Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasgim Structured version   Visualization version   GIF version

Theorem imasgim 43089
Description: A relabeling of the elements of a group induces an isomorphism to the relabeled group. MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015.) (Revised by Mario Carneiro, 11-Aug-2015.)
Hypotheses
Ref Expression
imasgim.u (𝜑𝑈 = (𝐹s 𝑅))
imasgim.v (𝜑𝑉 = (Base‘𝑅))
imasgim.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasgim.r (𝜑𝑅 ∈ Grp)
Assertion
Ref Expression
imasgim (𝜑𝐹 ∈ (𝑅 GrpIso 𝑈))

Proof of Theorem imasgim
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2729 . . 3 (Base‘𝑈) = (Base‘𝑈)
3 eqid 2729 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2729 . . 3 (+g𝑈) = (+g𝑈)
5 imasgim.r . . 3 (𝜑𝑅 ∈ Grp)
6 imasgim.u . . . . 5 (𝜑𝑈 = (𝐹s 𝑅))
7 imasgim.v . . . . 5 (𝜑𝑉 = (Base‘𝑅))
8 eqidd 2730 . . . . 5 (𝜑 → (+g𝑅) = (+g𝑅))
9 imasgim.f . . . . . 6 (𝜑𝐹:𝑉1-1-onto𝐵)
10 f1ofo 6807 . . . . . 6 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉onto𝐵)
119, 10syl 17 . . . . 5 (𝜑𝐹:𝑉onto𝐵)
129f1ocpbl 17488 . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑐𝑉𝑑𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐹‘(𝑐(+g𝑅)𝑑))))
13 eqid 2729 . . . . 5 (0g𝑅) = (0g𝑅)
146, 7, 8, 11, 12, 5, 13imasgrp 18988 . . . 4 (𝜑 → (𝑈 ∈ Grp ∧ (𝐹‘(0g𝑅)) = (0g𝑈)))
1514simpld 494 . . 3 (𝜑𝑈 ∈ Grp)
166, 7, 11, 5imasbas 17475 . . . . . . 7 (𝜑𝐵 = (Base‘𝑈))
17 f1oeq3 6790 . . . . . . 7 (𝐵 = (Base‘𝑈) → (𝐹:𝑉1-1-onto𝐵𝐹:𝑉1-1-onto→(Base‘𝑈)))
1816, 17syl 17 . . . . . 6 (𝜑 → (𝐹:𝑉1-1-onto𝐵𝐹:𝑉1-1-onto→(Base‘𝑈)))
199, 18mpbid 232 . . . . 5 (𝜑𝐹:𝑉1-1-onto→(Base‘𝑈))
207f1oeq2d 6796 . . . . 5 (𝜑 → (𝐹:𝑉1-1-onto→(Base‘𝑈) ↔ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈)))
2119, 20mpbid 232 . . . 4 (𝜑𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈))
22 f1of 6800 . . . 4 (𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈) → 𝐹:(Base‘𝑅)⟶(Base‘𝑈))
2321, 22syl 17 . . 3 (𝜑𝐹:(Base‘𝑅)⟶(Base‘𝑈))
247eleq2d 2814 . . . . . 6 (𝜑 → (𝑎𝑉𝑎 ∈ (Base‘𝑅)))
257eleq2d 2814 . . . . . 6 (𝜑 → (𝑏𝑉𝑏 ∈ (Base‘𝑅)))
2624, 25anbi12d 632 . . . . 5 (𝜑 → ((𝑎𝑉𝑏𝑉) ↔ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))))
2711, 12, 6, 7, 5, 3, 4imasaddval 17495 . . . . . . 7 ((𝜑𝑎𝑉𝑏𝑉) → ((𝐹𝑎)(+g𝑈)(𝐹𝑏)) = (𝐹‘(𝑎(+g𝑅)𝑏)))
2827eqcomd 2735 . . . . . 6 ((𝜑𝑎𝑉𝑏𝑉) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑈)(𝐹𝑏)))
29283expib 1122 . . . . 5 (𝜑 → ((𝑎𝑉𝑏𝑉) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑈)(𝐹𝑏))))
3026, 29sylbird 260 . . . 4 (𝜑 → ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑈)(𝐹𝑏))))
3130imp 406 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑈)(𝐹𝑏)))
321, 2, 3, 4, 5, 15, 23, 31isghmd 19157 . 2 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑈))
331, 2isgim 19194 . 2 (𝐹 ∈ (𝑅 GrpIso 𝑈) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑈) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈)))
3432, 21, 33sylanbrc 583 1 (𝜑𝐹 ∈ (𝑅 GrpIso 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wf 6507  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  s cimas 17467  Grpcgrp 18865   GrpHom cghm 19144   GrpIso cgim 19189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-0g 17404  df-imas 17471  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-ghm 19145  df-gim 19191
This theorem is referenced by:  isnumbasgrplem1  43090
  Copyright terms: Public domain W3C validator