| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imasgim | Structured version Visualization version GIF version | ||
| Description: A relabeling of the elements of a group induces an isomorphism to the relabeled group. MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015.) (Revised by Mario Carneiro, 11-Aug-2015.) |
| Ref | Expression |
|---|---|
| imasgim.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imasgim.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imasgim.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
| imasgim.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Ref | Expression |
|---|---|
| imasgim | ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpIso 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2730 | . . 3 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 3 | eqid 2730 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | eqid 2730 | . . 3 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
| 5 | imasgim.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 6 | imasgim.u | . . . . 5 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 7 | imasgim.v | . . . . 5 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 8 | eqidd 2731 | . . . . 5 ⊢ (𝜑 → (+g‘𝑅) = (+g‘𝑅)) | |
| 9 | imasgim.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) | |
| 10 | f1ofo 6810 | . . . . . 6 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–onto→𝐵) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| 12 | 9 | f1ocpbl 17495 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑐) ∧ (𝐹‘𝑏) = (𝐹‘𝑑)) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = (𝐹‘(𝑐(+g‘𝑅)𝑑)))) |
| 13 | eqid 2730 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 14 | 6, 7, 8, 11, 12, 5, 13 | imasgrp 18995 | . . . 4 ⊢ (𝜑 → (𝑈 ∈ Grp ∧ (𝐹‘(0g‘𝑅)) = (0g‘𝑈))) |
| 15 | 14 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑈 ∈ Grp) |
| 16 | 6, 7, 11, 5 | imasbas 17482 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
| 17 | f1oeq3 6793 | . . . . . . 7 ⊢ (𝐵 = (Base‘𝑈) → (𝐹:𝑉–1-1-onto→𝐵 ↔ 𝐹:𝑉–1-1-onto→(Base‘𝑈))) | |
| 18 | 16, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐹:𝑉–1-1-onto→𝐵 ↔ 𝐹:𝑉–1-1-onto→(Base‘𝑈))) |
| 19 | 9, 18 | mpbid 232 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→(Base‘𝑈)) |
| 20 | 7 | f1oeq2d 6799 | . . . . 5 ⊢ (𝜑 → (𝐹:𝑉–1-1-onto→(Base‘𝑈) ↔ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈))) |
| 21 | 19, 20 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈)) |
| 22 | f1of 6803 | . . . 4 ⊢ (𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈) → 𝐹:(Base‘𝑅)⟶(Base‘𝑈)) | |
| 23 | 21, 22 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:(Base‘𝑅)⟶(Base‘𝑈)) |
| 24 | 7 | eleq2d 2815 | . . . . . 6 ⊢ (𝜑 → (𝑎 ∈ 𝑉 ↔ 𝑎 ∈ (Base‘𝑅))) |
| 25 | 7 | eleq2d 2815 | . . . . . 6 ⊢ (𝜑 → (𝑏 ∈ 𝑉 ↔ 𝑏 ∈ (Base‘𝑅))) |
| 26 | 24, 25 | anbi12d 632 | . . . . 5 ⊢ (𝜑 → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ↔ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)))) |
| 27 | 11, 12, 6, 7, 5, 3, 4 | imasaddval 17502 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏)) = (𝐹‘(𝑎(+g‘𝑅)𝑏))) |
| 28 | 27 | eqcomd 2736 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏))) |
| 29 | 28 | 3expib 1122 | . . . . 5 ⊢ (𝜑 → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏)))) |
| 30 | 26, 29 | sylbird 260 | . . . 4 ⊢ (𝜑 → ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏)))) |
| 31 | 30 | imp 406 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏))) |
| 32 | 1, 2, 3, 4, 5, 15, 23, 31 | isghmd 19164 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑈)) |
| 33 | 1, 2 | isgim 19201 | . 2 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑈) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑈) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈))) |
| 34 | 32, 21, 33 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpIso 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⟶wf 6510 –onto→wfo 6512 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 0gc0g 17409 “s cimas 17474 Grpcgrp 18872 GrpHom cghm 19151 GrpIso cgim 19196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-0g 17411 df-imas 17478 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-ghm 19152 df-gim 19198 |
| This theorem is referenced by: isnumbasgrplem1 43097 |
| Copyright terms: Public domain | W3C validator |