![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imasrngf1 | Structured version Visualization version GIF version |
Description: The image of a non-unital ring under an injection is a non-unital ring (imasmndf1 18740 analog). (Contributed by AV, 22-Feb-2025.) |
Ref | Expression |
---|---|
imasrngf1.u | ⊢ 𝑈 = (𝐹 “s 𝑅) |
imasrngf1.v | ⊢ 𝑉 = (Base‘𝑅) |
Ref | Expression |
---|---|
imasrngf1 | ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝑈 ∈ Rng) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasrngf1.u | . . 3 ⊢ 𝑈 = (𝐹 “s 𝑅) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝑈 = (𝐹 “s 𝑅)) |
3 | imasrngf1.v | . . 3 ⊢ 𝑉 = (Base‘𝑅) | |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝑉 = (Base‘𝑅)) |
5 | eqid 2728 | . 2 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
6 | eqid 2728 | . 2 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
7 | f1f1orn 6855 | . . . 4 ⊢ (𝐹:𝑉–1-1→𝐵 → 𝐹:𝑉–1-1-onto→ran 𝐹) | |
8 | 7 | adantr 479 | . . 3 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝐹:𝑉–1-1-onto→ran 𝐹) |
9 | f1ofo 6851 | . . 3 ⊢ (𝐹:𝑉–1-1-onto→ran 𝐹 → 𝐹:𝑉–onto→ran 𝐹) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝐹:𝑉–onto→ran 𝐹) |
11 | 8 | f1ocpbl 17514 | . 2 ⊢ (((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = (𝐹‘(𝑝(+g‘𝑅)𝑞)))) |
12 | 8 | f1ocpbl 17514 | . 2 ⊢ (((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎(.r‘𝑅)𝑏)) = (𝐹‘(𝑝(.r‘𝑅)𝑞)))) |
13 | simpr 483 | . 2 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝑅 ∈ Rng) | |
14 | 2, 4, 5, 6, 10, 11, 12, 13 | imasrng 20124 | 1 ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Rng) → 𝑈 ∈ Rng) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ran crn 5683 –1-1→wf1 6550 –onto→wfo 6551 –1-1-onto→wf1o 6552 ‘cfv 6553 (class class class)co 7426 Basecbs 17187 +gcplusg 17240 .rcmulr 17241 “s cimas 17493 Rngcrng 20099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-sup 9473 df-inf 9474 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-plusg 17253 df-mulr 17254 df-sca 17256 df-vsca 17257 df-ip 17258 df-tset 17259 df-ple 17260 df-ds 17262 df-0g 17430 df-imas 17497 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-grp 18900 df-minusg 18901 df-cmn 19744 df-abl 19745 df-mgp 20082 df-rng 20100 |
This theorem is referenced by: xpsrngd 20126 |
Copyright terms: Public domain | W3C validator |