Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasgim Structured version   Visualization version   GIF version

Theorem imasgim 40628
Description: A relabeling of the elements of a group induces an isomorphism to the relabeled group. MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015.) (Revised by Mario Carneiro, 11-Aug-2015.)
Hypotheses
Ref Expression
imasgim.u (𝜑𝑈 = (𝐹s 𝑅))
imasgim.v (𝜑𝑉 = (Base‘𝑅))
imasgim.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasgim.r (𝜑𝑅 ∈ Grp)
Assertion
Ref Expression
imasgim (𝜑𝐹 ∈ (𝑅 GrpIso 𝑈))

Proof of Theorem imasgim
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2737 . . 3 (Base‘𝑈) = (Base‘𝑈)
3 eqid 2737 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2737 . . 3 (+g𝑈) = (+g𝑈)
5 imasgim.r . . 3 (𝜑𝑅 ∈ Grp)
6 imasgim.u . . . . 5 (𝜑𝑈 = (𝐹s 𝑅))
7 imasgim.v . . . . 5 (𝜑𝑉 = (Base‘𝑅))
8 eqidd 2738 . . . . 5 (𝜑 → (+g𝑅) = (+g𝑅))
9 imasgim.f . . . . . 6 (𝜑𝐹:𝑉1-1-onto𝐵)
10 f1ofo 6668 . . . . . 6 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉onto𝐵)
119, 10syl 17 . . . . 5 (𝜑𝐹:𝑉onto𝐵)
129f1ocpbl 17030 . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑐𝑉𝑑𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐹‘(𝑐(+g𝑅)𝑑))))
13 eqid 2737 . . . . 5 (0g𝑅) = (0g𝑅)
146, 7, 8, 11, 12, 5, 13imasgrp 18479 . . . 4 (𝜑 → (𝑈 ∈ Grp ∧ (𝐹‘(0g𝑅)) = (0g𝑈)))
1514simpld 498 . . 3 (𝜑𝑈 ∈ Grp)
166, 7, 11, 5imasbas 17017 . . . . . . 7 (𝜑𝐵 = (Base‘𝑈))
17 f1oeq3 6651 . . . . . . 7 (𝐵 = (Base‘𝑈) → (𝐹:𝑉1-1-onto𝐵𝐹:𝑉1-1-onto→(Base‘𝑈)))
1816, 17syl 17 . . . . . 6 (𝜑 → (𝐹:𝑉1-1-onto𝐵𝐹:𝑉1-1-onto→(Base‘𝑈)))
199, 18mpbid 235 . . . . 5 (𝜑𝐹:𝑉1-1-onto→(Base‘𝑈))
207f1oeq2d 6657 . . . . 5 (𝜑 → (𝐹:𝑉1-1-onto→(Base‘𝑈) ↔ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈)))
2119, 20mpbid 235 . . . 4 (𝜑𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈))
22 f1of 6661 . . . 4 (𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈) → 𝐹:(Base‘𝑅)⟶(Base‘𝑈))
2321, 22syl 17 . . 3 (𝜑𝐹:(Base‘𝑅)⟶(Base‘𝑈))
247eleq2d 2823 . . . . . 6 (𝜑 → (𝑎𝑉𝑎 ∈ (Base‘𝑅)))
257eleq2d 2823 . . . . . 6 (𝜑 → (𝑏𝑉𝑏 ∈ (Base‘𝑅)))
2624, 25anbi12d 634 . . . . 5 (𝜑 → ((𝑎𝑉𝑏𝑉) ↔ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))))
2711, 12, 6, 7, 5, 3, 4imasaddval 17037 . . . . . . 7 ((𝜑𝑎𝑉𝑏𝑉) → ((𝐹𝑎)(+g𝑈)(𝐹𝑏)) = (𝐹‘(𝑎(+g𝑅)𝑏)))
2827eqcomd 2743 . . . . . 6 ((𝜑𝑎𝑉𝑏𝑉) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑈)(𝐹𝑏)))
29283expib 1124 . . . . 5 (𝜑 → ((𝑎𝑉𝑏𝑉) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑈)(𝐹𝑏))))
3026, 29sylbird 263 . . . 4 (𝜑 → ((𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑈)(𝐹𝑏))))
3130imp 410 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑈)(𝐹𝑏)))
321, 2, 3, 4, 5, 15, 23, 31isghmd 18631 . 2 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑈))
331, 2isgim 18666 . 2 (𝐹 ∈ (𝑅 GrpIso 𝑈) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑈) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑈)))
3432, 21, 33sylanbrc 586 1 (𝜑𝐹 ∈ (𝑅 GrpIso 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wf 6376  ontowfo 6378  1-1-ontowf1o 6379  cfv 6380  (class class class)co 7213  Basecbs 16760  +gcplusg 16802  0gc0g 16944  s cimas 17009  Grpcgrp 18365   GrpHom cghm 18619   GrpIso cgim 18661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-struct 16700  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-0g 16946  df-imas 17013  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-minusg 18369  df-ghm 18620  df-gim 18663
This theorem is referenced by:  isnumbasgrplem1  40629
  Copyright terms: Public domain W3C validator