ↔ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈))) |
| 21 | 19, 20 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈)) |
| 22 | f1of 6763 | . . . 4 ⊢ (𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈) → 𝐹:(Base‘𝑅)⟶(Base‘𝑈)) | |
| 23 | 21, 22 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:(Base‘𝑅)⟶(Base‘𝑈)) |
| 24 | 7 | eleq2d 2817 | . . . . . 6 ⊢ (𝜑 → (𝑎 ∈ 𝑉 ↔ 𝑎 ∈ (Base‘𝑅))) |
| 25 | 7 | eleq2d 2817 | . . . . . 6 ⊢ (𝜑 → (𝑏 ∈ 𝑉 ↔ 𝑏 ∈ (Base‘𝑅))) |
| 26 | 24, 25 | anbi12d 632 | . . . . 5 ⊢ (𝜑 → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ↔ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)))) |
| 27 | 11, 12, 6, 7, 5, 3, 4 | imasaddval 17436 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏)) = (𝐹‘(𝑎(+g‘𝑅)𝑏))) |
| 28 | 27 | eqcomd 2737 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏))) |
| 29 | 28 | 3expib 1122 | . . . . 5 ⊢ (𝜑 → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏)))) |
| 30 | 26, 29 | sylbird 260 | . . . 4 ⊢ (𝜑 → ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏)))) |
| 31 | 30 | imp 406 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏))) |
| 32 | 1, 2, 3, 4, 5, 15, 23, 31 | isghmd 19137 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑈)) |
| 33 | 1, 2 | isgim 19174 | . 2 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑈) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑈) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈))) |
| 34 | 32, 21, 33 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpIso 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⟶wf 6477 –onto→wfo 6479 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 0gc0g 17343 “s cimas 17408 Grpcgrp 18846 GrpHom cghm 19124 GrpIso cgim 19169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-0g 17345 df-imas 17412 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-ghm 19125 df-gim 19171 |
| This theorem is referenced by: isnumbasgrplem1 43142 |
| Copyright terms: Public domain | W3C validator |