| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imasgim | Structured version Visualization version GIF version | ||
| Description: A relabeling of the elements of a group induces an isomorphism to the relabeled group. MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015.) (Revised by Mario Carneiro, 11-Aug-2015.) |
| Ref | Expression |
|---|---|
| imasgim.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imasgim.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imasgim.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
| imasgim.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Ref | Expression |
|---|---|
| imasgim | ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpIso 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2737 | . . 3 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 3 | eqid 2737 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | eqid 2737 | . . 3 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
| 5 | imasgim.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 6 | imasgim.u | . . . . 5 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 7 | imasgim.v | . . . . 5 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 8 | eqidd 2738 | . . . . 5 ⊢ (𝜑 → (+g‘𝑅) = (+g‘𝑅)) | |
| 9 | imasgim.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) | |
| 10 | f1ofo 6855 | . . . . . 6 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–onto→𝐵) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| 12 | 9 | f1ocpbl 17570 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑐) ∧ (𝐹‘𝑏) = (𝐹‘𝑑)) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = (𝐹‘(𝑐(+g‘𝑅)𝑑)))) |
| 13 | eqid 2737 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 14 | 6, 7, 8, 11, 12, 5, 13 | imasgrp 19074 | . . . 4 ⊢ (𝜑 → (𝑈 ∈ Grp ∧ (𝐹‘(0g‘𝑅)) = (0g‘𝑈))) |
| 15 | 14 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑈 ∈ Grp) |
| 16 | 6, 7, 11, 5 | imasbas 17557 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
| 17 | f1oeq3 6838 | . . . . . . 7 ⊢ (𝐵 = (Base‘𝑈) → (𝐹:𝑉–1-1-onto→𝐵 ↔ 𝐹:𝑉–1-1-onto→(Base‘𝑈))) | |
| 18 | 16, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐹:𝑉–1-1-onto→𝐵 ↔ 𝐹:𝑉–1-1-onto→(Base‘𝑈))) |
| 19 | 9, 18 | mpbid 232 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→(Base‘𝑈)) |
| 20 | 7 | f1oeq2d 6844 | . . . . 5 ⊢ (𝜑 → (𝐹:𝑉–1-1-onto→(Base‘𝑈) ↔ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈))) |
| 21 | 19, 20 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈)) |
| 22 | f1of 6848 | . . . 4 ⊢ (𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈) → 𝐹:(Base‘𝑅)⟶(Base‘𝑈)) | |
| 23 | 21, 22 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:(Base‘𝑅)⟶(Base‘𝑈)) |
| 24 | 7 | eleq2d 2827 | . . . . . 6 ⊢ (𝜑 → (𝑎 ∈ 𝑉 ↔ 𝑎 ∈ (Base‘𝑅))) |
| 25 | 7 | eleq2d 2827 | . . . . . 6 ⊢ (𝜑 → (𝑏 ∈ 𝑉 ↔ 𝑏 ∈ (Base‘𝑅))) |
| 26 | 24, 25 | anbi12d 632 | . . . . 5 ⊢ (𝜑 → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ↔ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)))) |
| 27 | 11, 12, 6, 7, 5, 3, 4 | imasaddval 17577 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏)) = (𝐹‘(𝑎(+g‘𝑅)𝑏))) |
| 28 | 27 | eqcomd 2743 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏))) |
| 29 | 28 | 3expib 1123 | . . . . 5 ⊢ (𝜑 → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏)))) |
| 30 | 26, 29 | sylbird 260 | . . . 4 ⊢ (𝜑 → ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏)))) |
| 31 | 30 | imp 406 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝑈)(𝐹‘𝑏))) |
| 32 | 1, 2, 3, 4, 5, 15, 23, 31 | isghmd 19243 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑈)) |
| 33 | 1, 2 | isgim 19280 | . 2 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑈) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑈) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈))) |
| 34 | 32, 21, 33 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpIso 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ⟶wf 6557 –onto→wfo 6559 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 +gcplusg 17297 0gc0g 17484 “s cimas 17549 Grpcgrp 18951 GrpHom cghm 19230 GrpIso cgim 19275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-0g 17486 df-imas 17553 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-ghm 19231 df-gim 19277 |
| This theorem is referenced by: isnumbasgrplem1 43113 |
| Copyright terms: Public domain | W3C validator |