Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasgim Structured version   Visualization version   GIF version

Theorem imasgim 40841
Description: A relabeling of the elements of a group induces an isomorphism to the relabeled group. MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015.) (Revised by Mario Carneiro, 11-Aug-2015.)
Hypotheses
Ref Expression
imasgim.u (𝜑𝑈 = (𝐹s 𝑅))
imasgim.v (𝜑𝑉 = (Base‘𝑅))
imasgim.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasgim.r (𝜑𝑅 ∈ Grp)
Assertion
Ref Expression
imasgim (𝜑𝐹 ∈ (𝑅 GrpIso 𝑈))

Proof of Theorem imasgim
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2738 . . 3 (Base‘𝑈) = (Base‘𝑈)
3 eqid 2738 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2738 . . 3 (+g𝑈) = (+g𝑈)
5 imasgim.r . . 3 (𝜑𝑅 ∈ Grp)
6 imasgim.u . . . . 5 (𝜑𝑈 = (𝐹s 𝑅))
7 imasgim.v . . . . 5 (𝜑𝑉 = (Base‘𝑅))
8 eqidd 2739 . . . . 5 (𝜑 → (+g𝑅) = (+g𝑅))
9 imasgim.f . . . . . 6 (𝜑𝐹:𝑉1-1-onto𝐵)
10 f1ofo 6707 . . . . . 6 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉onto𝐵)
119, 10syl 17 . . . . 5 (𝜑𝐹:𝑉onto𝐵)
129f1ocpbl 17153 . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑐𝑉𝑑𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐹‘(𝑐(+g𝑅)𝑑))))
13 eqid 2738 . . . . 5 (0g𝑅) = (0g𝑅)
146, 7, 8, 11, 12, 5, 13imasgrp 18606 . . . 4 (𝜑 → (𝑈 ∈ Grp ∧ (𝐹‘(0g𝑅)) = (0g𝑈)))
1514simpld 494 . . 3 (𝜑𝑈 ∈ Grp)
166, 7, 11, 5imasbas 17140 . . . . . . 7 (𝜑𝐵 = (Base‘𝑈))
17 f1oeq3 6690 . . . . . . 7 (𝐵 = (Base‘𝑈) → (𝐹:𝑉1-1-onto𝐵𝐹:𝑉1-1-onto→(Base‘𝑈)))
1816, 17syl 17 . . . . . 6 (𝜑 → (𝐹:𝑉1-1-onto𝐵𝐹:𝑉1-1-onto→(Base‘𝑈)))
199, 18mpbid 231 . . . . 5 (𝜑𝐹:𝑉1-1-onto→(Base‘𝑈))
207f1oeq2d 6696 . . . . 5 (𝜑 → (𝐹:𝑉1-1-onto→(Base‘𝑈) ↔ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈)))
2119, 20mpbid 231 . . . 4 (𝜑𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈))
22 f1of 6700 . . . 4 (𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈) → 𝐹:(Base‘𝑅)⟶(Base‘𝑈))
2321, 22syl 17 . . 3 (𝜑𝐹:(Base‘𝑅)⟶(Base‘𝑈))
247eleq2d 2824 . . . . . 6 (𝜑 → (𝑎𝑉𝑎 ∈ (Base‘𝑅)))
257eleq2d 2824 . . . . . 6 (𝜑 → (𝑏𝑉𝑏 ∈ (Base‘𝑅)))
2624, 25anbi12d 630 . . . . 5 (𝜑 → ((𝑎𝑉𝑏𝑉) ↔ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))))
2711, 12, 6, 7, 5, 3, 4imasaddval 17160 . . . . . . 7 ((𝜑𝑎𝑉𝑏𝑉) → ((𝐹𝑎)(+g𝑈)(𝐹𝑏)) = (𝐹‘(𝑎(+g𝑅)𝑏)))
2827eqcomd 2744 . . . . . 6 ((𝜑𝑎𝑉𝑏𝑉) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑈)(𝐹𝑏)))
29283expib 1120 . . . . 5 (𝜑 → ((𝑎𝑉𝑏𝑉) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑈)(𝐹𝑏))))
3026, 29sylbird 259 . . . 4 (𝜑 → ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑈)(𝐹𝑏))))
3130imp 406 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑈)(𝐹𝑏)))
321, 2, 3, 4, 5, 15, 23, 31isghmd 18758 . 2 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑈))
331, 2isgim 18793 . 2 (𝐹 ∈ (𝑅 GrpIso 𝑈) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑈) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈)))
3432, 21, 33sylanbrc 582 1 (𝜑𝐹 ∈ (𝑅 GrpIso 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wf 6414  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  0gc0g 17067  s cimas 17132  Grpcgrp 18492   GrpHom cghm 18746   GrpIso cgim 18788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-0g 17069  df-imas 17136  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-ghm 18747  df-gim 18790
This theorem is referenced by:  isnumbasgrplem1  40842
  Copyright terms: Public domain W3C validator